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An analytical theory is developed that describes asymptotically exactly the process of nonlinear
saturation of the magnetorotational instability in a model problem employing a linear shear flow in
a uniformly rotating channel. The theory shows that the instability saturates by modifying the shear
responsible for it. The saturation process requires both viscous and Ohmic dissipation. The theory
also describes the approach from small-amplitude perturbations to the final strongly nonlinear
saturated state. © 2005 American Institute of Physics. �DOI: 10.1063/1.2047592�

I. INTRODUCTION

Accretion is a process of fundamental importance in as-
trophysics. However, accretion can only occur in the pres-
ence of an efficient mechanism for angular momentum ex-
traction. Over the years many processes have been suggested
that might lead to efficient accretion, but the current consen-
sus is that a classical instability,1,2 since called the magne-
torotational instability �or MRI, for short�, is particularly ef-
fective in this respect.3 This instability relies on the presence
of a weak poloidal field and occurs in hot disks whenever the
angular velocity � in the disk decreases outward �d� /dr
�0�. The instability grows by extracting energy from the
resulting shear. Particularly noteworthy is the fact that the
instability occurs on a dynamic time scale, �MRI��−1, and
that it is fundamentally axisymmetric. The instability has a
small wavelength in the direction parallel to the rotation and
magnetic field, and takes the form of thin sheets of matter
moving alternately radially inward and outward. It is known
that sufficient dissipation stabilizes this instability,4 but in
accretion disks dissipative processes are weak and the insta-
bility is unhindered by such processes.3,5 It is not true, how-
ever, that dissipation is always negligible. Indeed, as shown
in the present paper, for the saturation of the instability, small
dissipation, both viscous and Ohmic, is required.

Because of its importance in the accretion disk problem
attempts are currently underway to study this instability in
the laboratory, both in the Taylor–Couette geometry where it
was first discovered2,6–9 and in a differentially rotating
sphere where it has already been observed.10 In accretion
disks the MRI is believed to saturate by generating turbu-
lence, which in turn enhances turbulent dissipation, thereby
quenching the instability back to threshold. This is because
the background shear is maintained by the gravitational field
of the central object, and the amplitude of the turbulence is
believed to remain sufficiently small that the background
shear remains unperturbed, even in the fully turbulent state.
In a laboratory experiment, however, the boundaries can sup-
port the radial pressure gradients that accompany any sub-
stantial modification of the shear profile. In other words, in a

laboratory setting, the MRI has a different mode of saturation
available to it: it can saturate by modifying the background
shear that feeds it. This is the regime we explore in this
paper.

The method used in the present paper has its origins in
the work of Ref. 11 on the theory of Görtler vortices and
related problems. Subsequently it has been used with consid-
erable effect to study rapidly rotating convection in both
two12–14 and three dimensions,15,16 as well as convection in a
strong magnetic field.17–19 The method takes advantage of
the small scale of the instability that is used as an expansion
parameter. The method is thus ideally suited for fingering
instabilities such as the MRI. In the following we show that
it can be applied in a straightforward fashion to the MRI in
the regime of interest in which rotation and shear dominate
the effects of the �poloidal� magnetic field, which is in turn
more important than viscous and Ohmic dissipation. Despite
this, both dissipative processes determine the final equilib-
rium state.

II. FORMULATION OF A MODEL PROBLEM

We consider a straight channel, −L* /2�x*�L* /2, −�
�y*��, −��z*��, filled with an electrically conducting
incompressible fluid, and rotating about the z axis with con-
stant angular velocity �*, the superscript * indicating dimen-
sional quantities. We suppose that a linear shear flow, U0

*

= �0,�*x* ,0�, �*�0, is maintained in the channel, for ex-
ample, by boundaries that slide in the y direction with speeds
±�*L* /2. In addition, we suppose that a constant magnetic
field, B0

*= �0,Btor
* ,Bpol

* � is present, and consider
y-independent perturbations of this state. These can be writ-
ten in the form u��u ,v ,w�= �−�z ,v ,�x�, b��a ,b ,c�
= �−�z ,b ,�x�, and satisfy the dimensionless equations

