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Recent years have witnessed dramatic progress in our understanding of how turbulence arises and
transports angular momentum in astrophysical accretion disks. The key conceptual point has its
origins in work dating from the 1950s, but its implications have been fully understood only in the last
several years: the combination of a subthermal magnetic field (any nonpathological configuration will
do) and outwardly decreasing differential rotation rapidly generates magnetohydrodynamic (MHD)
turbulence via a remarkably simple linear instability. The result is a greatly enhanced effective
viscosity, the origin of which had been a long-standing problem. The MHD nature of disk turbulence
has linked two broad domains of magnetized fluid research: accretion theory and dynamos. The
understanding that weak magnetic fields are not merely passively acted upon by turbulence, but
actively generate it, means that the assumptions of classical dynamo theory break down in disks.
Paralleling the new conceptual understanding has been the development of powerful numerical MHD
codes. These have taught us that disks truly are turbulent, transporting angular momentum at greatly
enhanced rates. We have also learned, however, that not all forms of disk turbulence do this. Purely
hydrodynamic turbulence, when it is imposed, simply causes fluctuations without a significant increase
in transport. The interplay between numerical simulation and analytic arguments has been particularly
fruitful in accretion disk theory and is a major focus of this article. The authors conclude with a
summary of what is now known of disk turbulence and mention some knotty outstanding questions
(e.g., what is the physics behind nonlinear field saturation?) for which we may soon begin to develop
answers. [S0034-6861(98)00501-7]
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I. INTRODUCTION

Nature’s affinity for cosmic disk structures was noted
in the earliest surveys of the night sky. Chaldean astrolo-
gers puzzled over the narrowly confined, erratic paths of
the planetary wanderers and the high-arching ribbon of
light prominent in the summer sky. The intervening mil-
lenia have not witnessed all the progress one might hope
for. It is true that the existence of the planes of the solar
1/70(1)/1(53)/$25.60 © 1998 The American Physical Society
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ecliptic and galactic disk can now be understood with
the help of a few simple, far-reaching concepts: gravita-
tional forces, angular momentum conservation, and dis-
sipational processes. A comprehensive understanding,
however, of the origin and evolution of our own solar
system and galaxy—or just about any other astrophysi-
cal disk system—continues to elude us.

Ignorance of their detailed physical properties has not
prevented disks from becoming a pervasive presence in
modern astrophysics. In particular, our understanding of
star formation and much of high-energy phenomenology
is centrally based upon the paradigm of an accretion
disk. (‘‘Accretion’’ refers to the accumulation of matter
onto a massive central body.) Release of gravitational
binding energy is both a dynamic necessity for accretion
to occur, as well as a powerful source of luminosity. But
in systems with even a small amount of rotation, gravi-
tational contraction is severely limited by a centrifugal
barrier. Consider the collapse of a slowly rotating gas
cloud. In contrast to internal energy, which is easily ra-
diated, specific angular momentum tends to be con-
served and not easily separated from infalling fluid ele-
ments. Thus the interim formation of a disk, a repository
of the angular momentum, is usually unavoidable. Simi-
lar considerations apply to the transfer of matter from
one star in a binary to its compact companion, or to the
gathering of gas in the cores of active galactic nuclei.
The formation of a disk need not halt the infall. But
once formed, it is the disk itself that mediates continued
accretion, and the physical processes that regulate mass
inflow will generally be very different in character from
those that may have triggered the initial infall. These
processes, which for many years were poorly understood
and therefore had a somewhat mysterious, often contro-
versial character, are the focus of this review.

The thread of modern interest in accretion disks can
be traced back more or less directly to Kuiper’s remark-
able paper (1941) on contact binary systems (two stars
sharing a common gaseous envelope). Kuiper studied
the properties of the streams of gas induced to flow from
one star to the other by tidal forces. He was particularly
intrigued by the ‘‘curious result’’ (his term) that in the
course of its transference, matter seemed to form a ring
around the accreting star. These rings were in fact the
first hints of structures that would come to be viewed as
worthy of study in their own right. Along with neutron
stars and black holes, accretion disks are one of a hand-
ful of astrophysical objects whose existence was deduced
theoretically well in advance of observational guidance.

In the decades following its publication, Kuiper’s
work, though by no means obscure, seems neither to
have been profoundly influential. For example, by the
late 1950s, the work of R. P. Kraft and others had estab-
lished that novae outbursts (which can be recurrent) oc-
curred in binary star systems and involved matter trans-
fer from a normal main-sequence star onto a degenerate
white dwarf companion. Several important papers from
this era (e.g., Crawford and Kraft, 1956) show an under-
standing of Kuiper’s results and appeal to them as sup-
port for what would now be referred to as disk-based
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
accretion. Yet, when compact x-ray sources made their
appearance in the 1960s and were identified with binary
stars, the realization that a disk must form during the
mass transfer process required renewed appreciation
(Prendergast and Burbidge, 1968). Thus the detailed
study of the physics of accretion really did not begin in
earnest until late in this decade, when Lynden-Bell put
forth his disk/black-hole model as the central power
source for quasars (1969). In turn, this laid the ground-
work for the appearance of the seminal papers which
have become the basis of a ‘‘standard model’’ of accre-
tion disks: Shakura and Sunyaev (1973) and Lynden-
Bell and Pringle (1974).

The central problem of nearly 30 years of accretion
disk theory has been to understand how they accrete. In
principle, the presence of shear viscosity allows the
transfer of angular momentum from one fluid element
to another, but this fails badly when actual numbers are
used: in almost all cases, the needed accretion rates are
orders of magnitude higher than standard microscopic
viscosities (see, for example, Spitzer, 1962) could pro-
vide. If, on the other hand, the disk were for some rea-
son turbulent, the effective viscosity due to interacting
eddies could easily be large enough to provide the
needed accretion rates. [According to Frisch and Orszag
(1990), the idea of an enhanced ‘‘eddy viscosity’’ dates
from the early part of this century and originated with
Boussinesq and Prandtl.]

What might be the physical cause for the turbulence?
Differential rotation by itself is not unstable to linear
perturbations unless the angular momentum per unit
mass (i.e., the vorticity) decreases outward, a require-
ment that is not met in astrophysical disks. But when the
Reynolds number (defined roughly as the product of a
characteristic large-scale flow velocity and its associated
length scale divided by the microscopic viscosity) is
large, shear flow is notoriously unstable to nonlinear dis-
turbances, an observation going back to Osborne Rey-
nolds himself (1883). Whether this tendency is present in
differentially rotating disks has long been a matter of
some controversy. For the same reason that the fluid
shear viscosity is quite incapable of causing significant
accretion, the Reynolds number of astrophysical disks is
very high. For some, this meant that disks must be tur-
bulent. Others were less convinced, citing differences
between laboratory flow and accretion disk flow, such as
supersonic flow velocity and an absence of confining
walls. For most, the issue remained undecided.

In recent years, a combination of analytic and numeri-
cal work has led to a much better understanding of ac-
cretion disk turbulence, and a broad (though not yet
universal) consensus has been reached: accretion disks
are in fact turbulent, but for reasons having nothing to
do with purely hydrodynamic processes. Instead, it is the
pervasive presence of magnetic fields that is the culprit.

This is not to say that magnetic fields have been rou-
tinely ignored until recently in the study of accretion
disk physics. On the contrary, their presence was already
noted in the works that would establish the standard
accretion disk model. In his pioneering paper, Lynden-
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Bell (1969) conceptually separated the stresses due to
turbulence and magnetic fields and opined that the latter
would exceed the former. Along very similar lines,
Shakura and Sunyaev (1973) noted that a magnetic field,
tangled by preexisting fluid turbulence, would be an ef-
fective source of enhanced transport. A different ap-
proach was taken by Eardley and Lightman (1975), who
carried through an explicit calculation of a purely mag-
netic viscosity resulting from Keplerian fluid shear and
field-line reconnection. Finally, many authors have
pointed to the importance of dynamically significant
magnetic fields in extracting angular momentum from
disk fluid elements (e.g., Blandford, 1989). The likeli-
hood that magnetic fields played some role in disk trans-
port was a notion that had been about for some time,
even among those whose principal interests were hydro-
dynamic. But in all this, a key idea was missing: weak
magnetic fields cause a linear instability (Balbus and
Hawley, 1991) that leads directly to disk turbulence
(Hawley, Gammie, and Balbus, 1995). Magnetic fields,
disk turbulence, and their respective stresses are insepa-
rably linked. This understood, it has now become pos-
sible to study accretion disk turbulence and nonlinear
transport from first principles, at a level comparable to
that of stellar convection.

Broadly, accretion disks can be separated into three
categories: (a) protostellar disks, from whence stars and
planets are born; (b) disks formed by mass transfer in
binary star systems, which are the heart of eruptive no-
vae and compact x-ray sources; and (c) disks in active
galactic nuclei (AGN), thought to be the most luminous
sources in the universe. The study of protostellar disks
has become a very specialized discipline, characterized
by highly developed observational and theoretical tech-
niques. The combination of coolish temperatures, large
number densities, and the presence of dust leads to a
complex nebular chemistry. We shall have little to say
directly about protostellar disks in this review; an excel-
lent source is the series Protostars and Planets (Gehrels,
1978; Black and Mathews, 1985; Levy and Lunine, 1993).
Binary and AGN disks are hot enough to be significantly
or fully ionized, and their high conductivity means that
currents flow freely. Magnetic fields strongly influence
the structure and evolution of these disks. It is not pos-
sible to understand the behavior of disks at a fundamen-
tal level unless magnetism is included in the analysis
from the very beginning.

Although AGN disks have been directly and beauti-
fully imaged by the Hubble Space Telescope (see Fig. 1),
it is of binary disks that we have the most detailed
knowledge. There are several reasons for this. First,
there are a large number of such systems within 100 pc;1

such proximity allows fainter spectral features to be ana-
lyzed and more sophisticated techniques (e.g., tomogra-

1The abbreviation ‘‘pc’’ stands for the astronomical length
unit parsec. It is approximately 3.0931018 cm. Typically, the
distance between neighboring stars in the disk of our galaxy is
a few pc.
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phy) to be exploited. Second, the primary star in a bi-
nary can sometimes be used as a probe, eclipsing
portions of the disk at different times, thereby allowing
disk properties to be mapped. Finally, accretion disks in
eruptive binary systems are often transitory. The recon-
stitution of the disk occurs over a time scale convenient
for observational monitoring, and much can be learned
by studying the evolving spectra. For these reasons, the
fiducial physical system referred to in this review is disk
accretion about a compact object in a binary. Many of
the results, however, will be more broadly applicable.

Our task of reviewing accretion disks has been greatly
aided by the large number of excellent reviews that have
appeared over the years. This allows us the luxury of
concentrating in this review rather exclusively upon the
problem of disk turbulence. The article of Novikov and
Thorne (1973) still remains an outstanding and authori-
tative presentation of the astrophysics of black-hole ac-
cretion disks. Pringle (1981), much more briefly, offers a
clear discussion of phenomenological disk theory. Two
recent reviews, those of Papaloizou and Lin (1995, theo-
retically oriented) and Lin and Papaloizou (1996, obser-
vationally oriented), are both very accessible, presenting
the reader with a thorough, even-handed treatment of
historically contentious issues. Many reviews are geared
toward particular classes of objects, but contain discus-
sions of disks and are of more general interest: Petterson
(1983), Rees (1984), Katz (1985), Blandford (1989), and
Livio (1994) comprise a representative selection. Some-
what dated, but otherwise lucid textbook discussions
may be found in Shapiro and Teukolsky (1983), and
Frank, King, and Raine (1985).

A. An informal overview

1. Spectral signatures of disks

It is important to understand that far less is under-
stood about astrophysical disks than is understood about

FIG. 1. Hubble Space Telescope (HST) observation of the
core of an active galaxy, NGC 4261. The photo on the left
combines data from ground-based optical and radio telescopes,
showing powerful jets emanating from the core of the galaxy.
The right-hand photo is the HST image of the disk in the cen-
ter of the galaxy. Photo credit: Holland Ford, Johns Hopkins;
Walter Jaffe, Leiden Observatory; STScI/NASA.
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stars. There are very good reasons for this. Not only are
disks dynamically much more complicated than stars,
they are extremely difficult to detect directly. There are
ample and compelling theoretical reasons for believing
in the existence of accretion disks; are there equally
compelling observations? In the main yes, but details are
not easy to extract and are often ambiguous. Binary
disks are too small to be directly imaged, and bright
disks do not occur in isolation. They occur in systems in
which their emission is often overwhelmed by compan-
ion stars.

The most obvious disk spectral feature should be a
rotational spread in velocities from any discrete line
emission (or absorption) present. Consider a simple
ring, rotating at velocity V , viewed edge-on (Fig. 2).
Ring material subtending an angle u at the ring center
relative to the line of sight has a projected velocity
v5Vsin u. If the ring is emitting uniformly at a well-
defined rest frequency corresponding to v50, the emis-
sion at velocity v is proportional to (12v2/V2)21/2. This
follows because the total emission from velocities less
than v is clearly proportional to the angle u5sin21(v/V)
in Fig. 2, and the distribution function is obtained by
differentiation. Note not just the spread in velocities, but
the double-peaked line structure, which is the hallmark
of rotation. Indeed, the emission is formally infinite (but
integrable!) at v56V .

If we now fill in the ring interior to make a (Keple-
rian) disk with a sharp outer boundary, emission is ob-
tained from velocities in excess of V . Figure 3 shows
contours of constant line-of-sight velocities; for a Keple-
rian rotation profile these lines are mathematically iden-
tical to dipole lines of force. If the emissivity over the
face of the disk is assumed for simplicity to be spatially
constant, it is not too difficult to work out the form of
the resulting emission line profile—a task we leave to
the reader. The result is plotted in Fig. 4. The still dis-
tinctive double humps are now finite. Emission occurs at
all velocities, but declines rapidly (;v25) for (uvu.V).
In real systems, geometrical and thermodynamic effects
are considerably more complex, but double-peaked line
profiles remain a distinguishing feature of disks.

The combination of a partial disk eclipse and spectral
diagnostics provides very strong evidence for the exis-
tence of disks in binary star systems. The situation is

FIG. 2. Geometry for rotating ring viewed edge-on. V is the
circular rotation velocity.
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depicted in Fig. 5. When a companion star partially
blocks a disk, only one of the peaks of a spectral line
may become visible. Furthermore, since the disk and the
binary will be rotating in the same sense, the blueshifted
(approaching side) peak ought to be eclipsed first, fol-
lowed later in the orbit by the redshifted peak. These
effects have been unambiguously observed (e.g., Young,
Schneider, and Shectman, 1981) and leave no doubt of
the basic existence of disks, whether they can be directly
imaged or not.

2. Disk luminosity and accretion rates

The bolometric luminosity of an accretion disk is
characterized, and to some extent limited, by the so-
called Eddington luminosity LE . This quantity is the lu-
minosity at which the radiative momentum flux from a
spherically symmetric source is balanced by the gravita-
tional force from a central object. Were the luminosity
in a spherical source to exceed LE , accretion would not
be possible. Disks are not spherical, and under some
circumstances luminosities in excess of LE can be pro-
duced. Generally, however, most source luminosities

FIG. 3. Loci of constant line-of-sight velocities in a Keplerian
disk viewed edge-on along the x axis. They have the same
shape as dipole lines of force.

FIG. 4. Emission line from a sharp-edged uniform disk, seen
edge-on. Velocity in units of the outermost orbital velocity V ;
flux units are arbitrary.
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tend to be below their Eddington value, with the more
powerful x-ray sources coming within an order of mag-
nitude or so. LE is thus a useful fiducial benchmark.
Because both the radiation flux and the Newtonian force
diminish as the inverse square of the distance, LE is
determined solely by the central mass M and fundamen-
tal constants of nature:

LE5
4pGmpMc

sT
51.331038

M

M(

ergs s−1. (1)

Here, G is the gravitational constant, mp the proton
mass, c the speed of light, and sT the Thompson scat-
tering cross section. The ratio M/M( normalizes the
central mass to one solar mass (M(51.98931033 g). A
binary x-ray source luminosity of 1037 ergs s−1 is fairly
typical. Recall, for comparison, that the total luminosity
of the sun is a mere 3.831033 ergs s−1, relatively little of
which is in the form of UV or harder radiation. Thus the
discovery of the first compact x-ray source, Sco X-1 (Gi-
acconi et al., 1962), came as a great surprise.

The physical origin of accretion disk luminosity is the
accretion process itself. Unlike stars, whose central re-
gions are nuclear furnaces, an accretion disk is hot and
radiates as a byproduct of the dynamic activity that ac-
companies the accretion. The luminosity associated with
an accretion rate Ṁ must, on dimensional grounds, be of
the form GMṀ/R , where R is some fiducial disk radius.

FIG. 5. Partial disk eclipse. As the orbital phase advances, first
the blueshifted emission line peak disappears, then the red-
shifted peak disappears as the blueshifted peak reemerges.
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Simple virialization arguments suggest that only half of
this energy is actually radiated as a fluid element spirals
into its final orbit, the other half being retained as or-
bital kinetic energy. The latter may itself be radiated in a
boundary layer on the surface of the central star, but if a
black hole is the accretor, the energy may be perma-
nently lost. In any case, we may define an Eddington
accretion rate ṀE by LE[GMṀE /R0 , so that

ṀE54pR0

mpc

sT
59.531011 R0g s21 (2)

where R0 is the innermost disk radius (where appropri-
ate, the stellar surface).2 A typical accretion rate onto a
neutron star might thus be Ṁ;1017 g s−1. Interestingly,
white dwarf accretion sources have comparable values
of Ṁ , which implies source luminosities some three or-
ders of magnitude smaller than their neutron star coun-
terparts.

3. Density and temperature scales

The range of densities and temperatures both within a
disk and from one disk to another is enormous, but it is
possible to make some sensible estimates. We shall be
more precise in Sec. III B below, when steady-state disk
models are discussed. First, disks occupy the broad den-
sity scale gap between interstellar matter, which is at
most 106 particles cm−3 in molecular cloud cores, and
stars, whose number density is typically ;1025 cm−3.
Disks in binary systems generally have interior densities
above 1015 cm−3, but well below the stellar regime. Con-
siderable radiation comes from the disk atmosphere,
which will typically have a density less than 1015 cm−3

but well above the molecular cloud core value quoted
above.

The innermost regions of an accretion disk can be
very hot. If 1037 ergs s−1 is emerging from a gas disk over
a region of radial dimension 106 cm (i.e., neutron star
dimension) and the gas is emitting as a blackbody, then
its temperature will be of order 107 K. It will be a plen-
tiful source of keV electrons, as compact x-ray sources
indeed are. The surface temperature cools as one moves
outward in the disk; the above reasoning suggests that
the ‘‘local luminosity’’ of a disk scales as 1/R , and the
radiated flux as 1/R3, which implies an R23/4 scaling law
for the surface temperature. Thus, on scales of
R;1010 cm, our fiducial disk will have cooled to 104 K.
Disks around white dwarfs get no hotter than 105 K or
so in their innermost orbits, and they ought not to be
powerful x-ray sources. In general this is the case. How-
ever, the physics of the accretion process becomes com-
plex very near the stellar surface, where such phenom-
ena as standing shock waves are possible (see Shapiro

2The reader should beware: unlike LE , there is no standard
definition for ṀE . Other authors may define this quantity dif-
ferently (e.g., Rees, 1984), their choices motivated by the natu-
ral scales of the problem of interest (e.g., c2 instead of
GM/R0).



6 S. A. Balbus and J. F. Hawley: Instability and turbulence in accretion disks
and Teukolsky, 1983, for a pedagogical discussion), and
harder x rays may originate in such processes. A rich
variety of eruptive outbursts are associated with white
dwarf accretion (Livio 1994; Lin and Papaloizou, 1996);
collectively these sources are known as cataclysmic vari-
ables (CVs). A detailed discussion of their properties
would take us too far afield and is left to the reviews
cited above.

The interior midplane temperature of a disk can be
considerably higher than the surface temperature, a con-
dition similar to, and well understood in, stars: heat
flows from hot to cold. Precise temperature estimates
depend upon how radiation is vertically transported. It is
customary to assume that radiative transport diffuses
heat from the disk midplane and then to adopt a model
for the radiative opacity, with a degree of complication
dictated by one’s needs. There is no compelling reason
to believe that convective turbulence dominates the ra-
diation transport in binary disks, as it does in the outer
layers of low mass stars. There is a question, however, of
whether the disk turbulence that is present and doing
the job of radial angular momentum and energy trans-
port might also be vertically diffusing passive contami-
nants such as heat (Stone et al., 1996). The extent to
which this is important is not yet known.

If we assume that the emission of radiation from the
surface of the disk is driven by radiative diffusion from
the interior (conditions of high ‘‘optical thickness’’), the
vertical radiative energy flux is given by (Schwarzschild,
1958):

Frad52
4s

3krr

]

]z
T4 êZ , (3)

where s is the Stefan-Boltzmann radiation constant, êZ
is a unit vector in the upward vertical direction, and kr is
the radiative opacity (not to be later confused with the
disk epicyclic frequency k). The vertical optical depth t
of the disk is defined by

dt

dz
52rkr . (4)

Transitions between optically thin and optically thick
conditions occur when the height-integrated t goes from
!1 (in which case the diffusion approximation breaks
down) to @1. For a very rough orientation, kr , which is
a radiative cross section per gram of fluid, is likely to be
of order unity (in cgs units) at temperatures above
104 K. Taking a fiducial r of 1028 g cm23 and a disk
thickness of some 10% of R;1011, we obtain an optical
depth of about 100. We therefore expect optically thick
conditions to be more pervasive than optically thin, but
also that it should be common to find regions in a disk
representing both extremes. (Optical depths in proto-
stellar disks are likely to be very much greater than
unity, but otherwise very uncertain because of our igno-
rance of how dust grains modify the opacity law.) Under
optically thick conditions, with the vertical flux
Frad[sTeff

4 5const, the effective radiating blackbody
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surface temperature Teff is related to the central mid-
plane disk temperature Tc by

Tc
45

3
8

tTeff
4 (5)

where t is the total vertical optical depth. This follows
simply from the previous two equations. [A somewhat
more sophisticated radiative transfer calculation gives
instead of t, the modified sum t12/3 (Shu, 1991), but
this refinement will not be necessary here.] Under opti-
cally thick conditions, midplane temperatures are thus
typically a factor of ;2 –4 higher than surface tempera-
tures, a result that is fairly insensitive to t. The inner-
most regions of the disk are likely to be optically thin
(see Sec. III below) and therefore more uniform in tem-
perature with height.

II. FORMAL EQUATIONS

A. Dynamics

The fundamental equations of accretion disk structure
are

]r

]t
1“ ·~rv!50, (6a)

r
]v
]t

1~rv·¹!v52“S P1
B2

8p D2r“F1S B
4p

·“ DB

1hVS ¹2v1
1
3

“~“ ·v! D , (6b)

]B
]t

5“3~v3B2hB“3B!. (6c)

Equation (6a) is mass conservation, Eq. (6b) is momen-
tum conservation, and Eq. (6c) is the induction equa-
tion. Our notation is standard: r is the mass density, v
the fluid velocity, P the pressure (plus radiation pressure
when important), F the gravitational potential, B the
magnetic-field vector, hV the microscopic kinematic
shear viscosity, and hB the microscopic resistivity. For
future reference, let us also define the standard plasma b
parameter, which is simply the ratio of gas to magnetic
pressure:

b[
8pP

B2 . (7)

Finally, our treatment is restricted to the domain of non-
relativistic magnetohydrodynamics (MHD) and is there-
fore not rigorously applicable to flow near neutron star
surfaces or black-hole horizons.

A brief digression is appropriate. In writing down the
magnetohydrodynamic equations (6b) and (6c), we have
assumed that the disk consists of a magnetized plasma of
ions and electrons. In such a fluid, Ohm’s law takes the
form (Jackson, 1975)

J5sS E1
v
c

3BD , (8)
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where s is the plasma conductivity (taken here to be a
scalar), and the current J and electric field E are mea-
sured in a local rest frame. Using

J5
c

4p
“3B (9)

(the displacement current is negligible for the nonrela-
tivistic fluid motions that will concern us here), we find
that the electric field becomes

E52
v
c

3B1
c

4ps
“3B. (10)

Using this result in Faraday’s law,

]B
]t

52c“3E, (11)

leads immediately to the induction equation (6c), with

hB5
c2

4ps
.

The magnetic terms in Eq. (6b) are simply an expansion
of the Lorentz force J3B/c using Eq. (9). The constraint
“ ·B50 is assured by Eq. (6c), if it is imposed as an
initial condition.

The dissipative coefficients in Eqs. (6b) and (6c) are
very small, and for simplicity’s sake we have ignored the
spatial variation of hV compared with that of v. This
simplifies the mathematics while retaining all the impor-
tant physics. To the extent that hV depends only upon
temperature (as in a collisional Coulomb gas), and that
radiative diffusivity is large (keeping small structures
nearly isothermal), this approximation is very good.
Both the magnetic and velocity fields are rapidly fluctu-
ating in a turbulent fluid, so that the product of second-
order spatial gradients with the dissipation coefficients is
not, in general, negligible. We have assumed that the
bulk viscosity vanishes.

If we integrate Eq. (6c) over an arbitrary volume V in
the fluid and use the equivalent of the divergence theo-
rem, we obtain

]

]t E B dV5E n3~v3B2hB“3B! dS , (12)

where S is the surface of V and n is its outward-pointing
unit normal. In other words, the mean value of the mag-
netic field in a bounded region can be altered only by
changing conditions at the region’s surface. If the region
in question is bounded by an insulator so that the cur-
rents are fully contained within, then the integral on the
left is simply 8pm/3, where m is the dipole moment of
the volume (Jackson, 1975). Self-driven MHD turbu-
lence is quadrupolar, and does not act directly on the
fluid’s dipole properties. Changing a fluid dipole mo-
ment or mean magnetic field intimately involves surface
dynamics.

An interesting and exact Lagrangian solution to the
induction equation is possible when the resistivity is
small enough to ignore (Parker, 1979). If we expand Eq.
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
(6c) and use mass conservation to eliminate the term
proportional to “ ·v, we may write the result as

]

]tL

B
r

5
B
r

·“v (13)

where

]

]tL
[S ]

]t
1v·“ D

is the Lagrangian derivative. Equation (13) has a simple
geometrical interpretation. Lay down in the fluid a La-
grangian coordinate system Xi at t50. Imagine now the
evolution of an embedded infinitesimal element dx as
the fluid evolves. An elementary construction shows that
dx satisfies

]

]tL
dx5dx·“v. (14)

This is exactly Eq. (13). Denoting the initial value of dx
as dx(0), we must have

dxi5dXj

]xi

]Xj
5dxj~0 !

]xi

]Xj
.

Thus the solution to Eq. (13) is

Bi

r
~x,t !5

Bj

r
~X!

]xi

]Xj
. (15)

The indices i ,j take on the Cartesian values x ,y ,z
(]x5]/]x , etc.), and we use the convention of summa-
tion over repeated subscripts.

Among other things, this solution shows that
magnetic-field lines behave as though they were embed-
ded line segments in the fluid (‘‘frozen in’’), a classical
result which may be obtained in several different ways
(Jackson, 1975). We shall make explicit use of this solu-
tion to the induction equation when we discuss dynamos
in Sec. VI.B.

B. Energy

By way of review, as well as for ease of future refer-
ence, we discuss here the energy equations in their vari-
ous guises. Arriving at the final energy equation is a
little tricky. Because we make some nonstandard obser-
vations en route, we have chosen to sketch out a few key
points in its derivation.

1. Internal energy

The thermodynamic equation of internal energy bal-
ance for a gas of adiabatic index 5/3 is

rS ]

]t
1v·“ D 3P

2r
52P“ ·v2“ ·Frad1C (16)

where Frad the radiative flux and C the volumetric heat-
ing rate due to both viscous and ohmic dissipation. If the
radiation can freely escape, then “ ·Frad should be re-
placed by a volumetric radiative loss function, whose
precise form depends upon the chemical composition
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and thermodynamic state of the gas (Shu, 1991). De-
tailed modeling of accretion disks in principle requires
an explicit formulation and solution of Eq. (16). This is
usually very complicated, because of the technical de-
tails of handling the radiative transfer, but it will not
concern us here, as we shall limit ourselves to more gen-
eral inferences that can be drawn from the governing
energetics.

2. Mechanical energy

The derivation of the equation of mechanical energy
conservation first involves taking the dot product of Eq.
(6b) with v, using mass conservation [Eq. (6a)], and in-
tegrating several terms by parts. In a notation mixing
indicial and vectorial representations, we may write the
result as

]

]t S 1
2

rv21rF D1“ ·@ #5S P1
B2

8p D“ ·v2
BiBj

4p
] jv i

2hVF1
2

~] iv j!~] iv j!1
1
3

~“ ·v!2G
(17)

where, within the divergence term “·@ # , the square
brackets represent a dynamic flux,

vS 1
2

rv21rF1P1
B2

8p D2
v·B
4p

B, (18)

plus a viscous flux

2hVS “

v2

2
1

v
3

“·vD . (19)

Transport arising from the viscous flux is generally neg-
ligible.

The term proportional to BiBj] jv i represents an inter-
active coupling between magnetic and mechanical en-
ergy. Using the induction equation, we can eliminate it
in favor of more readily identifiable magnetic fluxes and
ohmic dissipative processes. Dotting Eq. (6c) with B, ex-
panding the right-hand side, and regrouping leads to

]

]t

B2

8p
1“•S B2v

8p D1
B2

8p
“ ·v

5
BiBj

4p
] jv i2“ ·F hB

4p
~“3B!3BG2

hB

4p
u“3Bu2. (20)

Substituting for BiBj] jv i from Eq. (20) into Eq. (17) and
simplifying gives us the equation of mechanical energy
conservation:

]

]t S 1
2

rv21rF1
B2

8p D1“ ·@ #5P“ ·v2hV~] iv j!~] iv j!

2
hV

3
~“ ·v!22

hB

4p
u“3Bu2

(21)

where the fluxes in the divergence term “ ·@ # are both
dynamic,
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vS 1
2

rv21rF1P D1
B

4p
3~v3B!, (22)

and viscous,

hVS “

v2

2
1

v
3

“ ·vD2
hB

4p
~“3B!3B. (23)

The terms on the right are sources that represent the
rate of doing work upon the fluid (the P“ ·v term), and
the rate at which mechanical energy is lost as heat, cor-
responding to 2C in Eq. (16).

Equation (21) is the main result of this subsection, but
it should be noted that what one chooses to call a flux
divergence and what one calls a source (or loss) is not
always uniquely defined. For example, the positive-
definite double sum (] iv j)(] iv j) may be recast by using
the identities

u“3vu25~] iv j!~] iv j!2~] iv j!~] jv i!, (24)

and

~] iv j!~] jv i!5“ ·@~v·“ !v2v“ ·v#1~“ ·v!2. (25)

If hV is taken to be a constant, this leads to an alternate
formulation of the mechanical energy equation in which
the loss terms take on a vector-invariant form:

2hVF4
3

~“ ·v!21U“3vU2G2
hB

4p
u“3Bu2. (26)

Comparison of these loss terms with those in Eq. (21)
shows that they differ by an exact divergence. Because
of this loss-term ambiguity, when calculating integrated
fluid losses some care must be taken to ensure that the
contributions from the fluxes at the outer boundaries
have been properly accounted for. Note, for example,
that in both Eqs. (21) and (26) the respective expres-
sions for the viscous losses do not vanish for flow in
uniform rotation. When the contribution from the diver-
gence term is included, however, the net loss due to vis-
cosity does vanish. In high-Reynolds-number turbulent
flow, our main interest here, viscous contributions to the
flux divergence are generally negligible. Furthermore,
u“3vu2 often dominates (“ ·v)2, a consequence of the
near incompressibility of the disturbances. Therefore,
from the above expression for the dissipative losses we
learn the interesting fact that vorticity and currents di-
rectly trace mechanical energy loss in a turbulent gas.

3. Total energy

In the equation for the conservation of the sum of the
mechanical and internal energies, dissipation can lead to
neither sinks nor sources. Combining Eqs. (16) and (21)
leads to

]

]t S 1
2

rv21
3
2

P1rF1
B2

8p D1“ ·@ #52“ ·Frad , (27)

which expresses overall energy conservation. The flux
term “ ·@ # consists of the dynamic contribution
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vS 1
2

rv21rF1
5
2

P D1
B

4p
3~v3B! (28)

and a viscous contribution given by Eq. (23). Note the
absence of any explicit viscous source terms. In the ab-
sence of a wind, energy is lost from an isolated disk only
via radiation.

C. Angular momentum

The equation of angular momentum conservation fol-
lows from considering the azimuthal component of Eq.
(6b). Let (R ,f ,z) be a standard cylindrical coordinate
system centered on the origin. Multiplying the azimuthal
equation by R and regrouping terms leads to

]

]t
~rRvf!1“ ·RFrvfv2

Bf

4p
Bp1S P1

Bp
2

8p D êfG
2“ ·FRhV

3
~“ ·v!êf1hVR2

“

vf

R G50 (29)

where êf is the unit vector in the azimuthal direction,
the p subscript refers to a poloidal magnetic-field com-
ponent (i.e., the R or z component), and Bp

25BR
2 1Bz

2 .
There are no source terms in this equation; angular mo-
mentum may be redistributed in the fluid, but never de-
stroyed. Generally, the direct transport of angular mo-
mentum due to microscopic viscosity hV is negligible, as
noted in our discussion of the energy equation (17), and
the second line of the above equation may be ignored.

III. FLUCTUATIONS

As we shall see, the combination of differential rota-
tion and a subthermal magnetic field is highly unstable,
and there is every reason to believe that magnetized
disks are turbulent. But the large-scale properties of the
turbulence are tightly constrained. The same dynamic
entity—the turbulent stress tensor—must transport an-
gular momentum and energy, while simultaneously ex-
tracting free energy from the mean flow to power the
rms turbulent fluctuations. These obligations weigh
heavily, and in hydrodynamic (unmagnetized) disks,
conditions are not conducive to their fulfillment. Indeed,
simply by inspecting the governing equations of the ve-
locity fluctuations it is possible to arrive at some impor-
tant inferences. The conclusions are striking because
they call into question some widespread phenomeno-
logical approaches to disk turbulence which have for
many years held sway.

A. Steady-state Keplerian disks

Our fiducial disk system consists of a point mass po-
tential, situated at the origin of our coordinates at the
center of the disk, and an accompanying gaseous flow.
The angular velocity of circular orbits is denoted by
V(R), i.e.,
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
V2~R !5
GM

R3 (30)

where G is the gravitational constant and M is the cen-
tral mass. We define the fluctuation velocity u to be the
difference between the fluid velocity v and the azimuthal
circular velocity RV ,

uR5vR , uf5vf2RV , uz5vz . (31)

When RV much exceeds the isothermal sound speed cs ,
as is often the case in astrophysical applications, the disk
is thin: the scale height H satisfies H!R . More explic-
itly, vertical structure in the disk is governed by hydro-
static balance,

]P

]z
52

GMr

R3 z52rV2z , (32)

assuming that z/R!1. Thus the density of an isothermal
gas satisfies

r5r0 exp~2V2z2/2cs
2![r0 exp~2z2/H2! (33)

where r0 is the midplane density, cs
25P/r the isother-

mal sound speed, and H the characteristic scale height
&cs /V . The ratio H/R is clearly a measure of the ratio
of the sound speed to the local rotation velocity.

When H/R is a small parameter, one may use pertur-
bative techniques even when the disk turbulence is fully
developed. The u velocities will be at most of the order
of the thermal velocity (assuming that the magnetic field
is not highly suprathermal), since fluctuations well in ex-
cess of this will form shocks and become highly dissipa-
tive. (Of course, subsonic turbulence is itself dissipative
and requires an external source to be maintained.) The
practical consequence of u/RV!1 is that it is possible
to analyze turbulent velocity correlations by retaining
only terms through second order.

As an example, let us consider the classical problem
of a thin disk under steady-state conditions. The radial
flux of angular momentum follows from Eqs. (29) and
(31):

RFruR~RV1uf!2
BRBf

4p G . (34)

(We have ignored the viscous terms.) We now average
this quantity over f, height integrate over z , and aver-
age over a narrow range DR in R large enough to
‘‘smooth over’’ the rapid fluctuations associated with de-
tailed radial structure. We obtain

SR@RV^uR&r1^uRuf2uA RuA f&r# (35)

where the surface density S5*2`
` r dz , and for any X

^X&r5
1

2pSDR E Xr df dR dz . (36)

The notation uA R , etc. denotes the Alfvén velocity

uA5
B

A4pr
,
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which is the characteristic velocity of transverse shear
waves in a magnetized fluid.

The first term of the angular momentum flux is the
direct inflow of angular momentum due to accreting
matter in nearly circular orbits (see below). The second
term represents an outward component of the flux: the
turbulent transport. It arises from the statistical correla-
tions in the Reynolds (velocity) and Maxwell (magnetic)
stress tensors. The dominant Rf component of the
stress tensor,

WRf[^uRuf2uA RuA f&r , (37)

occurs often in our analysis. It is convenient, if some-
what inaccurate, to refer to this height-averaged, single
component as the stress tensor. Traditionally, this has
been treated simply as an enhanced viscous flux
(Lynden-Bell and Pringle, 1974, Pringle, 1981; Lin and
Papaloizou, 1996), but there are advantages to working
directly with the fluctuations themselves. Since the in-
tensity of radiative emission lines from accretion disks
under some circumstances depends upon the turbulent
velocity dispersion along the observer’s line of sight
(Horne, 1995), it may be possible to learn something of
the turbulent Reynolds stress directly from observations.

Under steady conditions, the (height-integrated) an-
gular momentum flux must be divergence free and vary
as 1/R , if there is no wind carrying off fluid from the
disk. The constant of proportionality may be evaluated
at the inner edge of the disk (R0 , say), where it is as-
sumed that the stress tensor vanishes. The angular mo-
mentum flux at the inner edge of the disk is then deter-
mined by the inward mass flux alone. The freedom to
choose this constraint is simply a boundary condition.

Since the presence of a nonvanishing stress tensor
drains the angular momentum from a fluid element,
matter spirals inward, giving rise to a mass accretion rate

Ṁ522pRS^uR&r. (38)

The accretion velocity ^uR&r is of the order of the square
of the velocity fluctuations divided by the Keplerian or-
bital velocity and is thus very small compared directly
with the velocity fluctuations themselves. The accretion
rate must not vary with R under steady conditions. With
V0 defined as V evaluated at R5R0 , vanishing of WRf
at R5R0 leads to

2
Ṁ

2p
RV1SRWRf52

Ṁ

2pR
R0

2V0 , (39)

whence

WRf5
ṀV

2pS F12S R0

R D 1/2G . (40)

Thus far our analysis has been exact, because the angu-
lar momentum flux involved no correlations higher than
second order. The energy flux, however, contains
higher-order moments, and it is here where perturbative
techniques are the most useful. The largest terms in the
radial energy flux [cf. Eq. (22)] are
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
ruRS F1
1
2

R2V21RVufD2
RV

4p
BRBf . (41)

Using the Keplerian virial result F52R2V2, we find
upon averaging that the flux FE becomes

FE5
ṀRV2

4p
1SRVWRf

. (42)

Substituting for V and using Eq. (40) for the stress ten-
sor, this reduces to

FE5
3GMṀ

4pR2 F12
2
3 S R0

R D 1/2G . (43)

Unlike its angular momentum counterpart, the energy
flux divergence does not vanish for a steady flow. In-
deed, the energy deposited by this flux is the origin of
the disk’s luminosity. Minus the divergence of the flux
gives the disk surface emissivity Q . Dividing by a factor
of two for each side of the disk yields a final value for
the emissivity of

Q5
3GMṀ

8pR3 F12S R0

R D 1/2G . (44)

Notice that the stress tensor appears nowhere in this
relation. This should not be surprising; the Q-Ṁ rela-
tionship depends only upon local energy conservation
and must be recovered whatever the form of the stress
tensor (see, for example, Shakura and Sunyaev, 1973;
Pringle, 1981). The approach we are using here, how-
ever, leads immediately to a relationship between Q and
the first-order disk fluctuations. This one cannot be ob-
tained by other methods. Elimination of Ṁ between
Eqs. (40) and (44) yields

Q5
3
4

SVWRf5
3
4

SV^uRuf2uA RuA f&r , (45)

a sort of fluctuation-dissipation relation for accretion
disks (Balbus, Gammie, and Hawley, 1994).

The form of WRf along with this tensor’s appearance
in Eq. (45) makes an important point. It is the correla-
tion of the velocity fluctuation components, not their
mere existence, that is responsible for the relatively high
levels of outward disk transport and luminosity. The
common tacit (in some cases explicit) assumption that
turbulence makes ‘‘blobs’’ whose collisions mimic vis-
cosity is often simply just wrong, as experience with ver-
tical convection models has shown (Stone and Balbus,
1996; Cabot, 1996). Turbulent velocity fluctuations are
much too strongly coupled to the mean flow to be re-
garded as bloblike. To quote the text of Tennekes and
Lumley (1972): ‘‘Momentum is not a passive contami-
nant; ‘mixing’ of mean momentum relates to the dynam-
ics of turbulence, not merely to its kinematics.’’ Turbu-
lence is not a fluid attribute; it is a flow attribute.

The energy radiated by the disk is simply obtained,
since it amounts to an integration of a pure divergence.
Between R0 and R the total luminosity emitted is
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L~R0,R !52p@R0FE~R0!2RFE~R !#

5
GMṀ

2R0
F123

R0

R
12S R0

R D 3/2G . (46)

In the limit R→` , L5GMṀ/2R0 , which shows that
precisely half the binding energy of the innermost orbit
has been converted to radiation. The other half is re-
tained as kinetic energy. The fate of this residual energy
depends upon the nature of the central accretor, as was
noted in Sec. I.A.2. If a stellar surface is present, the
remaining energy will be radiated in a boundary layer; if
the central object is a black hole, the energy may be
swallowed and lost.

Equation (46) makes a very important and general
point concerning the luminosity of an accretion disk: it is
dominated by the innermost orbits. Within a stellar
boundary layer, the Keplerian modeling we have been
using will certainly break down. Unfortunately, this oc-
curs precisely in the region that dominates the disk lu-
minosity. To model the details of the emission proper-
ties of accretion disks requires both a sophisticated fluid
treatment and a careful handling of the radiation phys-
ics. Away from the boundary layer, a somewhat simpler
treatment is possible. A crude model, but one whose
basic scaling properties are instructive, is to assume that
the disk is optically thick and locally radiates like a
blackbody with an effective surface temperature
Teff(R). Then, equating the energy radiated from each
side of the disk with the energy generated, we have

2sTeff
4 52

1
R

d

dR
~RFE!5

3GMṀ

4pR3 . (47)

As previously deduced, the surface temperature is pro-
portional to R23/4. (Interestingly, if the surface heating
is instead dominated by a radiative flux from a central-
ized source, and if all the surface radiation is absorbed
and thermalized, then simple disk geometries lead once
again to Teff;R23/4.)

This simple radial scaling prediction has recently en-
joyed some observational support. Eclipse mapping
techniques in the ultraviolet (Baptista et al., 1995) and
optical (Moreno, Rutten, and Dhillon, 1996) continua of
the outer regions of CV accretion disks yield radial tem-
perature profiles in good agreement with the R23/4 law.
The assumption of a local blackbody spectrum implies
that the emission at radius R peaks at a frequency n
} Teff(R). Combined with the above scaling for the
temperature, this tells us that the characteristic radius R ,
associated with frequency n, goes as n24/3. Not surpris-
ingly, higher frequencies are dominated by the inner re-
gions of the disk.

We may use this result to deduce a continuum spectral
signature of our model disk. For frequencies at which
photon occupation numbers are large, the disk is a su-
perposition of Rayleigh-Jeans spectra, since each radius
produces an energy spectrum proportional to n2. For
frequencies at which the occupation numbers are !1,
the emission is dominated by the Wien spectrum at the
smallest (and therefore hottest) contributing radii. The
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
intermediate asymptotic regime, with occupation num-
bers of order unity, is formed by adding up the peaks of
emission from each radius. For frequency n, the energy
spectrum is then proportional to the product of the ef-
fective area able to contribute, R2;n28/3, and to n3, the
local blackbody scaling at each radius. In other words,
the Rayleigh-Jeans and Wien limits of the energy spec-
trum are joined by a rather flat link proportional to n1/3

(Fig. 6). This result was first obtained (more rigorously)
by Lynden-Bell (1969; see also Pringle, 1981). In prac-
tice, the n1/3 spectrum has rarely been seen, a shortcom-
ing initially considered to be an embarrassment for ac-
cretion disk theory. It is no longer perceived as a serious
failure. Not only does this intermediate behavior span a
rather limited range of frequencies, it is now more
clearly understood that several important complications
may qualitatively change the appearance of disk spectra.
Perhaps the most important point is that the disk surface
temperature is extremely sensitive to external irradia-
tion. Accretion disks rarely find themselves in isolation,
and radiative scattering from gas above the disk, which
may be present in the form of a wind or a structure
analogous to the solar corona, is a significant external
heat source.

B. a disk models

Although the relationship between a steady-state ac-
cretion disk’s surface emissivity Q and Ṁ is independent
of its detailed transport properties, most other relations
involve a dependence on the stress tensor WRf . Recog-
nizing both the central importance of WRf and its com-
putational inaccessibility, Shakura and Sunyaev (1973)
suggested that the natural scaling of the stress tensor is
WRf;cs

2 and introduced the now classical a parameter:

WRf5acs
2. (48)

The idea is that the turbulent velocities, whose correla-
tion determines WRf , would be limited by the local
sound speed: velocities in excess thereof would develop
shocks and quickly drop to below cs . Furthermore, val-

FIG. 6. Model continuum spectrum from a Keplerian disk.
The intermediate asymptotic n1/3 behavior occurs over a lim-
ited spectral range, marked off approximately by the points A
and B. Adapted from Frank et al., 1985.
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ues of a within an order of magnitude or so of unity are
not a priori unreasonable: there is no other obvious or
natural limit to which the fluctuation velocities are sub-
ject. The presence of magnetic fields would not, as we
have seen, be incompatible with this formalism; in the
guise of the Maxwell stress they are part of our defini-
tion in Eq. (40). (This is not a trivial point: not every
external force gives rise to a stress tensor coupling to the
mean flow.) The point of view taken by Shakura and
Sunyaev (1973) was that disk turbulence would be
present, aided perhaps by an entangled magnetic field;
magnetically induced turbulence was still some ways off.
In fact, at the time of their paper, nonlinear hydrody-
namic shear instabilities were considered to be the lead-
ing candidate for the origin of turbulent transport.

Of course, the a formalism was invented precisely to
finesse the thorny formalism of turbulence with a single
dimensionless scaling factor. To the extent that a is
taken to be a known quantity, Eq. (48) is a closure rela-
tion for the stress tensor. This allows a complete disk
model to be constructed, which we shall shortly do.

Another formalism that is sometimes used is to intro-
duce a ‘‘turbulent viscosity’’ n t via

n t5acsH , (49)

a scaling based on the form of a microscopic shear vis-
cosity. The role of random-particle velocity is played by
cs , and the scale height H is the effective mean free
path. Since both Eqs. (48) and (49) are ultimately a mat-
ter of dimensional analysis, their as must be equal, up to
factor of the order of unity. The n t formalism is quite
popular because it turns a turbulent fluid into a standard
Navier-Stokes system, and the equations beckon rigor-
ous analysis. This they should be denied.

While there is a certain sensibility to approaching the
gross scaling and evolutionary properties of disks this
way (see, for example, Lynden-Bell and Pringle, 1974),
turbulence, as we have emphasized, is not reducible to a
Stokes viscosity. It may in fact happen that the stress
tensor produces the opposite sense of transport from
what one would find from a viscous stress. One need not
be dealing with pathological flows to encounter this; one
need look no further than the solar convection zone
(Brummel et al., 1995). A large-Reynolds-number turbu-
lent disk is simply not a laminar disk with a much
smaller Reynolds number. If this seems self-evident, it
also describes precisely how accretion disks have been
(and continue to be) treated innumerable times in the
literature. Temptation, and the very real need to do
something short of a full-scale simulation, force one’s
hand. That caution is essential cannot be too strongly
emphasized.

Stability analyses are probably the most problematic
application of the a formalism, since what comprises the
unperturbed state is impossible to define. Furthermore,
although they give equivalent scalings, different formu-
lations of the turbulence [e.g., along the lines of Eqs.
(48) and (49)] do not, in general, lead to equivalent sta-
bility conditions. It is tempting to argue that, on suffi-
ciently large length scales and sufficiently long time
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
scales, the presence of turbulence may be adequately
modeled as simple viscous dissipation, but the problem
is more severe: there is no unique formulation for the
stress tensor. Contrast this with the Chapman-Enskog
procedure (Chapman and Cowling, 1970), a formalism
that bridges the gap between discrete gas particles and
fluid continuum, and does lead to well-defined dissipa-
tion coefficients.

Having thus criticized the a formalism, we should em-
phasize that much of observationally driven disk phe-
nomenology is, in fact, based on the stability properties
of a-disk models (Livio, 1994). The most robust features
of these models have a compelling physical basis which
transcends any particular formal implementation
scheme for the turbulence. We are not yet at a stage
where numerical modeling can answer sensitive stability
questions, and this subfield remains more of an art than
a science. A good rule of thumb when gauging the plau-
sibility of an a-based model is to trust gross physical
properties (e.g., heating and cooling), but tread cau-
tiously in the domain of mathematically provocative de-
tails (e.g., WKB waves). For all their foibles, there is
little doubt but that a disks will remain part of the land-
scape for some time.