�2�t + 2�vz + J��,�2�� = vA
2�2�z + vA

2J��,�2��

+ 	�4� , �1�

vt − �2� + ���z + J��,v� = vA
2bz + vA

2J��,b� + 	�2v , �2�
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�t + J��,�� = �z + 
�2� , �3�

bt + J��,b� = vz − ��z + J��,v� + 
�2b , �4�

where vA�Bpol
* /��0�*U* is proportional to the Alfvén speed

vA
* associated with the poloidal or vertical magnetic field,

J�f ,g�� fxgz− fzgx, and �, 	, 
 represent the dimensionless
rotation rate, kinematic viscosity, and Ohmic diffusivity,
nondimensionalized using a velocity scale U* and the chan-
nel width L*. Note that Btor

* drops out of these equations. This
is not so in an annulus, where hoop stresses are present, and
the MRI becomes oscillatory.20,21

In the following we assume that the MRI takes the form
of thin fingers propagating in the x direction, as indicated by
linear stability theory5 and subsequent numerical
experiments.22,23 By definition, such fingers have a small
transverse width. Accordingly we introduce a small param-
eter, 
�1, and suppose that all derivatives in the z direction
are large, i.e., we scale z such that in the new variable �z is
replaced by 
−1 �z. In addition, we suppose that in an appro-
priate dimensionless sense the dissipative processes are
weak, and let �	 ,
�=
�	̂ , 
̂�. At the same time we assume
that the system is rotating rapidly and that the dimensionless

shear rate is also large, i.e., we set �� ,��=
−1��̂ , �̂� while
keeping the Alfvén speed of order unity. These assumptions
reflect the conditions generally believed to be present in ac-
cretion disks: the shear is the dominant source of energy for
the instability, but the instability itself requires the presence
of a �weaker� vertical magnetic field. Dissipative effects are
weaker still but cannot be ignored since they are ultimately
responsible for the saturation of the instability.

It is important to specify the meaning of the small pa-
rameter 
. To do so we select the velocity scale U* by the
requirement that vA=1. Thus 
=S−1, where S
�Bpol

* L* /
*��0�* is the Lundquist number, and 	=Pm S−1,
where Pm=	* /
* is the magnetic Prandtl number. Likewise
�=Rm S−1, where Rm= ��*�L*2 /
* is the magnetic Reynolds
number, and �= ��* / ��*��Rm S−1. It follows that ��1 re-
quires �*L*�vA

* while ����1 requires ��*�L*�vA
* . In addi-

tion, the requirements 
�1, 	�1 are equivalent to 
*

�vA
*L*, 	*�vA

*L*. These conditions require that Rm�S
�max�1,Pm�. In our scaling these inequalities are related by
the requirement that the Elsasser number ��vA

*2 /�*
*

=O�1�, this being a regime of particular interest.24

In parallel with the above assumptions, we need to make
further assumptions about the relative magnitude of the vari-
ous fields. We find that the assumption �� ,��→
�� ,��,
�v ,b�→
−1�v ,b� leads to a self-consistent fully nonlinear
stationary solution, satisfying the scaled equations

2
−3�̂vz + 
J��,��x
2 + 
−2�z

2���

= vA
2��x

2 + 
−2�z
2��z + 
vA

2J��,��x
2 + 
−2�z

2���

+ 
2	̂��x
2 + 
−2�z

2�2� , �5�

− 
−1�2�̂ + �̂��z + 
−1J��,v�

= 
−2vA
2bz + 
−1vA

2J��,b� + 	̂��x
2 + 
−2�z

2�v , �6�


J��,�� = �z + 
2
̂��x
2 + 
−2�z

2�� , �7�


−1J��,b� = 
−2vz − 
−1�̂�z + 
−1J��,v� + 
̂��x
2 + 
−2�z

2�b . �8�

In these equations we have retained the parameter vA in order
to be able to vary the strength of the poloidal field indepen-
dently of the other dimensionless quantities.

III. RESULTS

To solve Eqs. �5�–�8� we posit an expansion of the form
��x ,z�=�0�x ,z�+
�1�x ,z�+¯, with similar expressions for
the other four fields, and look for structures that are periodic
in the z direction. From Eqs. �6� and �8� it now follows that
at O�
−2�,

vA
2b0z + 	̂v0zz = 0, v0z + 
̂b0zz = 0, �9�

and hence that

v0 = V�x�, b0 = B�x� , �10�

while from Eq. �7� we obtain at O�1�

�0 + 
̂�0z = 0. �11�

In addition, at next order, Eqs. �6� and �8� imply

− �2�̂ + �̂��0z + J��0,v0� = vA
2b1z + vA

2J��0,b0� + 	̂v1zz,

�12�

J��0,b0� = v1z − �̂�0z + J��0,v0� + 
̂b1zz. �13�

In the following we write

�0 = 1
2 ���x�einz + c.c.�, v1 = 1

2 �V�x�einz + c.c.� ,

�0 = 1
2 �F�x�einz + c.c.�, b1 = 1

2 �B�x�einz + c.c.� . �14�

From Eqs. �11�–�13� it now follows that

F =
i�


̂n
, �15�

V =
�vA

2 + 
̂2n2�V� + 
̂2n2�2�̂ + �̂� + vA
2�̂

n
̂�vA
2 + 	̂
̂n2�

i� , �16�

B =
i�vA

2 + 	̂
̂n2�B� + n�	̂��̂ + V�� − 
̂�2�̂ + �̂ + V���
n
̂�vA

2 + 	̂
̂n2�
� .

�17�

Finally, Eqs. �6� and �8� yield at O�1� the results

− �2�̂ + �̂��1z + J��0,v1� + J��1,v0�

= vA
2b2z + vA

2J��0,b1� + vA
2J��1,b0� + 	̂�v0xx + v2zz� �18�

and

J��0,b1� + J��1,b0� = v2z − �̂�1z + J��0,v1� + J��1,v0�

+ 
̂�b0xx + b2zz� . �19�

Averaging these equations over z and using the fact that the
quantities �0 ,�1 ,v1 ,v2 ,�0 ,�1 ,b1 ,b2 are all, by construction,
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periodic in z with zero mean yields the following pair of
equations:

	̂V� = �x��0v1z� − vA
2�x��0b1z� , �20�


̂B� = �x��0b1z� − �x��0v1z� . �21�

Thus, in the bulk, away from the boundaries at x= ±1/2, V�
and B� satisfy

	̂V� = �0v1z − vA
2�0b1z, �22�


̂B� = �0b1z − �0v1z + C , �23�

where the constant C is determined by force balance across
the channel in the saturated state �see later�. Evaluating the
averages in terms of � and solving for V� and B� now yields

V��x� = −
1
2����2

	̂ + 1
2����2

, �24�

B��x� =

̂C


̂2 + 1
2 ���2

, �25�

where

� =
	̂vA

2 + 
̂3n2


̂2�vA
2 + 	̂
̂n2�

, �26�

� =
�2�̂ + �̂�
̂3n2 + vA

2��̂	̂ − 2�̂
̂�

̂2�vA

2 + 	̂
̂n2�
. �27�

Equation �24� determines the equilibrated shear V� in terms
of the streamfunction amplitude ��� and wave number n of
the instability. The result does not depend on the choice of C.

We can obtain an additional relation between ��� and n
from Eq. �5�. This equation yields, at leading order,

2�̂v1z = vA
2�0zzz + 	̂�0zzzz, �28�

or, equivalently,

2�̂��vA
2 + 
̂2n2�V� + �2�̂ + �̂�
̂2n2 + �̂vA

2�

+ n2�vA
2 + 	̂
̂n2�2 = 0. �29�

In the following we refer to this equation as the nonlinear
dispersion relation. This relation has an important physical
interpretation: it demonstrates that in our asymptotic regime
the MRI is quenched to zero growth rate by the change in the
shear rate that it produces.