Let us see how a simple a model works in detail for a
standard free-free absorption model of the opacity
known as Kramers’ law (Schwarzschild, 1958; Frank
et al., 1985):

kr56.631022 rT27/2 cm2 g−1. (50)

An astronomical aside: there is a corresponding bound-
free Kramers’ opacity with the same r and T scaling, but
depending linearly upon the relative abundance of ele-
ments heavier than helium (‘‘metallicity’’ in astronomi-
cal parlance). Older, lower-mass stars tend to be lower
in metals than younger, more massive stars. In a low-
metallicity gas, free-free opacity is more important than
bound-free. It is simple and physically sensible to exam-
ine the case in which the donor star is relatively metal
poor. Another contribution to the opacity, electron scat-
tering, becomes important at high temperatures, but
need not be included here.

The solution is parametrized by two quantities: a and
Ṁ . There are then seven variables and seven relations
between them. The variables are rc , the midplane den-
sity of the disk; Tc , the midplane temperature of the
disk; Q , the heating rate/surface emissivity; S, the disk
column density; H , the disk scale height; t, the inte-
grated optical depth; and WRf , the stress tensor. The
seven equations are either self-evident or have been dis-
cussed already. They are

Q5
3GMṀ

8pR3 F12S R0

R D 1/2G , (51a)

Q5
3
4

SVWRf , (51b)

sTc
45

3
8

tQ , (51c)
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t5krS , (51d)

WRf5acs
2, (51e)

H5&cs /V , (51f)

S52rcH . (51g)

Although the optical depth t is an integrated quantity
and its value depends upon the entire vertical tempera-
ture structure, there is little point in striving for high
numerical accuracy (hence, for example, our use of ‘‘2’’
in Eq. (51g). We shall evaluate kr at the midplane.

The solution to the system (51) is (cf. Frank et al.,
1986)

Tc51.43104~M/M(!1/4a21/5~Ṁ16f !3/10R10
23/4 , (52a)

rc54.731028~M/M(!5/8a27/10~Ṁ16f !11/20R10
215/8 ,

(52b)

t529a24/5~Ṁ16f !1/5, (52c)

H

R
51.831022~M/M(!3/8a21/10~Ṁ16f !3/20R10

1/8 ,

(52d)

S517~M/M(!1/2a24/5~Ṁ16f !7/10R10
23/4 , (52e)

where M/M( is the central mass in units of solar masses,
Ṁ16 is the accretion rate in units of 1016 g s−1, R10 is the
position radius in units of 1010 cm, and

f512S R0

R D 1/2

.

All dimensional quantities are in cgs.
The solutions of Eqs. (52) should not be regarded as

more than a collection of suggestive scalings; as such,
however, they have proven to be very useful. The intri-
cate couplings of disk dynamics and radiative diffusion
give results that are often remarkably insensitive to as-
trophysical parameters and in general agreement with
the order-of-magnitude arguments given in Sec. I.A. In
particular, the midplane temperature and scale height
are essentially independent of a. According to the solu-
tion of Eqs. (52), thin disks emitting principally in the
UV continuum should be a hallmark of CV systems, a
prediction that has garnered considerable observational
support. In turn, this offers encouragement that the
other scalings deduced from these a models are credible.

C. Fluctuation dynamics; the local and Boussinesq
approximations

The individual dynamic equations for the u velocities
are of interest because of their close connection with
nonlinear stability and disk turbulence. In particular,
these equations bring out the importance of the
fluctuation–mean flow interaction that is critical to un-
derstanding the nature of accretion disk transport. In
this section we derive these equations and discuss some
of their implications.
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In addition to establishing a hierarchy of velocity mo-
ments, an important simplification is possible when
u!RV : curvature terms in the dynamical equations
may be dropped, since they are typically of order
u/RV!1. In its orbital dynamic guise, this procedure
goes back at least as far as Hill’s (1878) treatment of the
Earth-Moon-Sun three-body problem. More recently, it
has been used with success in studies of galactic struc-
ture (Toomre, 1981), planetary rings (Goldreich and
Tremaine, 1978), and hydrodynamic accretion disks
(Goldreich, Goodman, and Narayan, 1986). We shall
also exploit the result that the local approximation re-
veals an important connection between constant-
angular-momentum disks and Cartesian shear flows.
This, in turn, will help us to contrast the hydrodynamic
stability properties of disks (more generally) with those
of shear layers.

Lastly, we take advantage of the fact that the velocity
field is nearly (but not exactly) incompressible for the
turbulent flows of interest. This is the Boussinesq ap-
proximation. Its consistent implementation sometimes
causes confusion; one cannot simply put “ ·v50 every-
where. Among other difficulties, this overconstrains the
flow when one makes use of the energy equation, which
is generally incompatible with dr/dt50. The approxi-
mation is best thought of as a condition on the inverse
time scale tchar

21 [“ ·v5¹·u. The time tchar is taken to be
long compared with characteristic turnover time
;(]u/]x)21 of the turbulence, but not necessarily long
compared with other time scales (e.g., rotational, ther-
mal) of interest. We may, for example, neglect (“ ·u)2

compared with u“3uu2; we may neglect “(“·u) com-
pared with ¹2u; but we should not neglect P“ ·v in the
thermal equation (16), although this is often done.

1. Hydrodynamic equations

Let us start with the case in which there are no mag-
netic effects. This has the virtue of simplicity, but it also
serves to accent the qualitative effects of the fields when
they are later reintroduced. One may then appreciate
the difficulties of trying to understand disk turbulence
on a purely hydrodynamic basis. Writing the equations
of motion in terms of the u velocities, using the local and
Boussinesq approximations, we obtain

rS DuR

Dt
22VufD52

]P

]R
1hV¹2uR , (53)

r
Duz

Dt
52

]P

]z
2r

]F

]z
1hV¹2uz , (54)

rS Duf

Dt
1

k2

2V
uRD52

1
R

]P

]f
1hV¹2uf , (55)

where

D

Dt
[

]

]t
1u·“1V

]

]f
(56)

and
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k2[
1

R3

d~R4V2!

dR
(57)

is the so-called ‘‘epicyclic frequency.’’ The explicit po-
tential F appears only in Eq. (54); if the disk is thin it
may be regarded as a function only of z at some fixed
fiducial R .

If only gravitational forces were important, then a
fluid element perturbed from its circular orbit would ap-
pear to execute retrograde epicycles at frequency k, as
seen by a comoving observer in the unperturbed orbit.
Hence the origin of the name. (It is, of course, a major
point of this review that gravitational forces alone do
not explain local disk behavior.) The linear Rayleigh cri-
terion for local stability is simply k2.0, i.e., the specific
angular momentum should increase outward.3 The
emergence of k2 in Eq. (55) is due to a combination of
the Coriolis force and shear: both couple directly to uR .
For this reason, Coriolis forces have a profound influ-
ence on flow stability. Streamwise momentum fluctua-
tions in nonrotating shear layers couple to the back-
ground flow completely differently from the way angular
momentum fluctuations couple to the mean large-scale
flow in disks. This is true in both the linear and the
nonlinear domains.

Next we write each of the Eqs. (53)–(55) in a kinetic-
energy form and average them. Averaging is meant to
be understood as a full azimuthal average, but a local
average in both the radial and vertical directions. Fur-
thermore, there is no implied density weighting; r is ex-
plicitly present in the appropriate terms, and our angle
brackets are not subscripted by r. Multiplying Eq. (53)
by uR , regrouping terms as in Sec. II, averaging, and
retaining only the dominant terms leaves us with

]

]t K ruR
2

2 L 1“ ·K 1
2

ruR
2 uL 52V^ruRuf&2 K uR

]P

]R L
2hV^u“uRu2&. (58)

[Terms that have been dropped in obtaining Eq. (58)
include the viscous flux divergence.] Following a similar
procedure for the azimuthal equation leads to

]

]t K ruf
2

2 L 1“ ·K 1
2

ruf
2 uL 52

k2

2V
^ruRuf&2 K uf

R

]P

]f L
2hV^u“ufu2&, (59)

while the z equation is simply

3The Rayleigh criterion strictly applies to axisymmetric dis-
turbances only. It is possible to construct discontinuous or
nearly discontinuous flow profiles that are linearly unstable to
nonaxisymmetric disturbances (Howard, 1962; Drazin and
Reid, 1981). These are in essence Kelvin-Helmholtz instabili-
ties and are irrelevant to our present consideration of
smoothly flowing velocity profiles. Interestingly, no general
rigorous stability criterion is known (Howard and Gupta,
1962) for simple Couette flow.
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]

]t K ruZ
2

2 L 1“ ·K 1
2

ruZ
2 uL 52 K uZ

]P

]z L 2 K ruZ

]F

]z L
2hV^u“uZu2&. (60)

An energy equation for the fluctuations may be ob-
tained by summing Eqs. (58)–(60), and using the C term
in Eq. (16) to eliminate the viscous terms:

]

]t
^E&1“ ·^uE1uP1Frad&52

dV

d ln R
^ruRuf& (61)

where

E5
1
2

ru21
3
2

P1rF . (62)

Note that our fluctuation equation has a source term, in
contrast with the energy equation (27): fluctuations can
exchange energy with the mean flow.

It is well established that Cartesian shear flow is non-
linearly unstable and that the instability leads to fully
developed turbulence (Orszag and Kells, 1980; Drazin
and Reid, 1981). Since we are interested in the possibil-
ity that disks might break down along similar lines, it
behooves us to compare Eqs. (58)–(61) with their Car-
tesian counterparts. The analogous equations for a Car-
tesian shear flow with background velocity V(x) êy are

]

]t K ruX
2

2 L 1“ ·K 1
2

ruX
2 uL 52 K uX

]P

]x L 2hV^u“uXu2&

(63)

and

]

]t K ruY
2

2 L 1“ ·K 1
2

ruY
2 uL 52

dV

dx
^ruXuY&2 K uY

]P

]y L
2hV^u“uYu2& . (64)

The z equation for Cartesian flow is identical to Eq.
(60), and the energy equation is the same as Eq. (61)
with dV/dx replacing dV/d ln R.

Notice that precisely the same correlation tensor
^ruRuf& [or its shear counterpart ^ruXuY&] that appears
in all the above equations is just the nonadvective com-
ponent of the angular momentum flux in a hydrody-
namic disk. Whether or not sustained outward turbulent
transport is possible depends upon whether a positive
value for ^ruRuf& is compatible with sustaining a source
for the fluctuation velocities. Since the coupling between
the mean flow gradients and the correlation tensor is
manifestly different in the disk and Cartesian systems,
we should not be surprised to find that their nonlinear
behaviors are likewise manifestly different. For many
years, however, this has been a point of controversy.

It is convenient to unify the disk and shear equations
by a simple parametrization (Balbus et al., 1996). Con-
sider the system of equations
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]

]t K ruX
2

2 L 1“ ·K 1
2

ruX
2 uL 5AX^ruXuY&2 K uX

]P

]x L
2hV^u“uXu2&, (65)

]

]t K ruY
2

2 L 1“ ·K 1
2

ruY
2 uL 5AY^ruXuY&2 K uY

]P

]y L
2hV^u“uYu2&, (66)

where AX and AY are constants. Clearly any local disk
model or Cartesian flow profile can be formed by pick-
ing the appropriate values of AX and AY . Indeed, one
of the nonzero A values can always be scaled out of the
problem by choosing appropriate units; it is only the A
ratio that matters. Rayleigh instability corresponds to a
positive value of AX /AY , (linear) stability to a negative
value. Furthermore, there is obviously an X↔Y symme-
try to this system, so that we expect to find the same
stability behavior in Cartesian shear (AX50) flow and
constant-angular-momentum disks (AY50).

With this formalism in place, we may understand how
turbulence is triggered in both shear flows and rotating
disks.

2. Sources of turbulence: high-Reynolds-number shear?

It is a matter of everyday experience that large-
Reynolds-number shear flows are unstable to nonlinear
disturbances. This has spawned the common wisdom
that where there is high-Reynolds-number shear there is
turbulence, and where there is turbulence there is
greatly enhanced transport. But the fluctuation equa-
tions we have just written down, as well as detailed
large-scale numerical simulations, suggest neither of
these is intrinsic to the hydrodynamics of accretion
disks.

To be sure, three-dimensional inviscid solutions to
Eqs. (63) and (64) are found, in accord with experience,
to be quite unstable even at modest numerical resolu-
tions. Therein lies the importance of these equations:
they represent a system that truly is turbulent, and their
qualitative content is crucial to understand if we are to
understand what might or might not happen in disks.
While some viewed the existence of shear flow turbu-
lence as compelling evidence that disks were turbulent,
the matter was always controversial (Pringle, 1981; Lar-
son, 1989), because of the suspicion that astrophysical
disks differed in some important way from laboratory
shear flows. This suspicion is justified. The problem is
not, however, the oft-cited supersonic motion of the disk
(which matters not at all to the local turbulent dynamics
on scales less than H), nor is it the absence of laboratory
walls. The problem is that astrophysical disks exhibit
epicycles (Balbus et al., 1996).

A casual glance at Eqs. (58)–(64) is enough to show
that this is likely to be a critical distinction. If one ex-
changes dR with dx and R df with dy , the structural
form of the disk and shear equations is seen to be ex-
tremely similar, but with crucial dissimilarities in their
source terms. These all-important components, which
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couple the fluctuation amplitudes with the background
flow, are qualitatively different. In particular, the shear
system has a source term in the y equation, but no sink
coupled to the Reynolds stress in either the x or the z
equations. By way of contrast, in the disk equations,
there is such a dynamic sink: the epicyclic term in the
azimuthal equation has the opposite sign from its shear
counterpart. This follows directly from the fact that an-
gular momentum fluctuations draw upon a background
angular momentum gradient that increases outward,
even as the angular velocity decreases outward. This is
the defining difference between the two systems. In the
Cartesian shear system there is only one characteristic
gradient, dV/dx ; in the disk system there are two, one
for the angular velocity, and one for the angular mo-
mentum. Both of the latter gradients have great dynamic
significance, and they have opposite signs. As a conse-
quence, the linear and nonlinear stability properties of
disk flow and pure shear flow are qualitatively different.
In a Keplerian disk, there is no asymptotic domain for
either linear or nonlinear perturbations in which the
governing dynamical equations behave locally like Car-
tesian shear. If V(R) is a simple decreasing power law,
the Coriolis parameter 2V will generally be of the same
magnitude as the angular shear (dV/d ln R). In astro-
physical disks, far from being negligible, it will be larger
than the shear.

There is nothing obvious in the appearance of the
Cartesian shear equations that immediately suggests the
presence of an instability. In fact, it is well known that
there are no linear instabilities in shear flows lacking an
inflection point (a result due to Rayleigh; see Drazin and
Reid, 1981). Conversely, however, neither is there any-
thing obvious in our equations to prevent a nascent non-
linear instability from growing. The term
^ruXuY&dV/dx represents the interaction between the
fluctuations and background shear, and it is an energy
source for the azimuthal velocity fluctuations. Energy
extraction is possible if ^ruXuY& has the opposite sign
from dV/dx , i.e., if the transport is from larger to
smaller background velocities. The pressure terms, while
not of themselves an energy source couple, redistribute
energy from the azimuthal to the other components.
Furthermore, if stability is a matter of keeping the ve-
locity profile free of local inflection points, it should be
noted that these formally nonlinear defects can occur
with only minute changes to V(x) and dV/dx . It is not
surprising that laboratory nonlinear shear instabilities
have been documented for over a century (Reynolds,
1883).

While many features of turbulent flow are mysterious,
the mechanism by which energy is channeled from a
shear layer into the turbulence is reasonably well under-
stood and uncontroversial: vortices in the fluid are en-
snared and stretched by the shear layer, vorticity conser-
vation causes the circulation velocity around the
narrowed vortex tube to rise, and free energy is ex-
tracted from the background flow (Tennekes and Lum-
ley, 1972). The mathematical term that embodies vortex
stretching is obviously the same ^ruXuY&dV/dx we have
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been discussing; there is no other source in the energy
equation. Pressure terms reallocate energy between
components, but their role in vortex stretching and en-
ergy extraction is nil. Vortex stretching is critical to cre-
ating a correlation between uX and uY and thus to main-
taining an outward flux of angular momentum; it is not
the presence of turbulence per se. This has been a widely
misunderstood point. Enhanced transport is not an inevi-
table consequence of turbulence. Enhanced transport is a
consequence of the high degree of correlation between
uX and uY . In pure shear flow, the turbulence is fed by
vortex stretching, which also happens to correlate uX
and uY fluctuations. If there were some other source for
the turbulence (e.g., external driving, convection), there
would be no reason why uX and uY need be positively
correlated everywhere. If they are not, there will not be
enhanced transport, regardless of the amplitude attained
by the turbulent fluctuations. This becomes particularly
important for Keplerian disks, where non-shear sources
of disk turbulence are often suggested (Lin and Papal-
oizou, 1980; Ryu and Goodman, 1992).

Some further understanding emerges from relating
the minimum energy states of these simple flows to the
transport behavior. Consider first planar flow. The inte-
gral *rvY

2 /2, where the integration is over a large but
finite volume, is the flow kinetic energy. If we minimize
this integral holding the total momentum *rvY constant,
it is a straightforward matter to show that the flow pro-
file must be one of constant velocity. The mixing term in
Eq. (63), 2^ruXuY&dV/dx , couples directly to the ve-
locity gradient and redistributes ‘‘specific momentum’’
(i.e., the velocity) towards a state of nonshearing flow.
Because the mixing term spontaneously takes the flow
from a higher to a lower energy state, the transition is
unstable—a nonlinear instability.

Next, consider differential rotation. We seek to mini-
mize *rvf

2 /2 subject to the constraint that *rRvf be
constant. The solution is a profile of constant angular
velocity, which is quite distinct from constant specific
angular momentum. The mixing term in Eq. (59), how-
ever, tries to homogenize the specific angular momen-
tum. This redistribution would not take the flow to a
state of lower energy; in fact it tries to do quite the
opposite. This is the ultimate reason that flows with epi-
cyclic motions are nonlinearly stable. There is no couple
to the angular velocity, but it is angular velocity that
needs to be mixed if there is to be a move toward a
lower energy state.

The prominent physical role of fluctuation—mean
flow interactions—suggests an extremely simple ap-
proach to the onset of disk turbulence: all that matters in
Eqs. (58) and (59) are the ^ruRuf& source terms. When
k2,0 (specific angular momentum decreasing outward),
the source terms are both positive and set up an active
feedback loop: an increase in uf leads to an increase in
uR , leading to a further increase in uf , and so on. An
outwardly displaced fluid element has too much angular
momentum compared to its orbital surroundings and
continues outward; the converse holds for an inwardly
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displaced element. This is a prescription for a linear in-
stability, the Rayleigh instability.

When k2.0, the case of greatest direct astrophysical
relevance, the equations offer no route by which energy
can be systematically extracted from the background
flow. Instead, the epicyclic oscillations are a powerful
stabilizing influence, and as long as the fluctuation ve-
locities remain small compared with the RV , nonlinear-
ity is of little avail. Hydrodynamic Keplerian disks ought
to be stable against the nonlinear disruptions that wreak
havoc on Cartesian shear layers.

3. An analogy between shear layers and disks of constant
specific angular momentum

The case of k250 deserves special attention. When
the background vorticity vanishes, the disk system (58)–
(59) becomes formally identical to the Cartesian system
(63)–(64). Even the 2V Coriolis term is the same as the
disk shear rate 2dV/d ln R, so that the coupling be-
tween mean flow and stress tensor takes on the precise
form of shear flow. The only difference is that the radial
(x) and azimuthal (y) variables are interchanged: in a
k250 disk, the turbulence source term appears in the
‘‘cross-stream’’ radial equation, not the ‘‘streamwise’’
azimuthal equation.

One immediate consequence of this observation is
that we expect constant-specific-angular-momentum
disks to be unstable to nonlinear perturbations, breaking
down into enhanced transport turbulence. Simulations
in fact bear this out. But the analogy runs deeper, be-
cause it suggests why nonlinear disturbances are so im-
portant for understanding the behavior of shear layers.
The point is that the characteristic local response fre-
quency of an unmagnetized disk to linear disturbances is
the epicyclic frequency k2 (see Sec. IV.B below). This
response frequency is a measure of linear restoring
forces on a displaced fluid element—the greater the
value of k2, the greater the sum of the restoring forces.

If we now imagine taking the limit of vanishing of k2

in a sequence of disk models approaching constant spe-
cific angular momentum, the linear restoring forces
come into ever closer balance. At k250, they balance
precisely, and nonlinear dynamics—restoring or
otherwise—must come into play. The k2 modes do not
disappear as k2→0; they are still present in the disk and
easy prey for nonlinear forces.

It can be no less true for Cartesian shear layers. The
same zero-frequency modes lie dormant. The classical
nonlinear disruption of shear layers should not be
thought of as the result of linear forces somehow being
overcome. There simply is no linear response. There is
nothing to check the nonlinear forces, which will conse-
quently take over. The linearly dormant modes of a
shear layer or a constant-specific-angular momentum
disk reflect two isolated, singular limits: AX50 or
AY50. Generic disks, in particular Keplerian disks, be-
have much differently: they are hydrodynamically
stable.
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4. Sources of turbulence: convection?

The notion that disks under some circumstances may
be convectively unstable, and that convective turbulence
will act as an enhanced shear viscosity, has been inten-
sively pursued by protostellar and CV theorists (Cam-
eron, 1978; Lin and Papaloizou, 1980; Canizzo, Ghosh,
and Wheeler, 1982; Smak, 1982; Ruden, Papaloizou, and
Lin, 1988). In the protostellar case, detailed modeling of
the cooling properties of dust grains suggested that the
disks would become convectively unstable near their
surfaces; CV applications relied on opacity temperature
sensitivity to do the same. In both cases the subsequent
development of full nonlinear turbulence was assumed
to be self-sustaining, with the dissipated energy heating
the midplane substantially more than the upper disk lay-
ers. Of course, the ultimate source of the convective en-
ergy was taken to be the differential rotation
somehow—running a convective engine off of its own
waste heat per se is a thermodynamic impossibility.

This model of turbulent viscosity is clearly derivative
of the textbook blob explanation of the Schwarzschild
instability (Schwarzschild, 1958). In its more formal
guise as mixing-length theory, this method of accounting
for convective heat transport in stars has some phenom-
enological value. But hot and cold gas blobs have a be-
guiling simplicity which imbues them with a distinct
physical reality they do not merit. It is a small step from
forming a picture of hot blobs rising and cool blobs sink-
ing to imagining these same blobs colliding and exchang-
ing momenta. Indeed, the macrokinetic phenomenology
of colliding gas blobs is the mental ‘‘cartoon’’ of the
underlying process of enhanced turbulent viscosity that
comes most readily to mind, whatever the source of the
turbulence might be. Convection simply offers a plau-
sible mechanism for creating blobs. The transport, one
assumes, will take care of itself.

Such reasoning is perilous. The dangers of treating
turbulent heat transport and turbulent momentum
transport on the same footing have been known for
some time (they may be found in textbooks). Heat be-
haves much more like a passive contaminant than mo-
mentum does. Recall as well that convection transports
angular momentum against the angular velocity gradient
in the solar convection zone, so as to maintain the dif-
ferential rotation. Nevertheless, the first detailed cri-
tique of convective angular momentum transport in ac-
cretion disks is surprisingly recent (Ryu and Goodman,
1992). An explicit calculation of the angular momentum
transport, not an order-of-magnitude mixing-length ar-
gument, carried through for the linear stage of the insta-
bility, found that the flux had the wrong sign: angular
momentum went inward. Ryu and Goodman also ar-
gued (but only very briefly) that inward transport may
happen in the nonlinear stages of the instability, as well.
The idea is that fluid elements on epicyclic oscillations
centered on separated radii interact at a common inter-
mediate radius with the outer element moving more rap-
idly than the inner element. (At the same location in the
disk, the outer element has more angular momentum
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
than the inner one.) This process, manifested math-
ematically in Eq. (59) by the term 2(k2/2V)^ruRuf&,
would tend to transport angular momentum inward. It
should be noted, however, that the tendency for sub-
Keplerian orbital motion to cause the drift of fluid ele-
ments inward (and in the opposite direction for supra-
Keplerian motion) tries to transport angular momentum
outward. This process is represented by the term
2V^ruRuf& in Eq. (58). These two opposing drivers pre-
vent the net transport from being very large with either
sign. Simply put, turbulence is too coupled to the mean
flow to model by some sort of macroscopic gas kinetics;
the local mean flow in a nonmagnetic disk is pressure-
modified epicycles. The presence of epicyclic oscillations
is not conducive to substantial transport.

Limited numerical simulations of convection (heated
from below) were carried through by Cabot and Pollack
(1992), who investigated artificially small Reynolds num-
bers in shearing coordinates, and by Kley, Papaloizou,
and Lin (1993), who studied axisymmetric convection.
Kley et al. found inward transport, a result seen to fol-
low immediately from setting ]P/]f50 in Eq. (59) and
demanding a non-negative source on the right-hand
side.