The relation �29� determines, for each wave number n,
the equilibrium shear V� and through Eq. �24� the corre-
sponding streamfunction amplitude �. One finds

1
2 ���2�4�̂2vA

2
̂ + n2�vA
2 + 	̂
̂n2��	̂vA

2 + 
̂3n2��

+ 	̂
̂2n2�vA
2 + 	̂
̂n2�2 + 2�̂�̂	̂
̂2vA

2

+ 2�̂�2�̂ + �̂�	̂
̂4n2 = 0. �30�

Thus �, V�, and B� are all independent of the radial coordi-
nate x. The resulting solution thus describes the saturated
state in the bulk, outside of any boundary layers introduced

by boundary conditions in the transverse direction, much as
occurs in linear theory.6,8

Equation �30� determines the amplitude ��� as a function
of the imposed shear rate �̂�0 for each choice of wave
number n, and therefore represents the bifurcation equation
for this problem. This relation has one particularly interest-

ing limit: if we suppose that the O�1� quantities �̂, vA, 
̂, 	̂

in fact satisfy �̂�vA�
̂ , 	̂, Eq. �30� reduces to

���2 = −
�̂

�̂
	̂
̂ , �31�

providing a simple relation between the imposed shear rate �̂
and the resulting equilibrated amplitude ���, and one that is
independent of the �scaled� wave number n. Thus the �un-
scaled� transverse speed of the MRI fingers is of order one
and is given by

u � n��� = n	−
�̂

�̂

1/2

�	̂
̂�1/2, �32�

i.e., u*�vA
*n*L*S−1�−Pm �* /�*�1/2. Note that this speed is

the geometric mean between the energy-containing shear
flow �*L* and the dissipative scale velocities 	* /L* or 
* /L*,
and is accompanied by much slower O�
� motions in the
vertical. More significantly, Eq. �24� shows that the corre-
sponding equilibrated shear V�=−�̂! It follows that in this
limit the MRI continues until it extracts all the energy from
the imposed shear and uniform rotation results. Similar be-
havior was observed in Ref. 22 in their original simulations
of the MRI. These authors also point to the important role
played by reconnection in providing a saturation mechanism,
a process that appears explicitly, via the diffusivity 
̂, in the
prediction �32�.

The theory thus far remains unsatisfactory in one re-
spect: the wave number n is not specified. It is usual in these
circumstances to use the wave number, nmax, of the fastest
growing mode. According to linear theory the growth rate �
is given by

2�̂��2�̂ + �̂��� + 
̂n2�2 + �̂vA
2n2�

+ ��� + 	̂n2��� + 
̂n2� + vA
2n2�2 = 0, �33�

and nmax is defined by d� /dn=0. In Figs. 1–3 we show the
result of using this wave number to compute the saturated
state shear Vmax� and the associated streamfunction amplitude
���max. The figures are computed for �̂=−1.5,−1.0,−0.5; the
value −1.5 corresponds to Kepler shear. Figure 1 shows the
fastest growing wave number, nmax, the corresponding
growth rate �max, and the resulting saturated quantities Vmax�
and ���max as a function of the Ohmic diffusivity 
̂, while
Figs. 2 and 3 show these quantities as a function of vA and
−�̂, respectively. In all cases Vmax� reaches an order one value
already at very small values of 
̂ and then decreases toward
its asymptotic value as 
̂ increases further. In contrast, ���max

increases monotonically with 
̂. This is as expected: resistiv-
ity permits the instability to grow to larger amplitude by
allowing the magnetic field to slip through the fluid. Figure 2
shows the corresponding results as a function of vA even
though the theory permits us to set vA=1. These plots enable
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us to ascertain the role of the poloidal field for fixed values
of the remaining dimensionless quantities; all results for vA

�1 collapse onto those for vA=1, provided all other param-
eters are adjusted to reflect the change in the Alfvén speed.
The figure shows that the saturated value of Vmax� is substan-
tial, even for 0�vA�1, and that this value reaches a maxi-
mum at vA�1 before falling slightly to its saturated value at
vA�1. For ��̂��1.0 this value exceeds that at vA�1, al-
though for ��̂��1.0 this is no longer the case. Evidently a
strong poloidal field does not suppress the instability in the
regime of interest �Rm�S�1�, an observation consistent
with the linear theory results.8 Together these figures indicate
that both Vmax� and ���max increase with the background shear
��̂�, the former rather more dramatically than the latter. Fig-
ure 3 shows that this increase is monotonic and approxi-
mately linear. Finally, Fig. 4 shows that the �scaled� vertical
wave number n predicted by the nonlinear dispersion relation
�29� vanishes when V�=−�̂, indicating an increase in the

vertical wavelength as the MRI approaches saturation.
It remains to interpret the constant C in Eq. �25�. For this

purpose we take an average over z of the dimensionless
transverse balance relation

u · �u − 2�v = − px + vA
2	�B0 + b� · �a −

1

2
�B0 + b�x

2
 .

�34�

In the scaled variables the resulting leading-order balance
takes the form

p̂0x = �2�̂V� − vA
2B�2�x , �35�

where p̂0 is a suitably scaled pressure contribution. Thus C
=0 if the shear is supported entirely by a mechanical pres-
sure gradient, 0�C�Cmax if it is partly supported by a mag-

netic pressure gradient, while C=Cmax when 2�̂V�=vA
2B�2,

i.e.,

FIG. 1. �a� The wave number nmax of the fastest growing mode, �b� its
growth rate �max, �c� the resulting shear rate Vmax� , and �d� streamfunction

amplitude ���max, as functions of 
̂��
S�−1 for �̂=1, vA=1, 	̂= 
̂, and �̂
=−1.5,−1.0,−0.5 �solid, dashed, dash-dotted�.

FIG. 2. The same as Fig. 1 but as functions of vA for �̂=1, 
̂=1, 	̂=1, and
�̂=−1.5,−1.0,−0.5. The instability is absent when vA�0.

FIG. 3. The same as Fig. 1 but as functions of the ambient shear rate �̂

�
 Rm S−1 for �̂=1, vA=1, 
̂=1, and 	̂=1.

FIG. 4. The vertical wave number n computed from the nonlinear dispersion

relation �29� as a function of V� for �̂=1, vA=1, 	̂= 
̂=1, and �̂=−1.5,
−1.0,−0.5 �solid, dashed, dash-dotted�.
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Cmax
2 = −

�̂�

vA
2
̂2

�	̂2 + 1
2 ���2�2

	̂ + 1
2����2

���2. �36�

The results presented below span the range 0�C�Cmax.

IV. APPROACH TO THE SATURATED STATE

It is of interest to examine the approach from an initial
small-amplitude state with V��0 to the final equilibrated
state �24�. To do this we note that the MRI evolves initially
on a dynamical or rotation time scale, i.e., the fast time �
� t /
=O�1�. However, examining the structure of the equa-
tions in the long time limit, we also notice that the final
approach to the saturated state proceeds on the much slower
time scale T�
t=O�1�, i.e., on the resistive time scale.
These observations suggest a multiple time scale expansion.
It is simpler, however, to assume formally that after a brief
��=O�1�� transient both V� and B� evolve on a slower time
scale than the remaining fields, and take V� and B� to be
independent of x. In this regime, �0, v1, �0, and b1 are func-
tions of z and � only, and satisfy

v1� − �2�̂ + �̂ + V���0z = vA
2b1z − vA

2B��0z + 	̂v1zz, �37�

�0� = �0z + 
̂�0zz, �38�

b1� − �0zB� = v1z − ��̂ + V���0z + 
̂b1zz, �39�

together with

�0zz� + 2�̂v1z = vA
2�0zzz + 	̂�0zzzz. �40�

These equations are separable in z and �. Assuming the an-
satz �14�, we obtain

V� + 	̂n2V = in�2�̂ + �̂ + V��� + invA
2B − invA

2B�F , �41�

F� + 
̂n2F = in� , �42�

B� + 
̂n2B = in�B� + inV − in��̂ + V��F , �43�

�� + 	̂n2� − 2in−1�̂V − invA
2F = 0. �44�

Here V� and B� are functions of � only, and are given by

	̂V� = − 1
4 in��V* − �*V� + 1

4 invA
2�FB* − F*B� , �45�


̂B� = − 1
4 in��B* − �*B� + 1

4 in�FV* − F*V� + C . �46�

These equations capture correctly the saturation process, and,
in particular, the final steady state. The resulting evolution of
V���� and the associated toroidal field gradient B���� are
shown in Fig. 5�a� starting from small-amplitude initial con-
ditions. The evolution is shown over times �=O�
−2� and
shows unambiguously the convergence of V� toward its satu-
rated value �24�, regardless of C; the latter determines B�
only �Eq. �25��. For comparison we also show the evolution
of the amplitude ��� of the streamfunction �Fig. 5�b��.