Three-dimensional, inviscid simulations of convec-
tively unstable disks were recently carried out by Stone
and Balbus (1996). The basic result was that angular mo-
mentum transport was both very small—at least three
orders of magnitude below values found for magnetized
disks—and directed inward. This holds for any rotation
law (assuming, of course, that it is Rayleigh stable), even
uniform rotation with no shear at all. On the other hand,
when Stone and Balbus drove vertical convection in a
Cartesian shear layer flow, the disruption was profound,
with transport climbing to levels comparable to those
found in a turbulent magnetized disk. But precisely the
same disruption is observed in shear layers that are con-
vectively stable (Balbus et al., 1996), so the turbulent
transport in this case has little to do with convection,
which serves merely as a disruptive trigger. As we have
seen, enhanced turbulent transport is intrinsic to the dy-
namics of Cartesian shear. Convection does not rely on
the extraction of free energy from the shear in a disk, so
the basis for requiring ^ruRuf&.0 is lost. In a Cartesian
shear layer, the free energy of the shear can be tapped,
but it comes spontaneously. One does not need convec-
tion to extract it.

We may be more explicit. For example, if we consult
Eq. (61), there is an apparent inconsistency with the
finding of inward transport. Equating the energy source
term with the outward radiation losses in steady state
gives

^ruRuf&52S dV

d ln R D 21

“ ·Frad.0, (67)

which would imply only outward transport. The problem
is that Eq. (61) is derived under the assumption that
there are no external heat sources, whereas in the nu-
merical simulations this is violated, since the fluid is ex-
plicitly heated from below. In the Stone and Balbus
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(1996) simulations, the energy equation (16) is modified
by adding on the right a term of the form

2rx¹2T ,

where T is the gas temperature and x is an effective
thermal conductivity (the usual designation is ‘‘k,’’ but
this may be confused with the epicyclic frequency). A
similar modification is used by Cabot (1996) and follows
the approach of solar convection simulations (Porter
and Woodward, 1994). At the bottom of the numerical
domain a heat flux enters by way of this term, which
then drives unstable thermal convection. The flow is
bounded on top and bottom by hard walls, fixed respec-
tively at a cold (top) and hot (bottom) temperature. Dis-
cussion of the radial and azimuthal boundary conditions
is deferred to the next section, where the properties of
the convective stress tensor will be presented.

The reason that the stress tensor in convective turbu-
lence is likely to have very different properties from its
shear turbulence counterpart is rooted in energetics.
When differential rotation is the source of the fluctua-
tions, rotational mechanical energy must be extracted by
a positive stress tensor (outwardly oriented angular mo-
mentum flux); there is no other source. Energy is then
both radiated locally and transported outward. The en-
ergy of the disk’s inner regions is lowered in the process.
But when thermal energy is introduced continuously
into the disk, matters are quite different. Under these
circumstances, there is no need for a positive stress ten-
sor (outward transport) to extract energy from the shear
to maintain the presence of kinetic-energy fluctuations.
Angular momentum fluctuations can only be maintained
by two sources: inward transport (direct angular mo-
mentum extraction from its background gradient) or
large-scale coherence in the azimuthal pressure gradi-
ents. The latter is not impossible, but it is a very differ-
ent type of flow from the mixing of ‘‘turbulent blobs’’
envisioned by the proponents of convective transport,
and numerical simulations of local disk sections consis-
tently find inward transport. (The exception to this state-
ment occurs only for runs with unphysically high explicit
viscosities. See, for example, the discussion of low-
Reynolds-number runs in Cabot and Pollack, 1992.)

The plausibility arguments against hydrodynamic tur-
bulence in disks can be directly tested by three-
dimensional numerical integration of the fluctuation
equations. This is the topic of the next section.

D. Hydrodynamic numerical analysis

1. Introduction

The set of Eqs. (53)–(55), while extremely useful for
understanding qualitative features of disk turbulence, is
not the system of choice for a detailed numerical study
of local disk dynamics. For this purpose, it is much more
convenient to use a set of axes locally corotating with an
unperturbed fluid element at fiducial radius R0 ; the cor-
responding angular frequency is V05V(R0). Denoting
the velocity in this system as w, we have
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
wf5vf2RV0 . (68)

For values of R2R0[x!R0 , this implies

wf2uf5R~V2V0!.xS R
dV

dR D
0

(69)

which is 2(3/2)V0x for a Keplerian disk. More gener-
ally, we shall take V(R);R2q, giving

wf2uf52qV0x . (70)

With the time derivative in these coordinates given by
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, (71)

Eqs. (53)–(55) transform into the Hill system:

rS ]

]tW
1w·“ DwR22rVwf1rx

dV2

d ln R

52
]P

]R
1hV¹2wR , (72a)

rS ]

]tW
1w·“ DwZ52

]P

]z
2r

]F

]z
1hV¹2wZ , (72b)

rS ]

]tW
1w·“ Dwf12rVwR52

1
R

]P
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(72c)

We have dropped the 0 subscript on the V terms. The
Coriolis force is now manifest in the R and f equations,
while the x-dependent term of the radial equation rep-
resents the local tidal interaction due to the (im)balance
between gravity and centrifugal forces. The local Hill
approximation thus includes all rotational effects within
these three simple terms.

Full-scale numerical simulations of accretion disks,
even in the local Hill limit, are a very recent develop-
ment. There are at least two reasons for this, one prac-
tical, one conceptual. The practical difficulty is that non-
linear instabilities in shear flows are three dimensional,
and computers capable of carrying out such simulations
at high resolution have only recently become widely
available. Limited simulations of this type, however,
have been possible for nearly two decades. They were
not done for a conceptual reason, which, at face value,
appears more serious than it actually is. This is the belief
that numerical codes have too much numerical viscosity
to permit the development of nonlinear shear instabili-
ties that would otherwise be present. The best way to
refute this misunderstanding is by explicitly simulating
high-Reynolds-number Cartesian shear instabilities at
modest numerical resolution.

Of course, the presence of viscosity can prevent the
development of turbulence. In Cartesian shear layers,
low-Reynolds-number flows remain laminar, while high-
Reynolds-number flows break down and become turbu-
lent. This (nonlinear) instability is essentially inviscid,
however, and would be present in a purely Eulerian
fluid. A small viscosity coefficient does not somehow
create turbulence. Rather, it limits dissipation to the
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point at which inviscid hydrodynamics can generate the
turbulence. [Knowledgeable readers will be aware that
wall-bounded flows, by way of contrast, may be directly
destabilized in the boundary layer by viscosity (Bayly,
Orszag, and Herbert, 1988). Such instabilities are not
relevant for Keplerian accretion disks, however.]

This line of argument of course applies to both linear
and nonlinear instabilities. A case in point is the classical
Couette cylinder analysis and the experiments of Taylor
(1923), who found a critical minimum Reynolds number
for the onset of (linear) instability and turbulence. When
both inner and outer cylinder rotated in the same direc-
tion at roughly comparable speeds, the instability was
observed only in those flows that would have been lin-
early unstable by the inviscid Rayleigh criterion. It is
important to appreciate that in these narrow gap experi-
ments, the basic Rayleigh instability is itself a high-
Reynolds-number instability, manifesting itself only
when this parameter exceeds ;103 (Drazin and Reid,
1981). Nonlinear instability was later found (Taylor,
1936; Coles, 1965) when the cylinders rotated in oppo-
site directions, or under rather restrictive conditions
when the rotation was completely dominated by the
outer cylinder. In all of these experiments, viscosity
could only prevent the onset of an inviscid instability; it
did not cause a new instability to appear.

The long-standing pessimism surrounding the at-
tempted simulation of nonlinear disk instabilities was
based upon the expectation that a very-high-Reynolds-
number Navier-Stokes code would be required. The
mystique attached to high-Reynolds-number nonlinear
instabilities has served to obscure the fact that they are
as easily simulated in three-dimensional codes as the
more familiar (but also large-Reynolds-number) Ray-
leigh instability. In fact, numerical simulations have
been able to recover all known local high-Reynolds-
number instabilities, linear and nonlinear, in both shear
layers and non-Keplerian disks. Despite this, hydrody-
namic Keplerian disks have proven to be extraordinarily
stable, well into any sensible nonlinear regime.

2. Numerical viscosity

Let us briefly discuss some properties of numerical
diffusion error, often loosely referred to as ‘‘numerical
viscosity.’’ In fact, diffusion error is quite different from
a true physical viscosity. Although, like a true viscosity,
its primary effect is to decrease the amplitudes of large-
wave-number Fourier components, it is also highly non-
linear, anisotropic, and poorly modeled by a viscous
stress tensor. The effective diffusion rate from this pro-
cess is roughly proportional to both the wave number
and a power of the grid spacing, which varies with appli-
cation. The numerical grid picks out a preferred frame
of rest, and numerical diffusion is not, in general, Gal-
ilean invariant with respect to this frame. When turbu-
lence is present, the small-wave-number region of the
spectral energy distribution will be largely unaffected by
numerical viscosity, while the high-wave-number region
will be strongly damped. Increasing the resolution ex-
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tends the turbulent damping region to larger wave num-
bers, but leaves the rest of the wave numbers in the
inertial range essentially unaffected (Oran and Boris,
1993).

Since the number of grid zones in a finite-difference
simulation is, in fact, quite finite, one might expect the
resulting effective numerical Reynolds number to be
low. But matters are not so straightforward. The differ-
ence between physical and numerical viscosities is
brought out nicely by comparing a Navier-Stokes code
with an Eulerian (meaning, in this context, ‘‘inviscid’’)
code. Porter et al. (1990) carried out just such a compari-
son between the Navier-Stokes and Euler versions of
their piecewise parabolic method (PPM) code on a se-
ries of test problems. The Eulerian code resolved much
more finely detailed structure and shorter-wavelength
instabilities than was possible with the highest feasible
Reynolds-number Navier-Stokes simulation. This is not
difficult to understand. The explicit presence of viscosity
forces means that the smaller resolvable grid scales are
reserved for dissipative and diffusive flow structure—the
dynamic consequences of viscosity. In an Eulerian code,
these same small scales become part of the nondissipa-
tive turbulent cascade, which is therefore able to resolve
finer-scale structure before it is ultimately lost at the grid
scale itself. For the PPM code, the effective numerical
Reynolds number was found to be roughly proportional
to the cube of the number of grid zones. A good Eule-
rian code can accurately model high-Reynolds-number
flows, even at relatively modest resolution.

When is a numerical simulation sufficiently resolved?
This depends upon the application one has in mind.
Here our interest is in uncovering linear and nonlinear
inviscid instabilities. Any local instability operates over
some range of wavelengths. Were viscous instabilities
our target, the resolved wavelengths would have to be
less than the microscopic viscous scale. Then, the re-
quired number of grid zones would be of the order of
the Reynolds number. But the dynamic instabilities of
interest do not depend on a viscous length scale for their
existence. The following truth should be self-evident: in
a Eulerian code simulation, if there are instabilities
present for well-resolved wavelengths, and the growth
rate of the instability is greater than the numerical dif-
fusion rate at any of the unstable wavelengths, the insta-
bility will be seen. In this case, viscosity (numerical or
physical) serves only as the ultimate dissipative sink for
high-wave-number structure.

3. Hydrodynamical simulation results

The above considerations suggest that a local simula-
tion of Eulerian accretion dynamics should capture any
inviscid, nonlinear instabilities—if they are there to be
captured. For studies of instabilities triggered by local
shear or differential rotation, it is sufficient to work with
the Hill equations. To understand the full stability be-
havior, however, long-term simulations are required.
This is problematic for the local approximation, since
‘‘long-term’’ necessarily implies communication over the
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entire computational domain, and boundary conditions
must become important. To accommodate the need for
long-term evolutions, the numerical simulations use the
‘‘shearing box’’ system.

The shearing box scheme uses a Cartesian grid, with
x ,y ,z corresponding, respectively, to R ,f ,z . Even
though the geometry is simple Cartesian, the local dy-
namics are not. We have already written down the Hill
equations (72); here we discuss their implementation in
a finite-difference code. In the shearing box model, the
computational domain is a rectangular prism with sides
LX , LY , and LZ . It is assumed to be surrounded by
identical prisms, which at t50 form a strictly periodic
box lattice. However, a global continuous linear shear
flow is present across all the boxes. Thus at later times
the central computational box maintains periodic
boundary conditions in the y and z directions, while the
radial x boundary condition is fixed by the location of
the neighboring boxes as they slide past one another due
to the background shear. For example, when a fluid el-
ement moves off the outer x boundary, it reappears at
the inner x boundary at its appropriate sheared position,
and with its y velocity compensated for the uniform
mean shear across the box. Figure 7 illustrates this.

The boundary conditions can be expressed math-
ematically for a flow attribute f as

f~x ,y ,z !5f~x1LX ,y2qVLXt ,z ! ~x boundary!,
(73)

f~x ,y ,z !5f~x ,y1LY ,z !, ~y boundary!. (74)

f~x ,y ,z !5f~x ,y ,z1LZ! ~z boundary!. (75)

There are two exceptions to these rules. First, in convec-
tion simulations, hard wall boundary conditions are used
in the z direction. The other exception is for the azi-
muthal component of the velocity, wf5wy , which must
be adjusted to account for the relative shear between
neighboring boxes. Specifically, the azimuthal velocity
on the radial (x) boundary at time t is

wy~x ,y ,z !5wy~x1LX ,y2qVLXt ,z !1qVLX .
(76)

At times t5nLY /(qVLX), n51,2,3. . . the box becomes
strictly periodic again.

The local model has been used extensively in N-body
simulations (e.g., Toomre, 1981; Wisdom and Tremaine,
1988). Implementation of the shearing periodic bound-
ary conditions is not as straightforward for a finite-
difference scheme as it is for an N-body scheme. The
question is how to finite-difference across a radial
boundary when in general the grid does not smoothly
mesh onto its counterpart in the adjacent sliding ‘‘image
box.’’ Our approach has been to establish ghost zones
just outside the computational domain that remain
aligned with the grid in the computational domain. The
center of each ghost zone corresponds to a point within
the computational domain as given by the shearing box
boundary conditions; in general, this will not coincide
with a computational grid point. Because the ghost zone
is fixed to the computational grid, whereas the ‘‘image
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box’’ is shearing with respect to this grid, the center of
the ghost zone will be identified with different locations
in the computational domain as time goes by. The image
of the ghost zone region will generally straddle two
physical zones. Hence, to obtain a quantity f in a ghost
zone, it is necessary to interpolate (or remap) f between
these two physical zones. Although this is an additional
source of truncation error at the boundaries, the size of
this error should not be significantly larger in the ghost
zones than in the physical zones. It should be noted,
however, that discontinuities in the truncation error can
produce unavoidable numerical artifacts at the bound-
aries. A description of the specific numerical implemen-
tation for the disk problem is given in Hawley, Gammie,
and Balbus (1995).

We consider first the results of a fiducial run from the
convection study of Stone and Balbus (1996), shown in
Figs. 8(a) and 8(b). Figure 8(a) displays the hydrody-
namic profile of the initial state of the convectively un-
stable box. Figure 8(b) shows the evolution of the verti-
cal component of the kinetic energy ^rwz

2/2& and the
normalized stress tensor in the form of the disk a pa-
rameter. Although large excursions occur in a, its mean

FIG. 7. Shearing box boundary conditions: (a) The computa-
tional domain is surrounded by identical domains moving with
a fixed relative shear velocity; (b) Implementation of shearing
box boundary conditions. The computational domain is sur-
rounded by ghost zones corresponding to neighboring do-
mains. Numerical values in these zones are obtained through
interpolation of data from the corresponding matching zones.
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value is very small and unambiguously negative
(a.24.231025). A result of similar magnitude (and
sign) was found when a local simulation of a uniformly
rotating disk was carried out. The absence of shear flow
permitted significantly larger azimuthal pressure gradi-
ents to be maintained, but even under these circum-

FIG. 8. Simulation of a convectively unstable disk: (a) Profiles
of density, temperature, pressure, and Brunt-Väisäla (NB) fre-
quency in the initial state of a convectively unstable simula-
tion. The model is convectively unstable wherever NB

2 /V2,0.
From Stone and Balbus, 1996. (b) Evolution of the vertical
component of the kinetic energy (top) and the angular mo-
mentum transport parameter a (bottom) in a hydrodynamic
disk simulation with external heating applied at the equator.
Although considerable vertical convection occurs, the time-
averaged a value is negative. From Stone and Balbus, 1996.
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stances, angular momentum flowed inward in the simu-
lations.

If, instead of a source of external heat, the waste heat
from the dissipation of the fluctuations (‘‘viscous heat-
ing’’) were to drive convection, the ultimate energy
source would be Keplerian shear. This is, in fact, the
standard picture for how convective instability might
arise in nature (Lin and Papaloizou, 1980). Then, at least
as a point of principle, the sign of a would have to be
positive. There are, however, significant potential ther-
modynamic difficulties with convective dissipation’s cre-
ating the thermal gradients that drive convective insta-
bility. Furthermore, the azimuthal angular momentum
equation (59) still must be confronted. If transport is to
be outward, it creates a sink for angular momentum
fluctuations, which must be overcome by azimuthal pres-
sure gradients. The more effective the transport, the
greater the magnitude of the sink. At the very least,
convective transport as a generic and effective transport
mechanism certainly faces major, and as yet quite unad-
dressed, difficulties.

For studies of the hydrodynamic stability of differen-
tial rotation and shear, we adopt a simple adiabatic
equation of state, P;r5/3. It is of course possible to
implement other equations of state. As an additional
simplification, we may neglect the vertical component of
the gravitational field, since it adds nothing to the phys-
ics of this problem. (When vertical stratification is of
interest, this component of gravity may be added easily.)
In the absence of a magnetic field, an exact steady-state
solution of the hydrodynamic equations in the shearing
box is given by a constant background pressure and den-
sity and uniform shear. Assuming that V(R) } R2q, the
local shear velocity is 2qVx êy. We work in length units
LX5LY5LZ51. The initial pressure Po and the con-
stant mass density ro are chosen so that

Po /ro5~LXV!25V251026.

Onto this initial equilibrium we place a spectrum of ran-
dom velocity and adiabatic pressure fluctuations.

We have carried out a simulation of the Rayleigh in-
stability on grids as crude as 313 zones. Growth rates
were found to be in agreement with linear theory, and
nonlinear turbulence developed (Balbus et al., 1996).
Recall from our earlier discussion that to find such a
behavior response already requires an effective Rey-
nolds number in excess of 103. Such experiments suggest
that if there are local nonlinear hydrodynamic instabili-
ties to be found in Rayleigh-stable flows, three-
dimensional simulations should uncover them at acces-
sible resolutions.

The interesting stability issues can be examined by a
series of simulations using several Rayleigh-stable back-
ground angular velocity distributions, parametrized by
q . These linearly stable flows are perturbed at large
(.10%) levels over all available wavelengths. The re-
sults are summarized in Fig. 9, which shows the time
evolution of the kinetic energy in the velocity perturba-
tions. The q52.1 curve is Rayleigh unstable. The con-
trast between this curve and the Keplerian q51.5 curve
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is striking. The finding that Rayleigh-stable disks show
no evidence of turbulence cannot be due to the effects
of numerical diffusion.

This conclusion is strengthed by the curve labeled
‘‘Shear,’’ which corresponds to a Cartesian shear flow
without Coriolis or tidal forces. This flow is known to be
unstable to finite-amplitude perturbations, and the claim
that disks should be nonlinearly hydrodynamically un-
stable is often made on this basis. The simulation again
demonstrates that, whatever the code’s effective Rey-
nolds number is, it is large enough to find a nonlinear
instability when present. Conversely, the complete ab-
sence of any hint of instability in the Keplerian case
points to physical, not numerical, causes.

The q52 curve is a linearly stable, constant-angular-
momentum disk. This case is particularly interesting be-
cause its linear stability is marginal; the epicyclic fre-
quency vanishes. From the discussion in Sec. III.C.3, we
see that the absence of the epicyclic term in Eq. (59)
means that this flow should share the stablility proper-
ties of a shear layer, which also has no dynamic sink.
This prediction is confirmed by the simulation. The
constant-angular-momentum flow is nonlinearly un-
stable, with a growth rate indistinguishable from the
shear flow.

This effect is further demonstrated by the q51.95
curve. Although the flow has only a very small angular
momentum gradient, and hence a small epicyclic fre-
quency, this is enough to stabilize the system com-
pletely. The velocity perturbations decline with time, al-
beit less rapidly than in the Keplerian case. The
difference in the nonlinear stability properties of the
q52 and q51.95 runs is a clear demonstration that the
stabilization is dynamic in origin.

In fact, the entire ensemble of simulations testifies to

FIG. 9. Evolution of kinetic-energy fluctuations for different
rotation profiles. The labels refer to the background angular
velocity distribution, as given by V(R);R2q. The curve la-
beled ‘‘Shear’’ has the same shear as the Keplerian q51.5
case, but without the dynamics of differential rotation (Corio-
lis force and tidal potential). The q52 curve corresponds to
constant specific angular momentum, q52.1 to a Rayleigh-
unstable profile.
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the stabilizing power of the 2^ruRuf&k2/2V term. As q
approaches 2, k2 vanishes, and with it the rate of decline
of the kinetic energy of the fluctuations. However, one
need not rely on the appearance of the curves in Fig. 9
to see that this behavior is physical, not numerical, in
origin. The precise volume-averaged terms of Eqs. (58)
and (59)—or their shear counterparts (63) and (64)—
can be computed from the simulations of the Hill sys-
tem. There is no explicit viscosity term in the imple-
mented equations; that role is assumed by numerical
diffusion. In a numerically stable scheme, this will only
be a sink for the fluctuation energy. While not directly
calculable, it will appear as a residual in the fluctuation
energy equation, which in local Cartesian coordinates
reads

]

]t K ruY
2

2 L 1
k2

2V
^ruXuY&1 K uY

]P

]y L 5Residual.

(77)

The contribution to the rate of change of the fluctuation
energies due to the epicyclic and pressure gradient terms
can be measured directly, and from that the total nu-
merical dissipation may be inferred. (These are the grid
scale losses caused by the presence of a turbulent cas-
cade.) In the Keplerian simulation (Fig. 10), the ampli-
tude of each dynamic term is comparable. At the start of
the simulation the Reynolds stress term is positive, but
the turbulence is dying out. The numerical dissipation
residual begins with a comparable negative value, but
this term too decays to zero. The pressure term has a
comparable amplitude, but oscillates around zero and
makes no net time-integrated contribution. At late times
only these (mostly) dissipationless pressure waves are
present. Tracked by the time derivative term, the pres-
sure term oscillates about zero.

FIG. 10. Evolution of the separate averages of Eq. (77) and
their residual sum, for a hydrodynamic simulation of Keplerian
differential rotation. The pure divergence term vanishes when
averaged over the computational domain. The initial perturba-
tions introduce low-level turbulence that briefly has a positive
Reynolds stress, but the disturbances are rapidly damped.
From Balbus et al., 1996.
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By way of contrast, the nonlinearly unstable shear
flow (Fig. 11) has a rising Reynolds stress, matched by
an increasing numerical dissipation term. The interpre-
tation of this is straightforward: the shear flow has de-
veloped turbulence, which is extracting energy from the
background shear velocity gradient. The energy thereby
obtained cascades down to high wave numbers, where it
is lost to numerical dissipation.

As additional checks, the resolution of the hydrody-
namic simulations was both doubled and halved, and
larger initial perturbations were applied. None of these
variations altered the qualitative results. Nonlinear per-
turbations grew for the pure shear case and died out in
the Keplerian disk case. Despite the fact that high-
Reynolds-number instabilities—both linear and
nonlinear—were found with relative ease, not a shred of
evidence was ever found for nonlinear hydrodynamic in-
stabilities in Keplerian flows.

If turbulence and enhanced transport do not emerge
spontaneously from a Keplerian disk, might the latter
result from externally driving the former? Our reasoning
suggests not, since a positive value for ^ruXuY& is not
required to maintain the u fluctuations. Unless the tur-
bulent driving is itself biased, neither outward or inward
transport should arise. This is precisely what numerical
experiments reveal. In Fig. 12, we show the results of a
local Keplerian shearing box subject to an unbiased,
noncompressive driving force. (A precise description of
the external forcing can be found in the Appendix of
Hawley, Gammie, and Balbus, 1996). Note the rapid rise
in the turbulent kinetic energy, while the Reynolds
stress hovers about zero mean. Thus the presence of tur-
bulence in an accretion disk need not lead to an en-
hanced turbulent viscosity. We shall encounter the same
phenomenon in Sec. III.E.3, where the consequences of

FIG. 11. Evolution of the separate averages of Eq. (77) and
their residual sum, for a hydrodynamic simulation of a simple
shear layer. The initial perturbations introduce low-level tur-
bulence that is rapidly amplified by hydrodynamic instability,
resulting in a growing positive Reynolds stress. (Compare the
ordinate scale with that of Fig. 10.) The steadily growing re-
sidual loss term represents dissipation and is the hallmark of
turbulence. From Balbus et al., 1996.
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tidally induced parametric instability are discussed.
Figure 13 summarizes our results in the AX-AY plane

[see Eqs. (65) and (66)].