V. DISCUSSION

In this paper we have shown that a simple scaling suf-
fices to determine and fully characterize a self-consistent
equilibrated state of the magnetorotational instability in a
rotating horizontal channel. This state is associated with a
substantial modification of the background shear that feeds
the instability, and is ultimately determined by both viscous
and Ohmic dissipation. In our picture this state is reached
after an O��−1� transient followed by a slower evolution on
a time scale vA

−1, although the final stages of saturation occur
on the much slower time scale 
−1, 	−1 associated primarily
with reconnection. The theory, in fact, identified a one-
parameter family of steady states, parametrized by the pa-
rameter C in Eq. �25� that measures the contribution of the
longitudinal �toroidal� magnetic field to the force balance in
the transverse direction. However, the associated modifica-
tion of the background shear is independent of C and is
constant in the bulk, outside of thin boundary layers at x
= ±1/2 required by the sliding boundary conditions. These

FIG. 5. �a� The approach of the MRI to its saturated state, computed for

�̂=1, �̂=−1.5, vA=1, 
̂=1, 	̂=1, showing the evolution of V� �solid line�
and B� �dashed-dotted lines� from small-amplitude initial conditions when
C=0 and C=Cmax �dashed line�. For these parameter values the equilibrated
value V�=−0.71�̂. �b� The corresponding evolution of ���.
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boundary layers are evident in linear theory, but do not affect
the structure of the unstable modes in the bulk.6,8 In other
problems of this type �e.g., Refs. 12 and 13�, the nonlinear
dispersion relation �29� is replaced by a nonlinear eigenvalue
problem for ��x� and the associated shear profile, and the
boundary layer structure is then considerably different. It
should be noted that in the theory the equilibrated state in the
bulk consists of laminar axisymmetric “fingers” and is not a
turbulent state such as might result from shear instabilities
between neighboring fingers.25 In some cases, however, the
resulting turbulent state may reflect in its statistical proper-
ties the presence of the underlying laminar state,15,26 while in
others this laminar state overestimates the transport proper-
ties of the turbulence.

It is of interest to compare our results with the original
simulation of the instability by Hawley and Balbus that em-
ployed reflecting boundary conditions in the radial
direction.22 Although unable to reach the saturated state the
simulations revealed a clear tendency toward solid body ro-
tation as the instability grew. The authors also argued that the
saturated speed of the fingers should be of order vA, as pre-
dicted by Eq. �32�. However, the prediction �32� shows that
while the order of magnitude is correct the saturated speed is
not proportional to vA. Indeed, it is independent of the verti-
cal magnetic field entirely, as might be expected of an insta-
bility whose onset is independent of Bz together with a satu-
ration process that relies on efficient reconnection.
Subsequent simulations using the shearing sheet approxima-
tion reveal a tendency toward increasing wavelength as the
instability proceeds,23 an observation that is consistent with
the predictions of Eq. �29�. It is likewise relevant that two-
dimensional shearing sheet simulations of the MRI with re-
sistivity but no viscosity24 show saturation for ��1 but not
for ��1. This lack of saturation is typical of situations
where the instability is not permitted to modify the back-
ground shear.25 In contrast, the theory described here shows
that if such a modification is permitted saturation does in fact
occur in both regimes, provided only that both Ohmic dissi-
pation and viscosity are included in the theory.

The theory described here applies formally to the small
gap limit of the Taylor–Couette system, in which the shear
flow profile can be approximated by a linear profile. In such
a system �̂=−1, and the modified shear profile produced in
the bulk by the growing MRI can be balanced by an appro-
priate radial pressure gradient. Thus, the constant C in the
theory can be set to zero. Moreover, we believe that the
insight gained from the theory has value beyond the Taylor–
Couette system, and may well apply to existing experiments
on the MRI in differentially rotating spheres.10 We hope,
likewise, that the analytical progress made here in identify-
ing the mechanisms leading to saturation of the instability
and characterizing the final stationary state may encourage
new theoretical studies of this important instability. For ex-
ample, the stability properties of the saturated state with re-
spect to three-dimensional perturbations may shed additional
light on the saturation process. An extension of the theory to
circular geometry, and, in particular, to larger gap annuli,
will be presented elsewhere.
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