E. Global hydrodynamic disturbances

The analytic properties of the fluctuation equations,
together with numerical simulations, make a very strong

FIG. 12. Kinetic energy and Reynolds stress (in units normal-
ized to the initial gas pressure) for an unstratified, adiabatic,
Keplerian shearing box subject to external forcing. Gas is ini-
tially isothermal. Although the kinetic energy grows rapidly,
the average Reynolds stress vanishes. The presence of turbu-
lence does not necessarily lead to enhanced angular momen-
tum transport in unmagnetized Keplerian disks.

FIG. 13. Summary of hydrodynamic stability in the AX-AY

plane. The AX and AY axes correspond, respectively, to shear
flow and constant specific-angular-momentum disk flow. Only
points along the axes themselves were found to be nonlinearly
unstable. (Numerical resolution uncertainty is represented by
stippling near the axes.) Keplerian flow was found to be stable,
well into any sensible nonlinear regime.
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case that local hydrodynamic shear turbulence is not the
answer to the question of enhanced disk transport. But
this does not mean that angular momentum transport in
hydrodynamic disks is impossible. There are other pos-
sibilities. We present two, and contrast them with a third
mechanism which, though a source of turbulence, is not
a source of internal transport.

1. The Papaloizou-Pringle instability

Even if they cannot be generated directly by turbu-
lence, angular momentum fluctuations can be excited by
azimuthal pressure gradients. This is, in fact, the only
way that outward transport occurs in a hydrodynamic
disk, since all other ‘‘source’’ terms in Eq. (59) are nega-
tive sinks. We have emphasized the need for there to be
a good correlation on large scales between azimuthal
pressure gradients and velocities (or, equivalently, be-
tween pressure and velocity gradients) if angular mo-
mentum fluctuations are maintained, and that this is
generally accomplished by the formation of trailing spi-
ral waves. The density wave theory of spiral structure
(Lin and Shu, 1964; Toomre, 1981) is a classic manifes-
tation of this process in self-gravitating disks. Normally
the venue for this is disk galaxies, but related global
self-gravitating instabilities have been proposed as a
source of outward transport in protostellar disks (Ad-
ams, Ruden, and Shu, 1989; Shu et al., 1990). We shall,
however, continue to focus on disks in which self-gravity
is unimportant. The interested reader will be well served
by the review of Papaloizou and Lin (1995), in which an
informative summary may be found.

One of the most striking and unexpected results in
accretion theory was the discovery (Papaloizou and
Pringle, 1984), and subsequent elucidation (Goldreich
et al., 1986) of a global nonaxisymmetric instability af-
flicting an important class of disks. These are accretion
tori: bagel-shaped disks with high internal temperatures
and well-defined boundaries. If the internal temperature
is sufficiently high, pressure gradients can become im-
portant enough to rival centrifugal force as the primary
source of hydrostatic support for the disk. Under these
circumstances, significant departures from a Keplerian
rotation curve are inevitable. The extreme Rayleigh-
stable limit is V;R22, constant specific angular mo-
mentum. This requires large pressure gradients for its
support, and significant vertical thickening results.

In such a thick accretion torus, the central region is
essentially a narrow evacuated vortex along the rotation
axis. For a time, these disks were the subject of great
astrophysical interest, because it was thought that the
empty funnel might collimate outflows. This would ex-
plain why well-collimated jets of gas are a ubiquitous
feature of the central regions of active galactic nuclei.
But the work of Papaloizou and Pringle sharply chal-
lenged the viability of such tori: they are dynamically
unstable.

The mechanism of the instability is subtle (Goldreich
et al., 1986). Ordinarily, when a wave moves through a
medium, the mechanical energy is increased by the
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wave’s passage. But if the medium itself is in motion, it
is possible for the wave passage to decrease the me-
chanical energy. Such disturbances are referred to as
negative-energy waves, in contrast to the more familiar
positive-energy waves. When a large-scale spiral mode is
set up in a disk, the resulting spiral pattern has a fixed
angular velocity Vp , the pattern speed. In some cases,
there will be a point in the disk interior, the so-called
corotation radius Rc , at which V(R)5Vp . For R.Rc ,
V(R),Vp , for R,Rc , V(R).Vp . The significance of
this is that outside of Rc the wave properties are similar
to a passage through a static medium, i.e., the waves are
positive energy. Inside Rc , on the other hand, large
V(R) leads to a region of negative-energy waves. The
corotation point Rc is the only location at which energy
exchange between the waves and the background disk
medium occurs. Conditions for instability are set up
when negative-energy waves lose energy at the corota-
tion radius, energy which is quickly picked up by the
positive-energy waves outside of corotation. Losing en-
ergy increases the amplitude of a negative-energy wave
(it becomes more negative in energy), while gaining en-
ergy naturally increases the amplitude of a positive-
energy wave. To keep the instability going, the negative-
energy waves cannot be absorbed at the inner boundary,
they must be reflected. When they return to Rc , the
process continues, with the positive-energy waves carry-
ing the energy off. Note the critical role played by the
reflecting boundary condition; without it the instability
loses its feedback mechanism and ceases to be. Given
the right conditions, however, the waves can build to a
large amplitude and exert considerable torque. The
growth rate of the instability is maximal for a constant-
angular-momentum torus, decreasing rapidly as one ap-
proaches a Keplerian disk (Goldreich et al., 1986).

The nonlinear evolution of the Papaloizou-Pringle in-
stability has been studied via two-dimensional simula-
tions of radially extended thick accretion disks (Blaes
and Hawley, 1988) and three-dimensional simulations of
tori orbiting around black holes (Hawley, 1991). These
simulations show that in radially wide, nearly-constant-
angular-momentum tori, the instability saturates in a
strong spiral pressure wave, not in turbulence (Fig. 14).
Moreover, the simulations also confirmed the analysis of
Blaes (1987), who suggested that accretion flows
through the torus could reduce and even halt the growth
of the global instability. Gat and Livio (1992) argued
that the onset of accretion would mean the loss of an
inner reflecting boundary, and that this was the reason
for the sudden drop in activity. More recently, Dwarka-
das and Balbus (1996) suggested that even a small
amount of radial flow through the corotation radius
would disrupt the energy exchange process. Whatever
the precise explanation of the abrupt flow stabilization,
numerical simulations have taught us that the
Papaloizou-Pringle instability is important primarily for
nonaccreting constant-angular-momentum tori, and that
Keplerian disks are relatively immune to this form of
disruption.
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2. Spiral shocks

A hydrodynamic disk need not rely on internal insta-
bilities to form spiral structure. In binaries, for example,
external forcing from the tidal gravitational field of the
companion star can be important (Sawada, 1986; Spruit,
1987; Larson, 1989). The leading-order quadrupole forc-
ing results in the formation of pronounced, two-armed
global spiral structure. The peaks of compression in the
arms are strong enough to form shock fronts, a feature
familiar to astronomers from classical studies of spiral
structure in disk galaxies (Roberts, 1969; Shu, Milione,
and Roberts, 1973). Tidally induced spiral shocks have
been successfully produced in two-dimensional (R ,f)
hydrodynamic studies by a number of different research-
ers. These shocks may be significant for understanding
disk structure and variability, but their efficiency as an
angular transport mechanism appears to be rather low,
with a;1023 or less (e.g., Różyczka and Spruit, 1993).

Whether or not shocks contribute noticeably to the a
parameter, some degree of spirality is unavoidable in
binary systems. For its existence, spiral structure relies
on little else but tidal and perhaps mechanical forcing,
the latter if an accretion stream impacts upon the disk.
Even if (as seems likely) underlying MHD turbulence
dominates the transport within the disk, the large-scale
properties of compressive shocks are not sensitive to the
presence of turbulence or subthermal magnetic fields.
(The sound speed and Alfvén velocity couple to the
wave number in the same way in a magnetosonic re-
sponse, discussed in Sec. IV.A.) This stands in sharp
contrast to noncompressive disturbances, which are ex-
tremely sensitive to the presence of weak magnetic

FIG. 14. Contour plot showing density in the equatorial plane
from a three-dimensional simulation of a thick, constant-
angular-momentum accretion torus. The spiral wave repre-
sents the nonlinear saturation of an unstable Papaloizou-
Pringle mode. From Hawley, 1991.
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fields—sometimes explosively so.
There are, however, conceptual subtleties associated

with spiral shocks, and the models have been criticized
in the literature (Lin, Papaloizou, and Savonije, 1990;
Lin, 1989). One perceived difficulty is that tidally in-
duced disturbances, which are most pronounced at the
outer edge of the disk, must propagate inwards over
long radial distances to establish the global two-armed
spiral pattern. But, it is argued, these compressive ‘‘den-
sity waves’’ (rotationally modified sound waves) will be
strongly refracted by the as yet unsimulated vertical
pressure gradients and will be diverted sharply upwards
before the inner disk regions are affected. It has also
been noted that the strength of the spiral structure in the
inner regions is sensitive to the disk temperature
(Savonije, Papaloizou, and Lin, 1994): in simulations
hotter disks show much stronger spiral arms. This is ex-
plained by the larger sound speed, which in turn allows
for a more rapid propagation rate. Steepening and dissi-
pation of the wave thus occurs farther inward, nearer
the center in a hot disk than in a cool disk.

These arguments are of concern for the propagation
of driven short-wavelength WKB density waves (it is
less of a concern for wavelengths in excess of a vertical
scale height), and two-dimensional simulations clearly
show disturbances starting from the outer disk edge and
moving inwards. On the other hand, these consider-
ations should not obscure the fact that the tidal poten-
tial, viewed in a frame corotating with the binary, is
static. If the size of the disk is small compared with the
binary separation, i.e., if the disk is sensibly Keplerian, it
is not difficult to show that the response of the disk will
be a well-behaved distortion of its streamlines going
gently to zero ;R5/2 as the disk center is approached.
However, tidal simulations generally start with a Keple-
rian disk well out of equilibrium with the external po-
tential. The discrepancy is strongest in the outer regions
of the disk, and the ensuing spiral waves generated are
clearly part of a transient response. It is far from clear
that wave propagation would be a key difficulty in a
simulation in which the tides were ‘‘turned on’’ adiabati-
cally.

If the companion star is not far from the outer edge of
the disk, then it is possible that resonant wave excitation
can occur. An orbiting gas element senses the two-
armed tidal field as a periodic disturbance with angular
frequency 2(Vorb2V). (Here, Vorb is the binary orbital
frequency and V is the local Keplerian orbital fre-
quency.) If the magnitude of this frequency (either posi-
tive or negative quantities are allowed) happens to equal
the local epicyclic response frequency k (which is just V
for a Keplerian disk), then what is known as a Lindblad
resonance occurs. The excitation ‘‘cross section’’ is
greatly enhanced at a Lindblad resonance, and a de-
tailed analysis (Goldreich and Tremaine, 1979) shows
that the coupling between the tidal forcing and the disk
is dominated by the resonance. Finite-amplitude waves
propagate only inward from this resonance, but angular
momentum is transported outward, removed at the reso-
nance by the tidal torque. This represents a viable
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means of enhancing the transport by nonturbulent,
purely hydrodynamic means. But clearly its generality is
limited and, as noted above, it is likely to be much less
efficient than fully developed turbulence.

Of course, close binary systems, particularly dwarf no-
vae, often have a mass transfer stream striking the disk,
and such a direct impact may be an important nonsteady
source of wave excitation. [The case for inertial wave
excitation has been made by Vishniac and Diamond
(1989).] Różyczka and Spruit (1993) have simulated
such disks with sound speeds of the order of a few per-
cent of the rotation speed. After an initial transient
phase, they found that the disk settled into a quasiequi-
librium with a values of order 1023. Although this is an
order of magnitude less than a values typically found in
MHD turbulence with self-contained magnetic fields
(Hawley et al., 1995), it is large enough to be astrophysi-
cally interesting.

Doppler tomography techniques (Marsh and Horne,
1988) should be well-suited to observing spiral structure
in accretion disks (Livio, 1994). That such structures are
not generally seen is an embarrassment to these models.
It may be that only in the outer regions of the largest
disks, those whose size approaches the tidal radius, is
spirality prominent enough to be marginally detectable.
Dwarf novae in outburst may be the most likely objects
to develop spiral structure. But even here the role of
spiral structure would be secondary, a consequence of
whatever leads to eruptive behavior, not the cause
thereof.

3. A tidally induced parametric instability: turbulence without
internal transport

If the orbits are mildly eccentric, rather than perfectly
circular, it is possible to excite a sort of parametric in-
stability in the disk. Originally discovered as an unstable
mode of elliptical fluid vortices (Pierrehumbert, 1986;
Bayly, 1986), its role in accretion disk physics was first
explored by Goodman (1993). In the latter context, el-
liptical orbits are tidally induced—but gently, or we are
back to spiral shock waves. In brief, the Pierrehumbert-
Bayly (hereafter PB) instability is present because of a
coupling between the noncircular orbital excursions,
which are pressure-modified epicycles, and inertial
waves, which are also, in essence, pressure-modified epi-
cycles. (Perhaps the coupling is not too surprising.)
When the frequency (or a simple harmonic thereof) of
the orbital epicycle is close to the inertial wave fre-
quency, orbital energy may be transferred to wave en-
ergy. The growth rate is of order eV, where e is the
eccentricity of the elliptical orbit. Note that, unlike clas-
sical shear instabilities, the free-energy source of the PB
instability is not differential rotation: the instability is
triggered even in a disk with uniform rotation underly-
ing the ellipses. The ultimate source is the time-
dependent gravitational tide, which drives the orbital
distortions.4

Since the velocity fluctuations of the PB instability do
not draw upon dV/dR , there is no reason to expect the
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Reynolds stress ^ruRuf& associated with the nonlinear
saturation to be positive. Even in the linear stages,
Goodman (1993) showed that standing, not traveling,
waves are excited. Standing waves do not transport en-
ergy or angular momentum. Two-dimensional numerical
simulations by Ryu and Goodman (1994) confirmed the
linear analytic analysis of Goodman (1993), but also
showed no significant angular momentum transport
within the disk, even when the disk became turbulent.
The authors left open the possibility that three-
dimensional calculations might produce angular momen-
tum transport within the disk. But the dimensionality of
the turbulence does not alter the problem that there is
no sense of directionality associated with the disk’s in-
ternal Reynolds stress for this instability. While angular
momentum may be transported from the disk to the
tidal source by the action of the instability (Lubow, Prin-
gle, and Kerswell, 1993; Ryu and Goodman, 1994), in-
ternal transport at dynamically important levels seems
unlikely. Finally, if the disk is magnetized, the magne-
torotational instability will certainly dominate the linear
phase of growth. Given both the sensitivity of inertial
waves to the presence of weak magnetic fields and the
strength of MHD turbulence, prospects for the PB insta-
bility as the a source in binary accretion disks do not
seem propitious.

F. Hydromagnetic fluctuations

The difficulties of extracting the rotational free energy
of a disk to power turbulence are at once overcome
when magnetic fields are included. The analogs to Eqs.
(53)–(54) are
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8p D1S B
4p

·“ DBR

1hV¹2uR (78)
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where D/Dt is given in Eq. (56).
In the presence of a magnetic field, the route to the

analogs of Eqs. (58)–(59) is more lengthy, but the pro-
cedure follows the same course as the derivation of the
mechanical energy equation. We need the expanded
form of the induction equations

DBR

Dt
52BR“ ·u1~B·“ !uR1hB¹2BR , (81)

4Goodman (1993) argues that it is the orbital distortion itself,
rather than the gravitational tide, that should be regarded as
the seat of the free energy.
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DBZ

Dt
52BZ“ ·u1~B·“ !uZ1hB¹2BZ , (82)

DBf

Dt
2BR

dV

dR
52Bf“ ·u1~B·“ !uf1hB¹2BZ .

(83)
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We have used the local approximation in Eq. (83) to
drop the term uRBf /R , and retained only what will
prove to be the largest contribution to the resistive
terms. Carrying out rather lengthy algebraic manipula-
tions, it is possible to combine the six equations (78)–
(83) into three energylike equations,
1
2

]

]t
^r~uR

2 1uAR
2 !&1“ ·^ &52V^ruRuf&2 K uR
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2
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Once again, the flux divergences have been written
“ ·^ &, and in the equation for the ith component, the
flux takes the form

1
2

r~ui
21uAi

2 !u2ruAiuiuA (87)

(no summation over repeated i). Ptot denotes the sum of
the gas plus magnetic pressure,

Ptot5P1
B2

8p
,

and TRf is a density-explicit form of the stress tensor,

TRf5^r~uRuf2uARuAf!&, (88)

closely related to WRf .
Summation over all three of the above equations, to-

gether with some regrouping and integration by parts,
leads to a mechanical energy equation for the fluctua-
tions:

1
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d ln R
1^P“ ·u&

2(
i
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where now only the gas pressure P appears in the equa-
tion. The divergence term “ ·^ & has the flux

S 1
2

ru21rF1P Du1
B

4p
3~u3B!. (90)

Notice how the couplings have changed. The radial en-
ergy equation (84) is very similar to its hydrodynamic
counterpart (58), except for the unimportant appearance
of B2/8p in the pressure term. But the form of the azi-
muthal equation (86), which was critical to the nonlinear
stabilization of a hydrodynamic disk, has been funda-
mentally altered. The full stress tensor now couples not
to the angular momentum gradient, but to the angular
velocity gradient. There is still a stabilizing couple be-
tween ruRuf and the Coriolis force, but it does not in-
volve the full stress tensor. If the angular velocity couple
dominates over the Coriolis couple, and we shall pres-
ently see that with its magnetic contribution it does, then
the entire complexion of the problem has changed.
When dV2/dR,0, then outward transport ^ruRuf& can
set up precisely the same sort of feedback loop that trig-
gers the Rayleigh instability: a positive correlation in the
off-diagonal components of the stress tensor maintains
hydromagnetic fluctuations and is self-sustaining. The
dominant turbulent couple in the all-important azi-
muthal equation is now ‘‘mixing’’ angular velocity, not
angular momentum, and this is the local path to lower
energy (cf. Sec. III.C). The resulting instability and dis-
sipative turbulence comes at the expense of the orbital
energy, as can be seen in Eq. (89). The ensuing inevi-
table inspiral of fluid elements is what allows accretion
disks to live up to their name.

IV. THE LINEAR STABILITY OF MAGNETIZED
ACCRETION DISKS

Having gained some understanding of some of the
nonlinear physics of MHD disk turbulence, we are in a
better position to appreciate what the linear physics of
the instability is trying to do. In particular, we know the
most important question to ask: given the difficulties of
extracting energy from differential rotation in hydrody-
namic disks, precisely how is this overcome by linear
magnetized disturbances?

A. A review of MHD waves

Consider a disk medium threaded by a weak magnetic
field with an azimuthal component Bf and a vertical
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component BZ . The presence of a radial component
would cause a linear time dependence in Bf . In the end,
this makes little difference to a weak-field axisymmetric
instability (which carries on independently of Bf), but it
is simplest to consider the case of vanishing radial field
first. The gas is perturbed by local WKB linear distur-
bances of the form exp i(k·r2vt), kr@1. Our notation
is standard: k is the wave vector, r the position vector, v
the angular frequency, and t the time. We denote all
linear amplitudes by d: dP , dr, etc. We restrict our at-
tention for the present to vertical wave numbers,
k5keZ. The leading-order local linear equations are

2v
dr

r
1kduZ50, (91)

2ivduR22Vduf2i
kBZ

4pr
dBR50, (92)

2ivduf1
k2

2V
duR2i

kBZ

4pr
dBf50, (93)

2v duZ1kS dP

r
1

BfdBf

4pr D50, (94)

2vdBR5kBZduR , (95)

2ivdBf5dBR

dV

d ln R
1ikBZduf2BfikduZ , (96)

dBZ50, (97)

dP

P
5

5
3

dr

r
. (98)

The resulting dispersion formula is
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where the adiabatic sound speed and Alfvén speed are,
respectively,

a25
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2 1Bf
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.

This rather unwieldy equation is best approached
piecemeal. Consider first the nonrotating limit:

@v22~k·uA!2#@v42k2v2~a21uA
2 !1~k·uA!2k2a2#

50. (100)

This equation is, in fact, the most general dispersion for-
mula for a magnetic field in a uniform homogeneous
medium. No generality is lost by taking the z axis to lie
along k. Taking u to be the angle between B and k, one
root is obviously

vA
2 5k2uA

2 cos2 u , (101)
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corresponding to Alfvén waves (Jackson, 1975). These
are compressionless disturbances which propagate along
the magnetic field, with an effective wave number of
k cos u. They have been likened to waves on a string,
with ‘‘magnetic tension’’ providing the restoring force.
The remaining roots of the quartic (quadratic in v2) cor-
respond to the fast and slow modes; one root propagates
with a phase velocity more rapid than the Alfvén wave,
the other less so. The physics of these modes is high-
lighted most clearly when at least one of three condi-
tions holds: (1) a!uA ; (2) uA!a ; (3) cos u!1. If any of
these are true, then to leading order the fast mode is

v1
2 5k2~uA

2 1a2! (102)

and the slow mode is

v2
2 5

k2uA
2 a2cos2 u

uA
2 1a2 . (103)

Clearly, v1.vA.v2 . The v1 mode represents mag-
netic and thermal pressure acting in concert. It is some-
times referred to as a magnetosonic wave. The v2 mode
represents magnetic tension and gas compression in op-
position. When the magnetic field is strong, the result is
an ordinary sound wave channeled along the field lines;
when the field is weak the slow mode becomes degener-
ate with the Alfvén mode. This suggests that in the
weak-field limit, the slow and Alfvén modes are more
closely linked to each other than to the fast mode. In-
deed, the Boussinesq approximation may be thought of
as the limit a→` , which leaves the slow and Alfvén
modes completely degenerate.

The effects of Keplerian rotation on the three MHD
modes are shown in Fig. 15. We have fixed the values of
k·uA51, kuAf52, and ka55, i.e., all frequencies are
reckoned in k·uA units. The behavior of v2 as a function
of V2 is then examined. The fast, Alfvén, and slow
modes all start at V50 as well-behaved propagating
modes, as shown in the figure. But something remark-
able happens when V2 reaches 1/3: v2

2 turns negative.
The slow mode becomes unstable.

This is the heart of accretion disk turbulence.

B. Weak-field shearing instability: a simple treatment

It is desirable to have a less formal, more physical
description of this far-reaching instability. We begin by
noting that the fast mode is irrelevant here for the same
reason that the ensuing turbulence is nearly incompress-
ible. By using the Boussinesq approximation at the very
start, we may eliminate magnetosonic modes from the
analysis. This greatly simplifies matters.

The simplest fluid system displaying the instability is
an axisymmetric gas disk in the presence of a weak ver-
tical magnetic field. The field has no effect on the disk
equilibrium, which is a balance of gravitational and ro-
tational forces. If a fluid element is displaced from its
circular orbit by an amount j, with spatial dependence
eikz, it is not difficult to show that the induction (‘‘field-
freezing’’) equation leads to
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dB5ikBj, dBZ5jZ50. (104)

The magnetic tension force is then

ikB

4pr
dB52~k·uA!2j. (105)

Since these incompressible planar displacements are
pressure free, the equations of motion take on a very
simple form,

j̈R22Vj̇f52S dV2

d ln R
1~k·uA!2D jR , (106)

j̈f12Vj̇R52~k·uA!2jf . (107)

As before, the 2V and dV2/d ln R terms represent Co-
riolis and tidal forces, respectively. These equations,
which are the proper leading-order WKB equations for
local fluid displacements in a magnetized disk, also hap-
pen to be the equations describing two orbiting mass
points connected by a spring with spring constant
(k·uA)2. Understanding the fate of slow-mode distur-
bances in weakly magnetized, differentially rotating sys-
tems amounts to nothing more than thinking about or-
biting mass points connected by a spring (Balbus and
Hawley, 1992a).

Consider the situation in Fig. 16. Two mass points,
initially at the same orbital location, are displaced to two
new orbits close by. Mass point mi is orbiting at inner
radius Ri , while mass point mo orbits at outer radius
Ro . They are connected by a massless spring. Assume,
as would be the case for a Keplerian disk, that mi orbits
more rapidly than mo . The string stretches and builds

FIG. 15. Plot of v2 vs V2 for a Keplerian disk. All frequencies
are reckoned in units of k·uA51. Numerical values correspond
to the case kuA f52, ka55. The expanded scale at the left
shows the Alfvén and slow-wave branches. For V250, their
degeneracy is broken only by finite compressibility effects.
Note that the onset of instability (v250) corresponds to
(k·uA)252dV2/d ln R.
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up tension T . T pulls backwards on mi and forwards on
mo . Thus mi continuously loses angular momentum,
while mo continuously gains the same. This means that
mi cannot remain in orbit Ri and must drop down to a
yet lower orbit. Similarly, mo acquires too much angular
momentum to stay in orbit Ro and must move outwards.
The separation widens, the spring stretches yet more, T
goes up, and the process runs away. This is the essence
of the weak-field instability in differentially rotating sys-
tems. Introducing other magnetic-field components does
not change our argument, since by selecting k5keZ we
have ensured that only the vertical component will
couple dynamically. For the same reason, it matters little
that, if BR is present, Bf is increasing with time. Ulti-
mately, we shall see that the instability is present for any
field geometry regular enough to allow large-wave-
number disturbances.

It is of course crucial that the spring be weak. If the
spring constant is strong enough that there are many
vibrations in an orbital time, the stretching scenario we
have outlined will not work. A glance at the right side of
the radial equation (106) suggests the stability require-
ment

~k·uA!2.2
dV2

d ln R
(108)

as a condition for the effective spring constant, a result
we confirm below [Eq. (111)]. [If we fix k·uA and vary
the magnitude of a Keplerian V(R), this agrees pre-
cisely with our earlier formal calculation.] But if one is
free to choose small enough k , there will always be in-
stability unless

FIG. 16. Two masses in orbit connected by a weak spring. The
spring exerts tension force T resulting in a transfer of angular
momentum from the inner mass mi to the outer mass mo . If
the spring is weak, the transfer results in an instability as mi

loses angular momentum, drops through more rapidly rotating
inner orbits, and moves further ahead. The outer mass mo

gains angular momentum, moves through slower outer orbits,
and drops further behind. The spring tension increases and the
process runs away.
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dV2

d ln R
.0. (109)

In astrophysical disks, this is almost never true, except
possibly for isolated anomalous regions.

Just how large a wavelength is permitted? What re-
striction would such a maximum scale place on the field
strength? In this example, we have chosen to focus on
coupling to a vertical field. Thus at least one wavelength
needs to fit within a disk thickness of twice the scale
height 2H . The stability requirement is then
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6
p2 cs

2, (110)

assuming a Keplerian profile, and an isothermal Gauss-
ian for the vertical scale height. In other words, the Al-
fvén speed must significantly exceed the sound speed, if
all allowed wavelengths in a disk thickness are to be
stable. ‘‘Weak field’’ means subthermal. If the magnetic
field had no vertical component, in principle much
longer wavelengths would be allowed and instability
might be present for much larger field strengths (Papal-
oizou and Szuszkiewicz, 1992). But once the magnetic-
field energy density is comparable to the thermal energy
density, the dynamics qualitatively changes, including
the nature of the disk equilibrium state. What is inter-
esting is the opposite limit: in the regime in which dissi-
pational length scales are much smaller than the smallest
dynamical scales of interest (‘‘ideal MHD’’), the mag-
netic field is never too small to be dynamically ignored.

This last point runs deep and calls into question an
entire school of MHD analysis, the so-called kinematic
limit. In this asymptotic domain, thought to coincide
with highly subthermal magnetic energy densities, the
field is regarded as passive and Lorentz forces ignored.
This is implicit in every textbook illustration of a disk
wrapping up magnetic field lines and quite explicit in the
most developed theories of dynamos (Moffatt, 1978).
The problem is that, whereas a weak field is indeed neg-
ligible in a magnetosonic disturbance, it can never be
negligible for Alfvénic and slow disturbances. These are
internal degrees of freedom created by the magnetic
field, with no hydrodynamic analog. For these distur-
bances, there is nothing for the field to be ‘‘weak’’ with
respect to—it does not compete with anything. If pres-
sure forces are not involved, the fact that the magnetic
energy density is small compared with the thermal en-
ergy density is of little consequence.

The dispersion relation resulting from Eqs. (106) and
(107) from assuming a j time dependence of exp(2ivt)
is

v42v2@k212~k·uA!2#1~k·uA!2S ~k·uA!21
dV2

d ln R D
50, (111)

which is precisely the a2→` Boussinesq limit of Eq.
(99). Note also that the stability condition (108) follows
directly from Eq. (111).
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Equation (111) is a simple quadratic in v2, and it is
straightforward to show that there is a maximum un-
stable growth rate

uvmaxu5
1
2 U dV

d ln RU (112)

which occurs when
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2 52S 1

4
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16V2D dV2

d ln R
. (113)

For a Keplerian rotation profile, these become

uvmaxu5
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4

V , ~k·uA!max5
A15

4
V . (114)

This is an enormous growth rate. Unchecked, it would
result in a factor of more than 104 amplification in en-
ergy per orbit. It has been conjectured (Balbus and
Hawley, 1992a) that no linear instability feeding off the
free energy of differential rotation can grow any faster.
This appears to be true even when the disk is near the
horizon of a Kerr black hole. In this case, the maximum
growth rate is precisely the relativistic generalization of
Eq. (112) (Gammie, 1997).

The destabilization of Couette flow by a vertical mag-
netic field was first analyzed by Velikhov (1959) and
later extended to general rotation laws by Chan-
drasekhar (1960). These authors treated the problem
globally and made a point of restricting the analysis to
vertical fields only. A purely axial field configuration was
deemed to be special because more general poloidal and
toroidal field configurations lacked a well-defined equi-
librium state and otherwise appeared to greatly compli-
cate the analysis. Vertical fields, on the other hand, al-
lowed for a rigorous global treatment.

While mathematically laudable, this approach had the
unfortunate consequence of obscuring the underlying
simplicity and generality of the weak-field limit (for
which none of the above concerns is an issue) that is
captured by Eqs. (106) and (107). As a result, despite
the fundamental significance of Velikhov’s pioneering
study and its subsequent experimental verification by
Donnelly and Ozima (1960), almost three and a half de-
cades passed before the paper was first cited in the ac-
cretion disk literature.

C. Weak-field shearing instability: full generality

Because of the importance and wide scope of the in-
stability, we now examine its behavior under very gen-
eral circumstances. Our results will be applicable to
pressure-supported rotating stars, non-Keplerian
‘‘thick’’ disks, and rotationally supported thin disks. The
equilibrium state may be stratified in both radial and
vertical directions. We allow the rotation profile V to be
a function of both R and z , and displacements need not
be confined to the planes of constant z . Our analysis will
once again be local, so that leading-order WKB distur-
bances of the form exp i(kRR1kZz2vt) will be assumed.
As in the simple disk treatment given above, the insta-
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bility has an evanescent, nonpropagating character when
the magnetic field is weak, so that a local treatment
makes physical sense. This approach is in complete ac-
cord with both numerical simulations, and more detailed
global analyses.5 Like the Rayleigh instability (associ-
ated with a decreasing angular momentum gradient), or
the Schwarzschild instability (associated with a decreas-
ing entropy gradient), the weak-field instability (associ-
ated with a decreasing angular velocity gradient) is in-
sensitive to the global structure in which it is embedded.
This, of course, is why all of these instabilities are so
widely applicable.

In the Boussinesq limit, the linearized equations of
motion are (following Balbus, 1995; see also Papaloizou
and Szuszkiewicz, 1992)

kRduR1kZduZ50, (115)

2ivduR1
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4pr
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2ivduf1duR
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1duZ R

]V

]z
2ik·B

dBf

4pr
50,
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ikZdP

r
2

dr
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]P

]z
1

ikZ

4pr

3~BfdBf1BRdBR!2
ikRBR

4pr
dBZ50, (118)

2ivdBR2ik·BduR50, (119)

2ivdBf2dBR

]V

] ln R
2dBZR

]V

]z
2ik·Bduf50,

(120)

2ivdBZ2ik·BduZ50. (121)

To complete our set, for general axisymmetric distur-
bances we also require the entropy equation in the
Boussinesq limit:

iv
5
3

dr

r
1duZ

] ln Pr25/3

]z
1duR

] ln Pr25/3

]R
50.

(122)

The reduction of this set of equations to a fourth-order
dispersion relation is a lengthy but straightforward op-
eration. It is convenient to introduce the D operator,

D5S kR

kZ

]

]z
2

]

]R D , (123)

5When the Alfvén speed becomes comparable to the rotation
speed, the character of the instability can change, but at this
field strength the disk is magnetically, not rotationally, driven.
See the critique of Knobloch (1992) and the reply of Gammie
and Balbus (1994).
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and to set

k25kR
2 1kZ

2 , Ã25v22~k·uA!2. (124)

Then the dispersion formula may be written as

Ã4
k2

kZ
2 1Ã2S 3

5r
~DP !D ln Pr25/31

1
R3 D~R4V4! D

24V2~k·uA!250. (125)

When the limit k·uA→0 is taken, Eq. (125) reduces to
the hydrodynamics problem considered by Goldreich
and Schubert (1967), in the adiabatic limit of their equa-
tion.

It is an elementary matter to show that Eq. (125) im-
plies that Ã2, and hence v2, must be real. Stability may
then be studied by noting conditions under which v2→0.
In this limit, Eq. (125) becomes

~k·uA!25
kZ

2

k2 S 4V21
3

5r
~DP !D ln Pr25/3

1
1

R3 D~R4V2! D . (126)

For stability, Eq. (126) cannot have any real solutions.
In other words,

F4V21
3

5r
~DP !D ln Pr25/31

1
R3 D~R4V2!G,0.

(127)

We have rather quickly arrived at an interesting junc-
ture: our stability condition for a magnetized disk makes
no reference to the magnetic field. In particular, this is
not the stability condition for a hydrodynamic system,
but there is no way to alter Eq. (127) as B→0. This
rather subtle point is addressed below.

Returning to our analysis, let us set x5kR /kZ . Then,
replacing the D operator with its definition (123), simpli-
fying and regrouping, we obtain

x2NZ
2 1xF 3

5r S ]P

]z

] ln Pr25/3

]R
1

]P

]R

] ln Pr25/3

]z D
2R

]V2

]z G1NR
2 1
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.0 (128)

where

NZ
2 52

3
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] ln Pr25/3

]z
,

(129)

NR
2 52

3
5r

]P

]R

] ln Pr25/3

]R
.

The so-called Brunt-Väisälä oscillation frequency asso-
ciated with convectively stable buoyant oscillations is

N25NZ
2 1NR

2 .

Two conditions will together ensure that the left-hand
side of Eq. (128) is positive. First, it must be positive for
some value of x . This is assured if

N21
]V2

] ln R
.0, (130)
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since this condition means either very small or very large
x2 will make the quadratic positive. The second condi-
tion is that there be no real roots to the quadratic equa-
tion, which is simply a matter of restricting its discrimi-
nant to negative values. This is, once again, a rather
lengthy exercise in algebraic manipulations. The task is
simplified somewhat by noting the vorticity relation

R
]V2

]z
5

1
r2 S ]r

]R

]P

]z
2

]P

]R

]r

]z D . (131)

(We explicitly use the fact that the magnetic field is too
weak to affect the equilibrium state of the disk.) The
final result of the calculation is

S 2
]P

]z D S ]V2

]R

] ln Pr25/3

]z
2

]V2

]z

] ln Pr25/3

]R D.0.

(132)

Equations (130) and (132) are extremely general, and
may be applied to stars as well as to disks. They should
be compared with the classical Ho” iland criteria (Tassoul,
1978) that obtain for hydrodynamic stability. With
l2[R4V2, these are

N21
1

R3

]l2

]R
.0, (133)

S 2
]P

]z D S ]l2

]R

] ln Pr25/3

]z
2

]l2

]z

] ln Pr25/3

]R D.0.

(134)

Equations (133) and (134) are very similar to their mag-
netic counterparts (130) and (132), the only difference
being that angular momentum gradients are replaced by
angular velocity gradients. This is the signature charac-
teristic of magnetic fields in rotating systems: angular
momentum couplings are replaced by angular velocity
couplings. This is evident in comparing the nonlinear
Eqs. (59) and (86). It is also true if we compare the
Rayleigh criterion k2.0 with Eq. (109), and it is once
again evinced in the Ho” iland criteria. It should be noted
that the primary application of the classical hydrody-
namic Ho” iland criteria has been to stellar interiors. The
presence of any magnetic field at all, however, renders
these criteria all but useless. Given this finding and the
ubiquity of astrophysical magnetic fields, the domain of
applicability of the classical criteria is unclear.

Why do the Ho” iland criteria change in a mathemati-
cally discontinuous way when there is a small and quite
continuous physical change in the system? The point is
that a weak magnetic field enters the dynamics only via
the combination k·uA. Just as the presence of any finite
viscosity leads (in bounded flows) to a boundary layer
inside of which dissipation is an order-of-unity effect,
the presence of any finite magnetic field defines a char-
acteristic wave-number scale k;V/uA at which mag-
netic effects become important. Provided that this scale
is not so tiny that microscopic resistivity is dominant, the
ensuing magnetic tension forces can always be ‘‘tuned’’
through the proper choice of k [Eq. (113)] to the maxi-
mum growth rate (112). Further discussion of this point
may be found in Balbus (1995).
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D. Effects of resistivity and viscosity

Resistivity and viscosity dampen the growth of un-
stable modes. (Thermal diffusivity is less important,
since the least stable modes do not have thermal gradi-
ents.) In this section we examine these dissipative ef-
fects.

Restricting the analysis to vertical wave numbers
k5k êz is both physically sensible (since these are the
most unstable modes) and mathematically simplest. Let
us define, in this section only, s52iv , so that we work
directly with the growth rate. Including the effects of a
kinematic viscosity n5hV /r , we obtain the linearized
large-k radial and azimuthal equations of motion,

~s1nk2!duR22Vduf2
dr

r2

]P

]R
2

ik·B
4pr

dBR50,

(135)

~s1nk2!duf1duR

k2

2V
2ik·B

dBf

4pr
50. (136)

Including the effects of resistivity, the radial and azi-
muthal induction equations are

~s1hBk2!dBR2ik·BduR50, (137)

~s1hBk2!dBf2dBR

]V

] ln R
2ik·B duf50. (138)

These four equations lead to the dispersion relation

@s21~k·uA!2~hB1n!sk2#21k2@s21~k·uA!2

12hBsk2#24V2~k·uA!250. (139)

This reduces to Eq. (111), as it must, when hB5n50.
We introduce the dissipation rate g by defining

g5s02s , (140)

where s0 is the value of s in the absence of resistivity
and viscosity. If ug/s0u!1, upon substituting for s in the
dispersion relation and retaining the leading-order
terms, we find

g5hBk2
k21~11P!@s0

21~k·uA!2#

k212@s0
21~k·uA!2#

(141)

where the magnetic Prandtl number P is n/hB .6 Using
the Keplerian results for the most rapidly growing mode,

s0
25

9
16

V2, ~k·uA!max
2 5

15
16

V2, (142)

we find that g becomes

g5
5
8

hBk2S 11
3
5
PD . (143)

If we consult Spitzer (1962) for values of our (colli-
sional) dissipation parameters in an ionized plasma, we
find

6The term Prandtl number without the ‘‘magnetic’’ qualifier
refers to the ratio of viscosity to thermal conductivity.
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hV

r
.2.2310216

T5/2

r
cm2 s21

and

hB.5.131012T23/2 cm2 s−1,

which implies a magnetic Prandtl number of

P[
hV

rhB
.S T

1.43105D 4S 1016

ne
D . (144)

Note that P is extremely sensitive to the temperature T ,
a point to which we shall later return. We focus sepa-
rately on the cases P@1 and P!1.

When P!1, the criterion for unfettered growth
g/s0!1 for the maximally unstable Keplerian mode be-
comes

5
6

hBk2

V
!1.

We take k from its value at the wave number of maxi-
mal growth, (k·uA)max . Then, using the Spitzer value for
hB , we may write the above inequality as a constraint
on the plasma b parameter,

b!63107~T4!5/2~R10!
3/2S M

M(
D 21/2

, (145)

where T45T/104K , R105R/1010 cm, and M/M( is the
central mass in solar units. Thus, the magnetic field must
be very weak in any ionized plasma before departures
from the ideal MHD limit are important. As a practical
matter, only protostellar disks are likely to be affected
by finite resistivity (Blaes and Balbus, 1994; Gammie,
1996).

When P@1, viscosity dominates the dissipation in a
collisional plasma. The damping rate is now given by
g5(3/8)nk2. The growth condition g/s0!1 becomes a
constraint on the magnetic field:

B@631024 G~T4!5/4~R10!
23/4S M

M(
D 1/4

. (146)

This is a tiny field by either stellar or disk standards.

E. Low-ionization fluids

The weak-field magnetic instability will be important
only if the fluid is sufficiently ionized that there is a good
coupling between the disk mass and B. In some cases of
interest, the disk may be predominantly neutral, and it
may not be obvious that a magnetic treatment is justifi-
able. In this section, we quantify this condition under the
assumption that the disk has three populations of par-
ticles: neutrals, ions, and electrons. Results are taken
from Blaes and Balbus (1994).

Neutrals and ions interact predominantly via elastic
scattering. The volume specific rate of momentum trans-
fer from ions to neutrals is given by

Fin52mninnni^sv&ni~vi−vn!, (147)
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where mni is the reduced mass of a two-body ion-neutral
interaction,

mni5
mnmi

mn1mi
,

^sv&ni is the momentum rate coefficient (angle brackets
indicate averaging over the distribution of cross
section3relative velocity), mn and mi are the neutral
and ion masses, respectively, and nn and ni are their
respective number densities. The quantity vi−vn is the
relative drift velocity between the two species. The mo-
mentum rate coefficient is approximately constant (s de-
creases with increasing relative velocity), independent of
the kinetic temperature of the populations (Draine,
Roberge, and Dalgarno, 1983):

^sv&ni51.931029 cm3 s−1. (148)

The main constituents of the neutral population in a
cool astrophysical disk will be H2 molecules and He at-
oms. Typically the He abundance is 0.1 of the H abun-
dance by number, leading to an effective neutral mass of
mn52.33mH , where mH is the atomic hydrogen mass.
At the threshold of magnetic coupling, trace alkali spe-
cies, in particular Na and K, are the most numerous ions.
Accordingly, we follow Draine et al. (1983) and take
mi.30mH . The force per unit volume exerted upon the
ions by collisions with neutrals is written

2gr irn~vi−vn! (149)

which defines the drag coefficient g:

g5
^sv&ni

mn1mi
53.531013 cm3 s−1 g−1. (150)

Blaes and Balbus (1994) carried through a detailed sta-
bility analysis of a two-fluid system including coupling
terms of the form of Eq. (149), assuming that ion fluid
was perfectly conducting. Only displacements in the
plane of the disk were considered, since these are gen-
erally the most unstable. In the simplest case, which is
all that we shall examine here, the ions and neutrals
exist as independently conserved fluids; ionization and
recombination processes are ignored. This is sufficient to
give us an order of magnitude estimate for the ionization
fraction, ni /nn , at which magnetic coupling is impor-
tant.

The two-fluid stability criterion can be cast in a form
very reminiscent of Eq. (108), the simple ‘‘masses on a
spring’’ criterion. Assuming that nn@ni , Blaes and Bal-
bus show that an ion-neutral system is stable if

~k·uA* !2.2
dV2

d ln R
, (151)

where the effective Alfvén velocity is given by

~uA* !25
B2

4pr i
3

k21g2r i
2

k21g2r ir
. (152)

This has a readily interpretable form. The second factor
falls from 1 to r i /r as collisions become progressively
more important. When collisions completely dominate,
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the effect is to replace the ion density with the neutral
density as the effective inertial mass associated with the
Alfvén velocity. Whether collisions dominate or not de-
pends upon the results of comparing the various colli-
sion frequencies with the fundamental epicyclic fluid re-
sponse frequency. The problem is analogous to
determining the ‘‘effective mass’’ of an electron travel-
ing though a lattice (Goodstein, 1974); interactions with
the background lattice can be subsumed by redefining a
new mass parameter. In our problem, when collisions
are of no importance, the effective Alfvén velocity is
that of the ion fluid alone; when collisions dominate, the
effective Alfvén velocity is that associated with the
dominant neutral fluid serving as the inertial density.
The transition from one asymptotic limit to the other is
mediated continuously by varying the ion density.

In all cases of interest,

g2r ir@k2.

This means that

~uA* !25
B2

4prn
~11k2/g2r i

2!. (153)

Thus the disk is effectively magnetized with the domi-
nant neutrals anchoring the field if

r ig@k5V , (154)

with the latter equality holding for a Keplerian disk. The
content of Eq. (154) is simply that the neutral-ion colli-
sion rate must greatly exceed the characteristic dynamic
response frequency if a weakly ionized disk is to be mag-
netically coupled.

Very small ionization fractions will often be sufficient
to magnetize a disk. To illustrate this, we take our nu-
merical normalization factors from a well-known model
of the solar nebula, the primordial disk of the solar sys-
tem (Hayashi, 1981). Then Eq. (154) may be written as a
minimum value for the ionization fraction

ni

nn
510213~11mn /mi!S M

M(
D 1/2

RAU
23/2S nn

1015D 21

,

(155)

where RAU is the radius in astronomical units. The limit
on the ion density itself, a number independent of the
total disk density, is

ni5102~11mn /mi!S M

M(
D 1/2

RAU
23/2 . (156)

At these low values of the ionization fraction, the elec-
trical conductivity of the gas should also be examined
(Umbayashi, 1983). It is, of course, no longer Coulom-
bic. A similar value for the minimal ionization fraction is
found (Gammie, 1996). In general, these ionization frac-
tions are sufficiently small that, with the possible impor-
tant exception of protostellar and protoplanetary disks,
all gaseous astrophysical systems are likely to be mag-
netically well coupled.
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F. Global modes and nonaxisymmetric disturbances

1. Global modes

As pointed out at the beginning of the last section, the
weak-field instability is present when dV2/dR,0 and is
both local and evanescent. In this respect it is similar to
a simple convective instability (present when the local
entropy gradient decreases outward) or the Rayleigh in-
stability (present when the local angular momentum gra-
dient decreases outward). In all of these cases there is
little reason to doubt that the essence of the weak-field
destabilization is captured by a local analysis; neverthe-
less, global analyses can be informative. In particular,
they can pick up subtle interactions with boundaries or
reveal the presence of potentially powerful instabilities
with no local counterpart. The hydrodynamic instability
of Papaloizou and Pringle (1984), which chiefly afflicts
non-Keplerian disks (cf. Sec. III.E.1), is a well-known
example of the latter. But because global analyses can
be lengthy and quite technical, and because they tend
also to be specialized to particular field configurations
and boundary conditions, we shall not attempt to repro-
duce such calculations here. Rather, we shall concen-
trate upon and summarize the results of some illustra-
tive cases.

Papaloizou and Szuszkiewicz (1992) approached the
problem of magnetized disk stability via a variational
global eigenmode method. They emphasized that this
treatment was more rigorous than a local analysis. The
price to be paid was complexity, and of necessity the
approach must be somewhat more restrictive in the class
of equilibrium solutions that may be treated. The pow-
erful formalism can also make the underlying dynamics
difficult to discern.

Papaloizou and Szuszkiewicz addressed the stability
of isorotational field configurations, i.e., those character-
ized by constant V along lines of magnetic force. By
generalizing Lagrangian techniques originally developed
by Bernstein et al. (1958) and Frieman and Rotenberg
(1960), Papaloizou and Szuszkiewicz found general
agreement with the local analysis of Balbus and Hawley
(1991) when the field was weak. When the field was
strong, however the domain of instability might extend
beyond the saturation level suggested by Eq. (110).
Rather than the Alfvén speed’s being limited to subther-
mal values for instability, Papaloizou and Szuszkiewicz
concluded that values of uA up to ;ARVcs would be
unstable, a velocity considerably in excess of the sound
speed.

Gammie and Balbus (1994) carried out an explicit
eigenmode analysis of a similar system. These authors
treated the radial structure locally (i.e., the only radial
structure came from differential rotation), but treated
the vertical structure globally, thereby assuring that the
desired eigenfunctions would be one dimensional. When
boundary conditions corresponding to field lines an-
chored in an external rigid conductor were applied, a
new global instability was found. Instead of having the
magnetic field unstably drain angular momentum from
inner to outer fluid elements, the unstable mode had the
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magnetic field unstably draining angular momentum
from interior disk fluid elements to an angular momen-
tum reservoir (the conductor) at large distances from
the disk midplane. The magnetic tension term in the sta-
bility criterion for this truly global mode involved the
product of the curvature of the azimuthal displacement
eigenmode and the square of the Alfvén speed (the glo-
bal analog of k2uA

2). The eigenmode curvature was ap-
preciably different from zero only within a disk scale
;cs /V of the midplane. Away from this region, dis-
placements were nearly linear (because the magnetic
fields were approximately forcefree) out to the conduct-
ing boundary. Effectively, this introduces a 1/R scale in
the mode’s first derivative, and a 1/RH scale in its cur-
vature. With k2;1/RH , the form of the Papaloizou and
Szuszkiewicz global criterion is recovered by invoking
the same type of magnetic tension argument used in the
local analysis.

We have elected to discuss this particular example in
some detail because it nicely illustrates the relation be-
tween global and local modes for the magnetized disk
problem. When global and local approaches have pro-
duced seemingly incompatible results, the influence of
the boundaries is generally at the heart of the matter.

Because larger field strengths have larger associated
length scales, global modes are most useful for under-
standing the stability of strong-magnetic-field configura-
tions. Of course, such fields need not be unstable for
their influence on disk transport to be felt: 2^rBRBf&
stresses directly provoke an outward angular momen-
tum flux. Furthermore, the initial conditions required of
a global mode analysis are of necessity rather artificial:
isorotational (always) and forcefree (often). This limits
their range of applicability. In addition, it is well to em-
phasize that if a disk is not born with a strong magnetic
field, then it must be grown from seed. Under these cir-
cumstances, it is likely that it will be the nonlinear reso-
lution of the weak-field instability that determines the
magnetic properties and the disk behavior, not the sta-
bility of an ordered large-scale field.

2. Nonaxisymmetric disturbances

The nonaxisymmetric behavior of the weak-field in-
stability is of interest because the only couple to the
toroidal field component comes from f-dependent
(plane-wave) disturbances. Futhermore, dynamo ampli-
fication is not possible under conditions of axisymmetry
(Moffatt, 1978), so the behavior of nonaxisymmetric
perturbations is important to establish as a first step to-
ward understanding how magnetic fields might be ampli-
fied by the nonlinear phase of the instability.

The presence of shear complicates the interpretation
of the local behavior of nonaxisymmetric disturbances.
This point is a kinematical one and must be faced in
both magnetic and nonmagnetic problems alike. When
one speaks of a ‘‘local’’ disturbance, this adjective refers
to the unperturbed flow, not to the fixed Eulerian space-
time coordinates. Plane waves of the form exp i(k·r2vt)
are no longer local eigenfunctions when k has a f com-
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ponent; the wave number itself may depend upon time
in fixed coordinates. A familiar example of a time-
dependent wave number in an axisymmetric problem is
the behavior of density perturbations in a homoge-
neously expanding Friedmann cosmology (Weinberg,
1972). One adopts comoving coordinates, tailored to re-
main fixed on elements moving with the large-scale
Hubble flow. As is well known, the temporal behavior of
comoving density instabilities does not, in general, show
exponential growth. The precise form depends upon the
nature of the fluid and the cosmological model; for a
pressureless gas in a critically expanding universe, a
simple 2/3 power law is obtained.

The local unperturbed behavior of a disk is not expan-
sion, but shear, and the comoving Lagrangian coordi-
nates are thus somewhat more complicated than their
cosmological counterparts (Goldreich and Lynden-Bell,
1965; Balbus and Hawley, 1992b). For example, rather
than simply diminishing with time as space expands, a
radial wave number kR behaves as

kR~ t !5kR~0 !2mt
dV

dR
,

where m5kfR is the usual azimuthal wave-number
variable. When m50 the wave number remains fixed, of
course. But when m is finite, a local ‘‘leading’’ distur-
bance is first unwound by the shear (ukRu decreases and
passes through zero) and then wrapped up as kR in-
creases linearly with time. The evolution of the distur-
bance can be very different in the large and small wave-
number regimes.

The evolutionary equations for local disk perturba-
tions in arbitrary magnetic-field geometries, incorporat-
ing the winding of radial wave numbers, were derived
and studied by Balbus and Hawley (1992b). The ques-
tion of local stability may be treated as an initial-value
problem. Despite the presence of wave-number winding,
the Alfvén coupling parameter k·B is constant with time.
The effect of the shear is to force Bf to evolve linearly
with time if BR is nonvanishing:

Bf~ t !5Bf~0 !1tBR

dV

d ln R

where Bf(0) is the initial azimuthal field component.
The shear terms cancel in the dot product k·B, and the
magnetic tension remains constant.

A relatively simple form of the evolutionary equation
holds when three conditions are met: the winding time
of kR is long compared with the rotation period,
m!kZR , and vertical disk structure is ignored. Then,
the evolution of dBR is given by

F k2

kZ
2 D41k2D224V2~k·uA!2GdBR50 (157)

where

D25
d2

dt2 1~k·uA!2, k25kR~ t !21m2/R21kZ
2 (158)



36 S. A. Balbus and J. F. Hawley: Instability and turbulence in accretion disks
and dBR is the linear perturbation in the radial field.
This differential equation, which is very similar to the
axisymmetric dispersion formula (111) (it clearly re-
duces to it when m50) may be solved using WKB meth-
ods. The gist of the result is easily grasped by referring
to the (k·uA)-(k/kZ) plane in Fig. 17. Start with a point
in this plane whose coordinates (k/kZ ,k·uA) correspond
to a ‘‘leading’’ disturbance—one in which the shear
causes k/kZ to decrease with time, reach a value near
unity, and then increase again. The effect is that the
system evolves from a region of stability into a zone of
instability and then once again a stable zone. The de-
marcation between stable and unstable regions is just
the boundary between stability and instability found in
an axisymmetric problem.

Balbus and Hawley (1992b) studied the stability be-
havior for poloidal wave numbers kp of order V/uA ,
which in the axisymmetric problem is the domain of
maximum growth. In the presence of a poloidal field,
rapid growth to enormous amplification factors (;1018

and greater) was found. When the radial wave number
became sufficiently large, the unstable domain was left
and amplitudes remained steady. Though not strictly an
instability (because the linear phase is not marked by
unconstrained growth), the manifestation of this behav-
ior in numerical simulations (Hawley, Gammie, and Bal-
bus, 1995) makes it indistinguishable from the axisym-
metric instability.

Nonaxisymmetric wave numbers additionally allow
for the presence of a dynamic Alfvén coupling (k·uA)
when there is no poloidal field, only a weak toroidal
field. There has been some confusion over characteristic
growth rates, however. In the wave-number regime
(kp;V/uA), Balbus and Hawley (1992b) found growth
rates of several percent of V. Hawley et al. (1995) nu-
merically confirmed the instability of a purely toroidal
field, but found a more rapid maximal growth rate. A
subsequent analytic study by Terquem and Papaloizou
(1996), based on what is in essence a large-wave-number
WKB approximation, also found growth rates an order

FIG. 17. Region of stability and instability in the (k·uA)2,k/kz

plane. The quantity k·uA is constant, even for a shearing wave
vector. For a leading disturbance, k/kz is initially large, and
the point defining the wave vector moves leftward in the plane.
The minimum value attained by k/kz is unity, after which the
wave vector becomes trailing and retraces its path to the right.
If (k·uA)2,2dV2/d ln R, then a finite portion of time is spent
in the unstable region, and substantial growth may occur.
From Balbus and Hawley, 1992b.
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of magnitude greater than the original analysis of Balbus
and Hawley (1992b).

In fact, the maximum growth rate for a weak toroidal
field is (1/2)udV/d ln Ru, precisely its value for axisym-
metric disturbances in the presence of a poloidal field.
But it is reached only at much larger poloidal wave num-
bers. This maximum growth rate is reached in the limit
of large m , larger kRR , and even larger kZ . In this limit,
to avoid rapid winding, one must have

kZ@kR;kR~0 !@m
d ln V

dR
;

V

uA

d ln V

d ln R
@

1
H

.

In this wave-number domain, the geometry of the dis-
turbances is essentially axisymmetric; the presence of m
would be quite ignorable were it not for the fact that it is
the only way the perturbations can couple to the mag-
netic field. Equation (157) goes over to an axisymmetric
form in this limit. When the above inequality is satisfied,
and

muAf5A15
4

RV ,

the resulting growth rate approaches the axisymmetric
maximum. One should note, however, that this is a sin-
gular field geometry, and everything is extremely sensi-
tive to the assumption of a vanishing poloidal field com-
ponent. The poloidal wave numbers are huge: m is large
(if the field is weak), RkR(0) is an asymptotic order
larger, and RkZ yet an asymptotic order larger than
that. A wisp of vertical field will result in enormous ten-
sion forces, which completely alter the character of the
problem.

It is occasionally argued in the literature that because
the toroidal field component is likely to be the largest in
a disk, neglect of the poloidal field components is a good
approximation. Applied to a magnetosonic wave, this
reasoning would be correct; applied to the weak-field
instability, it is not. The presence of a subthermal toroi-
dal field, even if it is larger than the poloidal compo-
nents, is a matter of indifference for the most rapidly
growing axisymmetric instabilities. But the presence of
very modest poloidal field components would cause a
complete breakdown for the most rapidly growing local
modes emerging from a toroidal field analysis: the radial
and vertical wave numbers are, respectively, one and
two asymptotic orders larger than the already large azi-
muthal wave number. Poloidal Alfvénic couplings would
take over even for very small poloidal fields. It is likely,
therefore, that direct physical applications of purely to-
roidal weak-field phenomena are quite limited.

Finally, we may note that the presence of shear means
that a true mathematical instability of a nonaxisymmet-
ric disturbance—one whose linear growth is unbounded
as t→`—must be sought by global methods. Many pa-
pers have explored this technical point with some care.
For a sample of the variety of approaches and degrees of
rigor, the reader may consult Curry and Pudritz (1996),
Matsumoto and Tajima (1995), Ogilvie and Pringle
(1996), and Terquem and Papaloizou (1996).
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V. NUMERICAL SIMULATIONS OF MAGNETIZED
ACCRETION DISKS

We have seen from the linear perturbation analysis
that differentially rotating systems are unstable to a
powerful, local MHD instability. Further progress re-
quires studying the nonlinear consequences of this insta-
bility; for this we must appeal to numerical simulations.
In this section we shall review some of the findings ob-
tained to date from numerical MHD simulations of ac-
cretion disks.

A. Two-dimensional simulations: streaming or decay

Analytic and numerical techniques are sometimes re-
garded as reigning over nonintersecting domains—
‘‘solvable’’ and ‘‘intractable.’’ Numerical stability stud-
ies, however, are most compelling when there is contact
with analytic results. It is important to understand that
both approaches generally involve substantial approxi-
mations, and thus each will always have its share of con-
troversies. But if afforded a stature in the theorist’s tool-
box comparable with its analytic complement, numerical
simulations can now provide insights, suggest pathways,
and, most importantly, confirm qualitative ideas, all in
ways that a few years ago were not possible. Magneto-
hydrodynamic accretion disk studies have benefited
enormously.

In a paper published as a companion to their linear
stability analysis, Hawley and Balbus (1991) carried out
a series of local simulations of a simple vertical and he-
lical field configuration and compared the results with
predictions. Although idealized, these first simulations
provided important confirmations: the mode growth
rates, dispersion relation, qualitative content (e.g., the
indifference of the instability to an azimuthal field), and
stability criterion were all in accordance with linear
theory. The simulations were also able to treat more
complicated loop field geometries. Cylindrical, not local
Cartesian, coordinates were used, which included the
curvature terms dropped from the linear WKB analysis.
Both the local and linear assumptions used in the analy-
sis were in complete agreement with the simulations,
which left no question that a combination of Keplerian
rotation and weak magnetic fields was extraordinarily
unstable.

The 1991 simulations illustrate the behavior of the in-
stability very clearly (see Fig. 18). In fact, the striking
clarity and simplicity of this image has created a curious
problem: it has been too successful. Its appearance is so
compelling, it has led to the notion that the creation of
radial field by stretching out a vertical field is the most
important thing the instability does. In fact, all geom-
etries are unstable (including those with zero vertical
field), and the most general outcome of the weak-field
instability is turbulence, not coherent fluid motions. As
we shall see, this is true even when nonlinear coherent
flow is an exact nonlinear solution to the equations of
motion.

Long-term local simulations require using the shear-
ing box technique, as described earlier in the hydrody-
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namics section, Sec. III.D. The first implementation of
this technique was two dimensional and axisymmetric
(Hawley and Balbus, 1992). Note that the assumption of
axisymmetry removes the time dependence of the radial
boundary condition and the associated cumbersome grid
interpolation. These simulations examined various ini-
tial vertical-field (BZ) and radial-field (Bx) configura-
tions and were the first to illustrate the evolution of the
instability in the absence of a vertical field. If BZ50, an
axisymmetric instability requires the presence of a radial
field, and thus an azimuthal field will be generated by
the shear. An unambiguous prediction of the linear
analysis was that the presence of a (possibly time-
dependent) weak Bf component would make no differ-
ence to the early onset and growth of the instability.
From the general dispersion formula (125) it is straight-
forward to show that the maximum growth rate is ob-
tained for kZ→` . As can be seen in Fig. 19, a meridi-
onal slice of the disk, this leads to long flat structures,
which are snakelike viewed in cross section. Most impor-
tantly, the indifference of the linear instability to the
presence of Bf was fully confirmed. The two-
dimensional shearing box simulations produced a sur-
prising result. When the initial magnetic-field configura-
tion is a uniform vertical field, the resulting evolution
produces two exponentially growing inward- and
outward-flowing streams on the largest available scale
(Fig. 20). In fact, the presence of any mean vertical field
in the initial conditions, no matter how otherwise irregu-
lar the field geometry, always leads eventually to the
appearance of these channels. The solutions remain co-

FIG. 18. Evolution of the vertical-field instability. The figure is
an (R ,z) cross section of field lines in an axisymmetric simu-
lation of Keplerian differential rotation. R increases from left
to right; z increases from bottom to top. The numbers give the
time in orbits, 2p/V , where V is the angular frequency at the
center of the computational domain.
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herent well into the nonlinear regime and look nothing
like turbulence. On the other hand, when the average
value of the poloidal field over the computational box is
zero, the flow quickly breaks down into turbulence. The

FIG. 19. Contours of angular momentum perturbations in a
simulation with an initial radial field, viewed in (R ,z) cross
section. The axes are oriented as in Fig. 18. The long radial
wavelength and short vertical wavelength are characteristic of
the most unstable modes of a radial background magnetic
field. From Hawley and Balbus 1992.

FIG. 20. Magnetic-field lines (solid curves) and velocity vec-
tors (arrows) in a simulation of a uniform initial vertical field,
viewed in (R ,z) cross section. The axes are oriented as in Fig.
18. The flow evolves to two rapidly flowing channels. In cross
section, they appear as oppositely moving radial streams. From
Hawley and Balbus, 1992.
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turbulence does not persist, however; it decays over a
period of many orbits (Fig. 21).

Let us consider the latter result first, as it is more
easily understood. It is in fact a consequence of the
‘‘anti-dynamo theorem’’ (Moffatt, 1978; the theorem is
due to Cowling). Simply stated, any sort of sustained
magnetic-field amplification by axisymmetric turbulence
in an isolated dissipative system is impossible. To see

FIG. 21. Two dimensional MHD turbulence simulation: (a)
Grey-scale plot of angular momentum perturbations in an axi-
symmetric simulation of an initial vertical field with ^BZ&50,
viewed in (R ,z) cross section. The axes are oriented as in Fig.
18. This field configuration does not lead to streams (cf. Fig.
20); instead, the flow becomes turbulent. (b) The time evolu-
tion of poloidal magnetic-field energy in axisymmetric simula-
tions of an initial vertical field with ^BZ&50. Labels corre-
spond to number of grid zones. After an initial period of
growth, the magnetic field declines with time at a rate deter-
mined by the numerical resolution. This behavior accords with
Cowling’s anti-dynamo theorem.
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this, note that the poloidal component of the magnetic
field in an axisymmetric flow is derivable from the azi-
muthal component alone of a vector potential—in effect
a scalar potential. Denoting this potential as A , its in-
duction equation in the ideal MHD limit is (Moffatt,
1978)

]A

]t
1v i

]A

]xi
50 (159)

where, as usual, the (locally Cartesian) i components are
summed over by the repeated index convention. If
“ ·v50, the divergence theorem implies

]

]t E A2 dV52E A2v·dS, (160)

where the expression on the left is a volume integral and
the expression on the right is a surface integral. The
heart of Cowling’s anti-dynamo theorem is the observa-
tion that the surface integral will become arbitrarily
small at large distances or vanish outright for periodic
boundary conditions. The volume integral cannot, there-
fore, change with time; moreover, the presence of any
(hitherto neglected) dissipation will cause it to decay to
zero.

Simulations characterized by vanishing mean poloidal
field components are also characterized by periodic
boundary conditions for these quantities. The eventual
outcome is therefore in the hands of the anti-dynamo
theorem: decay (caused by grid losses in the simulations)
is inevitable. Growth in the field energy B2 is possible
only by bringing fluid elements with markedly different
values of A (a fluid element label) close together. This
generates large A gradients, which are the source of B .
This kneading of the fluid would have to continue to
finer and finer scales to maintain the growth of B2, but
the dissipation scale is soon reached, and that is the end.

On the other hand, the presence of a nonvanishing
vertical B field means that A has a piece proportional to
x . Periodic boundary conditions on A now no longer
hold and the surface integral need not vanish. Indeed, a
steady throughput across the computational box would
bring in fluid with ever larger uAu, in accord with what is
found numerically. The magnetic field grows rapidly
with time because the A potential in the box does.
There is nothing unphysical about this setup. A real disk
might well have a magnetic field threading it, connecting
to a central star or to an ambient medium. The question
then arises whether such disks really would break apart
into outgoing and incoming channels.

The nature of these ‘‘channel solutions’’ was fully
clarified by Goodman and Xu (1994), who pointed out a
remarkable fact: starting with a vertical field, the linear
plane-wave eigensolutions to Eqs. (106) and (107) are in
fact exact nonlinear solutions of Eqs. (78)–(80). In the
local approximation, the gas really does appear to act
like two orbiting masses connected by a spring stretch-
ing out indefinitely. But it is well known that the behav-
ior of a magnetized gas in three dimensions can be quali-
tatively different from its behavior in two dimensions.
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Will the streams remain stable in three dimensions?
Goodman and Xu noted that this ostensibly nonlinear
question actually reduces to a linear stability problem,
but a linear stability problem perturbed about a most
unusual equilibrium solution.

The Goodman and Xu analysis is a tour de force of
technique. The presence of vertically periodic velocity
streams renders the problem amenable to Floquet analy-
sis, an approach that will be familiar to readers who
have used the Bloch wave formalism in the study of
crystal lattices. A detailed presentation of Goodman and
Xu’s analysis would unfortunately take us too far afield,
but the interested and mathematically inclined reader
would do well to study the original.

Goodman and Xu concluded that the new equilibrium
of streaming motions should be unstable. Streaming in-
stabilities, which feed off of the initial weak-field insta-
bility, were dubbed by the authors as ‘‘parasitic instabili-
ties.’’ The most important instability is a magnetized
Kelvin-Helmholtz mode, which sets in for perturbation
radial wavelengths in excess of the streaming equilib-
rium flow’s vertical wavelength. Other parasitic instabili-
ties were found, but their physical interpretation is less
clear. To determine the ultimate nonlinear fate of the
channels requires therefore a three-dimensional numeri-
cal simulation, whose detailed discussion we defer until
the next section.

The existence and persistence in two dimensions of
coherent disk streams provides an explanation for a re-
curring puzzling behavior seen in a number of earlier
axisymmetric global MHD disk simulations. Uchida and
Shibata (1985) and Shibata and Uchida (1986) sought to
understand the creation of MHD jets and investigated
this problem by threading a disk of gas with a vertical
magnetic field. By imparting less than the Keplerian
value of angular momentum to the orbiting fluid ele-
ments, they sought to mimic the slow radial infall of
accretion—but without turbulence. The infall produced
radial fields that became wrapped up by differential ro-
tation into strong toroidal fields, whose gradients in turn
drove dynamic outflows along the vertical-field lines.
These simulations were the first time-dependent demon-
stration of the efficacy of magnetic fields for jet accelera-
tion and collimation. Some of these simulations, how-
ever, began with a Keplerian disk embedded in a
vertical magnetic field. Such disks collapsed on a dy-
namic time scale. At the time, the reason for this was not
at all clear.

Nearly a decade later, Stone and Norman (1994) re-
visited and extended Uchida and Shibata’s work. In the
interim, the magnetorotational instability had been elu-
cidated, and it became possible to understand the cause
of the collapse of the Keplerian disks. Once again, Stone
and Norman simulated a fully axisymmetric Keplerian
disk penetrated by a weak vertical magnetic field and
observed rapid collapse and infall. This configuration is
the global analog of the Hawley and Balbus (1992) simu-
lations that led to channel solutions, and the collapse of
the disk simply represents their reappearance in a new
guise. In general, the largest rapidly growing wave-
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lengths are to be found in the low-density surface region
of a disk. These (top and bottom) surface layers quickly
slough inwards, their angular momentum feeding into
the high-density (smaller rapidly growing wavelengths)
disk interior, which responds by ‘‘squirting’’ outwards.
The same behavior was also observed (Matsumoto et al.,
1996) in a simulation of a thick torus embedded in a
weak vertical magnetic field (Fig. 22).

Stone and Norman (1994) also explored the conse-
quences of strong (b,1) magnetic fields for disk accre-
tion. They found that such fields also lead to inflow on
orbital time scales, via the process of magnetic braking.
In this case, the disk angular momentum is siphoned to
an external wind (Blandford and Payne, 1982; Wardle
and Königl, 1993), not diffused outwards within the disk.
Turbulent transport by weak magnetic fields and re-
moval of angular momentum by strong magnetic fields
need not be mutually exclusive processes. They may
both be present at different evolutionary stages or in
different physical regions of the same disk. An obvious
way this could emerge is that the high density near the
disk midplane leaves the field subdominant (and there-
fore unstable), while the low-density upper layers are
dominated by a relatively strong field and form the base
of a wind. It also true that, depending upon the circum-
stances of their birth, different disks may be entirely
dominated by one or the other mechanism. Nature her-
self is clearly fond of disk jets and winds, for they are a
ubiquitous phenomenon (Begelman, Blandford, and
Rees, 1984; Lada, 1985; Lin and Papaloizou, 1996). We
must, unfortunately, leave this vast and important topic
essentially untouched and return to the focus of this ar-
ticle, MHD turbulence.

B. Turbulent MHD transport in three dimensions

1. A brief survey

To pursue the fate of the accretion streams in the
channel solution or to study dynamo amplification re-

FIG. 22. Global evolution of an axisymmetric thick disk
threaded by a uniform vertical field at time T50, viewed in
(R ,z) cross section. The axes are oriented as in Fig. 18. The
top row (a) shows the density; the bottom row (b) shows the
magnetic-field lines (solid curves) and velocity vectors (ar-
rows). The columns are labeled by orbital time. The weak-field
instability leads promptly to rapid accretion. From Matsumoto
et al., 1996.
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quires implementation of three-dimensional MHD
codes. In recent years, several local shearing box studies
have been carried out and a wide variety of models ex-
plored. The simplest consists of a homogeneous box, in
which only the radial component of the large-scale
gravitational field is retained, and the magnetic field is
initially uniform (Hawley et al., 1995; Matsumoto and
Tajima, 1995). The initial field geometry in these studies
had some combination of vertical and toroidal compo-
nents. A more complicated initial field configuration, im-
portant for understanding dynamo activity, is achieved
by letting the initial field have a random character with
vanishing mean (Hawley, Gammie, and Balbus, 1996).
The next level of complexity is to allow the presence of
the vertical component of the gravitational field with its
attendant density stratification (Brandenburg et al.,
1995; Stone et al., 1996; Matsuzaki et al., 1997). This in-
troduces the possibility of magnetic buoyancy, a qualita-
tively new effect, and by bringing the pseudoscalar
quantity V ·“r into the problem it also breaks chiral
symmetry. The resulting handedness of the turbulent
flow is potentially important for the development of lo-
cal mean helicity, a feature upon which much of classical
dynamo theory is based (Moffatt, 1978). The initial
magnetic-field geometry of these stratified simulations
includes radially sinusoidally varying vertical field
(Brandenburg et al., 1995; Stone et al., 1996), and pure
toroidal field (Stone et al., 1996; Matsuzaki et al., 1997).

2. Numerical technique

To develop a numerical consensus for a problem in-
volving a process as complex as three-dimensional MHD
turbulence, it is extremely important that different
groups employ codes based on different numerical tech-
niques. Such codes are never straightforward to imple-
ment, and each brings with it its own advantages and
compromises. While it is not possible here to describe in
detail each of the techniques that have been used, some
discussion of code particulars is in order. Of necessity,
our comments will be brief and contain jargon that may
be unfamiliar to readers without numerical experience,
and they must be restricted in scope to the techniques
used by our own codes.

Our code (Hawley and Stone, 1995) solves the equa-
tions of compressible MHD through operator-split,
time-explicit, piecewise-linear monotonic finite differ-
encing in a three-dimensional, locally Cartesian accre-
tion disk system. The simulations are single-fluid, use an
adiabatic or isothermal equation of state, and assume
infinite conductivity; any of these assumptions can be
relaxed, if required. The algorithms employed are very
similar to those used in the well-known ZEUS-3D astro-
physics code (Stone and Norman, 1992a, 1992b). The
hydrodynamic techniques have been widely applied in
previous studies and are described in Stone and Norman
(1992a). The MHD portion of the algorithm uses the
constrained transport (CT) approach of Evans and Haw-
ley (1988), which directly evolves the magnetic-field
components while preserving the constraint “ ·B50. The
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CT framework is a prescription for locating fields and
their derived electromotive forces on the grid to ensure
that the Stokes theorem is satisfied numerically to ma-
chine accuracy for all curvilinear coordinate systems. CT
permits wide latitude in the way that time-averaged
electromotive forces are obtained, and many choices for
the electromotive forces lead to highly dispersive (and
hence unsatisfactory) transverse (Alfvén) wave evolu-
tion. The procedure currently in use takes information
propagated along Alfvén characteristics to solve a re-
stricted set of characteristic equations for time-advanced
fields and electromotive forces. This is known as the
method of characteristics constrained transport
(MOCCT) algorithm, and its first implementation is de-
scribed in detail in Stone and Norman (1992b). Recent
algorithm improvements, along with a discussion of
MOCCT’s strengths and weaknesses, are presented in
Hawley and Stone (1995).

There are several sources of dissipation in our code,
all of which, unfortunately, tend to be referred to as a
type of viscosity. There is ‘‘numerical viscosity,’’ better
referred to as diffusion, which is not an explicit term in
any equation, but is present due to finite gridding ef-
fects. Numerical diffusion was briefly discussed in Sec.
III.D.2. ‘‘Artificial viscosity’’ is explicitly added to the
equations of motion, but it does not take the form of a
true, Navier-Stokes viscous stress tensor. Rather, its
form is based on that proposed by von Neumann and
Richtmyer (1950), which is in essence an anisotropic
pressure tensor. But in this viscous pressure, the role of
thermal velocity is played by a velocity gradient multi-
plied by a characteristic length. The artificial viscosity is
constructed so that it is unimportant except as a means
to resolve shocks. Its properties are closer to bulk vis-
cosity than to shear viscosity, but it is equivalent to nei-
ther. Artificial viscosity serves a dual role: it dissipates
high-frequency numerical (unphysical) noise and it pro-
vides a route for the increase in entropy accompanying
irreversible processes (i.e., shocks). A more detailed de-
scription of the artificial viscosity term can be found in
Stone and Norman (1992a). No other form of viscosity is
added to the equations of motion.

Generally, an explicit resistivity can be included in
any of the MHD codes commonly used. Even without
such a term, however, the magnetic field is subject to
dissipation and reconnection through numerical trunca-
tion. In large part this is due to the mutual cancellation
of oppositely directed magnetic-field components when
advected into a single zone. Since there is no associated
heating in this ‘‘grid resistivity,’’ energy is lost from the
system. Because these losses occur at the grid scale,
when MHD turbulence plays a significant role in the
disk dynamics there can be no formal convergence of
the solution with increasing resolution. Such conver-
gence could be achieved by introducing a sufficiently
large resistivity and viscosity that the dissipation length
scales are fully resolved. However, given the dynamic
range limitations of a three-dimensional computation,
this approach is generally impractical: large scales in our
simulations would be directly affected along with the
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small scales. Instead, we allow grid-based reconnection,
but calibrate its effects through resolution studies and
(most importantly) by checking the results against other
simulations using different numerical techniques or ex-
plicit dissipation.

Code performance has been tested using a variety of
problems, including Alfvén wave propagation, MHD so-
lar wind problems, MHD shock tubes, and the evolution
of a two-dimensional coronal mass-ejection transient
(Stone et al., 1992). Together, these tests verify the abil-
ity of the algorithm to model Lorentz force terms in
multiple dimensions, to capture MHD shocks, and to
propagate all MHD wave families in moving and sta-
tionary media. Further diagnostics include direct exami-
nation of the error terms and measurements of the rate
of convergence to the appropriate analytic solution.

We have carried out both resolution experiments and
direct comparisons with dynamo spectral code simula-
tions (as described in Hawley et al., 1995, 1996); these
tests indicate that while the present code has numerical
diffusion typical of finite-difference schemes, unstable
wavelengths are reasonably well described when they
extend over a minimum of about six grid zones. Further
direct comparisons have been made between our results
and those of Brandenburg et al. (1995), who use a vector
potential MHD code, and Matsumoto and Tajima
(1995) and Matsuzaki et al. (1997), who employ a modi-
fied Lax-Wendroff scheme. Although some of the quan-
titative details vary from code to code in these simula-
tions, their major conclusions are all mutually consistent.

3. The evolution of an initially vertical field

Let us return to the case of the uniform initial vertical
magnetic field, which, in two dimensions, led to stream-
ing. The weak-field instability grows rapidly for wave
numbers kvAz /V;1 (maximum growth rate50.75V),
provided that these wavelengths are adequately resolved
by the grid. The growth of this incompressible instability
and its saturation level are unaffected by the hydrody-
namic pressure in the box. The saturation amplitude is
also unaffected by the presence of a subthermal toroidal
field, except insofar as instabilities associated with that
field add to the overall energy. The fastest growing
mode is axisymmetric and produces spiral streaming. In
three-dimensional studies (Hawley et al., 1995), if the
computational box is large enough to allow an unstable
radial wavelength, the streaming is disrupted within a
few orbits, as the parasitic instabilities of Goodman and
Xu (1994) lead to fluid turbulence. This turbulence is
characterized by significant outward angular momentum
transport. Transport results because the turbulence is in-
herently anisotropic; perturbations in the x and y com-
ponents of the magnetic field and the velocity are highly
correlated. Further, power spectra of the simulations are
sharply peaked to the lowest wave numbers, indicating
that there are significant fluctuations on scales compa-
rable to the domain size. These large-scale fluctuations
contain most of the magnetic energy and contribute the
bulk of the stress.
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Both Reynolds ^ruRuf& and Maxwell ^2ruARuAf&
stresses transport angular momentum, with the Maxwell
stress typically a factor of 4 larger than the Reynolds
stress. The ratio of their sum TRf to the average mag-
netic pressure in the computational box is about 0.6, a
number that is fairly constant across a wide variety of
vertical-field simulations. The magnetic pressure re-
mains subthermal, and a typical value of the a param-
eter TRf /rcs

2 in these runs is a;0.2. But the numerical
value of a so obtained depends upon the initial field
strength.

Since the total stress is directly proportional to the
magnetic energy density, it is important to understand
what causes the latter to saturate. For vertical-field
simulations, Hawley et al. (1995) found empirically that
the average magnetic-field strength at saturation is pro-
portional to ^BZLZV&1/2. This is the geometric mean of
the (unchanging) box-averaged vertical field and the
largest possible field having an unstable vertical wave-
length ,LZ . This field is

~BZ!max.VLZAr/p .

The simplest guess for the saturated field strength would
have been this latter value. (In a physical setting, this
same reasoning suggests saturated Alfvén velocities of
the order of the sound speed.) The memory of the initial
vertical field is, however, never fully lost in the saturated
state, a result clearly due in some part to the choice of
boundary conditions, which ensure that ^BZ& remains
constant. The effects of grid resolution were found to be
minor, provided that the characteristic rapidly growing
wave numbers were resolved. As we shall see, initially
sinusoidal vertical fields lead to saturated states that are
independent of initial conditions. But significantly stron-
ger (factor of ;10) angular momentum transport can be
produced for the same computational domain and initial
field strength when ^BZ& Þ 0. The astrophysical conse-
quences of qualitative changes in a arising from changes
in field topology are intriguing and potentially impor-
tant; at the time of this writing, they remain largely un-
explored.

4. The evolution of an initially toroidal field

Of course, a vertical field is hardly essential for the
weak-field instability: when the initial field is toroidal,
the instability is still present. Although certain math-
ematical issues arise as to when a local nonaxisymmetric
instability is well posed (Ogilvie and Pringle, 1996), nu-
merical simulations are quite unambiguous: growth rates
are large enough that fully nonlinear turbulence sets in
almost as rapidly as it does in the axisymmetric vertical-
field case. The maximum growth rate for a toroidal con-
figuration in a Keplerian disk is 0.75V, the same value as
for a vertical field. However, as we have seen, extremely
large values of kZ are required to achieve this limit. In
numerical simulations (Hawley et al., 1995; Matsumoto
and Tajima, 1995) the observed growth rates are accord-
ingly lower than the vertical-field runs, but not dramati-
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cally so. Short-wavelength nonaxisymmetric modes are
the first to appear, but long wavelengths soon dominate.

Once again, turbulence develops and angular momen-
tum is transported outward. However, the turbulent
magnetic energy densities that result are an order of
magnitude smaller than those seen in the vertical-field
simulations. In the runs described in Hawley et al. (1995)
there is an increase of about one order of magnitude in
the field energy before saturation. The magnitude of a is
typically 1022, but, in common with their vertical-field
counterparts, the toroidal saturated states retain a
memory of their initial field strength. Once again the
saturated field strength is proportional to ^BYLYV&1/2,
the geometric average of the background field strength
and the largest field with unstable wavelengths able to fit
azimuthally in the box. The total stress remains propor-
tional to the magnetic pressure, with a constant of pro-
portionality ;0.5. And, as before, the Maxwell stress is
greater than the Reynolds stress by a factor of 3 to 4.

In Sec. IV.F.2, it was emphasized that the dominance
of toroidal fields, both in the numerical simulations and
(to the extent it may be inferred) in nature, does not
mean that neglecting poloidal fields is a good approxi-
mation. Hawley et al. (1995) gave an unambiguous dem-
onstration of this. In one case, after an initially toroidal
b5100 field evolved for a little over ten orbits, a b5400
uniform vertical field was introduced ‘‘by hand.’’ The
effect was immediate and dramatic. An eruptive in-
crease in the value of TRf took place. When a new satu-
ration level was reached, the magnetic energy was a fac-
tor of ;5 larger than the level reached without the
vertical field. In another experiment, a b53200 uniform
vertical field was started off with a b5100 uniform tor-
oidal field. Even though the initial vertical-field energy
was only some 3% of the toroidal field energy in this
run, the development was qualitatively similar to a pure
vertical-field evolution. At the conclusion of the simula-
tion, the magnetic energy density was a factor of ;4
larger than the purely toroidal initial field simulation. A
difference of 3% in the initial field energy going into a
poloidal component made a difference of 400% when
saturation was reached.

5. The evolution of an initially random field

The initial conditions with the most general applica-
bility are probably those for which ^B&50 (Hawley,
Gammie, and Balbus, 1996), specifically, a random ini-
tial field with zero net value within the computational
domain. Once again the instability is found to lead to
rapid field growth, turbulence, and enhanced transport.
The most important difference between these simula-
tions and those with ^B& Þ 0 is that there appears to be
no dependence on the initial magnetic-field strength,
provided of course that the characteristic unstable wave-
lengths are resolved. Figure 23 shows the evolution of
the magnetic energy in several runs that began with dif-
ferent initial values of b, ranging from 50 to 1600.

Although the magnetic energies show considerable
variation with time, their time averages are b;50. The
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toroidal field dominates; its energy is typically almost 10
times that of the poloidal field. The magnetic energy
values in these simulations were consistently less than
those for which net fields passed through the simulation
domain. Evidently, the presence of a net mean field (and
especially a net vertical field) serves as an effective
source term, which endures even as turbulence develops.
Absent from such a source, fluid motions must be self-
sustaining. In two-dimensional runs, we have seen this
most dramatically: the presence of a net vertical field
leads to an exponential runaway; its absence leads to a
complete decay of the instability.

Aside from the differences in magnetic energies, the
zero and net mean-field simulations are similar. As be-
fore, the turbulence is highly anisotropic, transporting
angular momentum outward through Maxwell and Rey-
nolds stresses, and the former exceeds the latter by a
factor of 3. The total stress remains proportional to the
magnetic energy, which here means that a typical value
for a is 1022. In all simulations, including these random-
initial-field models, the toroidal field energy is the larg-
est, followed by the radial, and then the vertical field
energy.

In ^B&50 simulations, what sets the level of the mag-
netic energy in the saturated state? Although only a
weak dependence was found on the grid resolution,
Hawley et al. (1996) noted a significant dependence of
the final magnetic-field energy on the level of artificial
viscosity: the larger the viscosity, the higher the final
field strength. Why should increasing a dissipative pa-
rameter lead to larger field growth? Certainly for the
linear development of the instability, it has the opposite
effect.

FIG. 23. Plots of normalized magnetic energy (b21) as a func-
tion of time for a series of three-dimensional shearing box
simulations. All simulations begin with a random magnetic
field (^B&50), but varying initial magnetic energy ^B2&. All
initial conditions lead to turbulence with comparable magnetic
energies. From Hawley et al., 1996.
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The point is that magnetic reconnection of field lines,
both in numerical simulations and in the real world, of-
ten involves large velocity gradients. Increasing the vis-
cosity while maintaining constant resistivity causes ther-
malization of kinetic energy on larger scales, but leaves
the small grid scale for the thermalization of magnetic
energy untouched. If the viscosity gets large, fluid ele-
ments are enjoined from getting close enough to allow
field-line reconnection. Whereas strong (suprathermal)
magnetic fields may overwhelm viscous stresses in a re-
connection front, the subthermal magnetic fields of in-
terest here are much less dominant. Driven to their ex-
treme, viscous stresses saturate at about the level of
thermal gas pressure, and this is more than enough to
overcome subthermal magnetic stresses. This suggests
that the ratio of the microscopic viscosity to resistivity,
i.e., the magnetic Prandtl number, is likely to be an im-
portant parameter controlling the level of magnetic-field
saturation. Suprathermal fields are less likely to be sen-
sitive to the magnetic Prandtl number.

In simulations, the viscosity and resistivity have diffu-
sive lengths set by the size of the grid zones. Of neces-
sity, these must be considerably greater than those ap-
propriate to real disks. However, it is still possible to
vary their ratio, and in the Hawley et al. (1996) simula-
tions, a large viscous diffusion relative to resistive diffu-
sion led to proportionately larger final mean B-field val-
ues. In the same spirit, including an explicit resistivity
term leads to smaller mean B-field values. While this
must still be regarded as a preliminary result, it is poten-
tially very important: for an ionized plasma the Prandtl
number is extremely temperature sensitive. Collisional
mean free paths increase sharply with temperature, rais-
ing the viscosity while lowering the resistivity. This is
reflected in the steep T4 temperature dependence of P
in Eq. (144). All of this suggests that disk midplane tem-
peratures in excess of 105 K may be associated with sig-
nificantly higher values of a. For the present, this is be-
yond the range of easy numerical verification.
Phenomenological applications of this behavior may be
quite interesting. In the temporal domain, increases in a
are associated with eruptive disk phenomena (Livio,
1994); spatial changes in a are needed in some impor-
tant disk models which become hot and thick in their
inner regions (Abramowicz, 1996; Narayan, 1996).

6. Shear vs vorticity

The role of the background rotational shear flow was
examined by Abramowicz, Brandenburg, and Lasota
(1996), who carried out a series of simulations allowing
the disk rotation law to vary from Keplerian. Such an
exercise is of more than academic interest; disks orbiting
Schwarschild or Kerr black holes are expected to have
rotation profiles that differ from Keplerian near the ho-
rizon. Further, disks with significant internal pressure,
the so-called thick disks, also have non-Keplerian angu-
lar momentum distributions. Abramowicz et al. (1996)
examined the turbulent saturation levels for the local
shearing box system with a variety of background shear
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index values q . They found an increase in a (and of
course the field energy) roughly in proportion to the
background-shear-to-background-vorticity ratio, as
q→2. That is, a was found to be proportional to
q(22q)21, as long as q did not get too close to 2. (In
the published runs, the maximum value of the ratio was
9.)

The notion of a precise linearity of the proportionality
should not be taken too far, since a and all other natural
fluid quantities presumably remain quite finite at q52,
when the constructed shear-to-vorticity ratio becomes
infinite. But the general trend exhibited by these
simulations—vorticity limits disk turbulence, while shear
promotes it—is an interesting lesson, which is easily un-
derstood. It follows quite naturally from the fluctuation
equation (86). Focus on the turbulent source terms, and
note

2V^ruRuf&1
dV

d ln R
^r~uRuf2uA RuA f!&

5
1
R

dR2V

dR
^ruRuf&2

dV

d ln R
^ruARuAf&. (161)

In other words, the Reynolds stress couples to the large-
scale vorticity, and the Maxwell stress couples to the
shear. In all the runs reported by Abramowicz et al.
(1996), the shear and vorticity had opposite signs, i.e.,
the disks were Rayleigh stable. Hence the above formu-
lation shows that outward (vorticity-coupled) Reynolds
transport is a dynamic sink for angular momentum fluc-
tuations, whereas outward (shear-coupled) Maxwell
transport is a dynamic source. Their net sum is a dy-
namic source, but without the Maxwell stress there is, of
course, no turbulence at all. Increasing the shear while
maintaining or lowering the vorticity should strengthen
the sources of turbulence, and this is precisely what the
Abramowicz et al. (1996) simulations show.

7. Density stratification

Of the numerical MHD work done to date, simula-
tions including vertical gravity come the closest to mod-
eling a full accretion disk. Brandenburg et al. (1995),
Stone et al. (1996), and Matsuzaki et al. (1997) have car-
ried out MHD simulations of local, vertically stratified
shearing boxes. Although all groups report some nu-
merical dependencies in the precise numbers resulting
from the simulations, comparisons between the various
results and the use of several grid resolutions helps to
separate the physics from the numerical artifacts. Higher
resolution results in larger magnetic-field levels, stronger
turbulence, and greater transport. For example, by dou-
bling the resolution in all three dimensions, Stone et al.
(1996) found an increase in magnetic energy of about
25% in one comparison simulation.

Somewhat surprisingly, the effects of stratification for
the evolution of a weak magnetic field, at least as re-
vealed in the simulations, are rather weak. Homoge-
neous and stratified boxes evolve remarkably similarly.
Of course, the weak-field linear instability is unaffected,
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since the most unstable displacements lie in planes nor-
mal to the stratification. However, even the nonlinear
development of the instability, which might have been
strongly quenched by magnetic buoyancy, continues
much as it does in the homogeneous simulations. There
appears to be nothing about stratification that alters the
basic picture of MHD turbulent angular momentum
transport. The initial instability grows rapidly and gen-
erates self-sustaining MHD turbulence. The turbulence
is characterized by a Kolmogorov-like power-law spec-
tral distribution; most of the turbulent energy is found in
the smallest wave numbers (Brandenburg et al., 1995;
Stone et al., 1996). Correlated fluctuations in the mag-
netic and velocity fields produce Maxwell and Reynolds
stresses, which transport angular momentum outward.
The total stress is once again proportional to the mag-
netic pressure, which saturates at a subthermal level. In
essence, a stratified disk simulation is dominated by the
dynamics within a scale height of its midplane, where it
strongly resembles a homogeneous disk. Values of a
range from 0.005–0.01 in Stone et al. (1996) and Mat-
suzaki et al. (1997) to 0.001–0.005 in Brandenburg et al.
(1995). No single value of a should be raised to canoni-
cal status. One would be more justified at this point in
regarding these values as lower limits for the stresses in
weakly magnetized disks.

With hindsight, the lack of qualitative change intro-
duced by density stratification could have been foreseen.
The point is that the characteristic growth rate of the
instability is V, which should be compared with the rate
vb /H , the rate at which a buoyant velocity vb crosses a
disk scale height. Unless vb;cs , the instability will win,
and magnetic losses will be dominated by resistivity. Nu-
merical resistivity occurs naturally at grid scale in the
simulations, but the statement is no less true for physical
resistivities as well.

Stone et al. (1996) found that effects of different equa-
tions of state (e.g., adiabatic vs isothermal) were largely
inconsequential for the development of the instability,
but there was some influence on the overall structure of
the disk in the long term. In one simulation with an
adiabatic equation of state, Stone et al. (1996) found
that, as the disk heated due to (artificial) viscous dissi-
pation, the increase in the disk temperature led to a
commensurate increase in the scale height, producing a
similar increase in magnetic energy. This result is consis-
tent with the general a viscosity picture, namely, that
total stress (which is directly proportional to magnetic
pressure) should scale on average with total disk pres-
sure (gas plus magnetic), which determines the disk
scale height.

Strong turbulence and resulting significant vertical
motions may themselves have important consequences
for the vertical disk structure and energy transport. For
example, the toroidal field simulation of Stone et al.
(1996) began with the field confined below one scale
height, but after five orbits the field was distributed
throughout the computational domain. In fact, at late
times the magnetic energy density increased with height
by a modest amount. A little field goes a long way in a
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low-density atmosphere. Since the gas pressure drops
with height, there is a corresponding decrease in b.
Thus, while buoyant losses, as noted, do not dominate
the local magnetic energy budget, the existence of verti-
cal transport in both magnetic fields and passive disk
contaminants strongly hints that accretion disks will be
surrounded by a hot magnetized corona. The existence
of a very hot gas in accretion disk systems has long been
suspected on the basis of their hard x-ray spectra.
Whether the explanation has its origins in disk turbu-
lence and the strength of the disk magnetic field (Mine-
shige, Kusnose, and Matsumoto, 1995) or in some form
of non-Keplerian accretion (Narayan, Yi, and Mahade-
van, 1995) is an open and vigorously contested question
at this time.

C. MHD simulations: a summary

What, then, have we learned from local numerical
simulations? First and foremost, they have confirmed
the linear stability analysis, namely, that weak magnetic
fields produce a powerful, local instability in differen-
tially rotating systems. They have demonstrated that a
weak magnetic field of any topology leads directly and
naturally to turbulence and outward angular momentum
transport. The contrast with purely hydrodynamic simu-
lations is dramatic. As recently as the beginning of this
decade no turbulent angular momentum transport
mechanism had been explicitly demonstrated to exist
which would allow accretion disks to accrete at any-
where near the inferred observational rates. Now such a
mechanism has been identified, and no special global
conditions, external torques, exotic physics, or other
contrivances are required, only a subthermal field, well
coupled to the gas, and outwardly decreasing differential
rotation.

Shakura and Sunyaev (1973) originally postulated that
angular momentum transport was accomplished by tur-
bulence and that the resulting stress tensor could be
scaled by the disk pressure, TRf5aP . The a viscosity
approach has been successful in describing mean disk
properties, and since the early 1970s it has been clear
that there is something correct about this phenomenol-
ogy. Yet, despite the insights such models have provided
investigators (e.g., in the study of dwarf nova eruptions),
time-dependent models relying upon adjustable viscosity
parameters ultimately lack predictive power. The lack of
knowledge about a’s underlying physical behavior is a
serious limitation for such issues as long-term dynamic
stability and detailed disk structure and evolution. To
date, the primary contribution of numerical disk simula-
tions has been to put the basis of the a formalism on a
firmer physical footing. But because these simulations
have of necessity been limited to dynamics, important
qualitative phenomena are still unexplored: What might
cause a suddenly to jump an order of magnitude? What
is the role of the microscopic diffusion coefficients and
opacity effects in determining a? Numerical formula-
tions of the answers to these questions are still some way
off.
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Because the turbulence is fundamentally MHD in ori-
gin and character, the stress scales directly with the total
magnetic pressure. The simulations have found a con-
stant of proportionality of about 0.5 between the stress
and the magnetic pressure. The relationship between the
magnetic pressure and the total pressure (which may in
some cases also include a contribution from radiation) is
less direct and the subject of continuing active research.
When radiation pressure is important, for example, mag-
netic pressure may not scale with total pressure, but with
gas pressure alone (Vishniac, 1995). However, the simu-
lations to date have shown that it is easily possible to
obtain numerical values of a in accord with the wide
range inferred from observations: from as high as 0.6
when there is a net vertical field (Hawley et al., 1995) to
;531023 for random, zero-mean-field models (Bran-
denburg et al., 1995).

The elucidation of the underlying physical mechanism
regulating accretion disk evolution gives us the expecta-
tion that detailed, first-principles disk models will even-
tually be possible. Several future lines of inquiry can
easily be imagined, although carrying them through will,
of course, be less than straightforward. One approach is
to improve the physics within a small local region of a
disk. Examples include radiation transport, partial ion-
ization, buoyancy, reconnection, and improved equa-
tions of state. Although there remain several fundamen-
tal questions that can be addressed by such local
simulations, ultimately fully global three-dimensional
MHD disk simulations will be required. To date, only
one such simulation has been published, that of Matsu-
moto and Shibata (1997). These authors have simulated
the evolution of an initially constant-angular-momentum
torus embedded in a vertical magnetic field, extending to
three dimensions the analysis of an earlier two-
dimensional simulation (Matsumoto et al., 1996). In this
case, the added dimension does not appear to lead to
qualitatively new dynamics. In both the two- and the
three-dimensional calculations, surface accretion was
observed to occur as a consequence of the rapid onset of
magnetorotational instability, leading to spiraling infall
and the beginnings of jetted outflow. The daunting tech-
nical requirements of such simulations, plus the (often
underappreciated) difficulties of visualizing, diagnosing,
interpreting, and simply managing the massive data
stream associated with such complex dynamic flows,
means that such global three-dimensional modeling will
remain a significant challenge for some time to come.

VI. ACCRETION DISK DYNAMOS

A. The dynamo-electric machine

The first 19th-century current-generating machines
consisted of a set of rotating coils in the field of perma-
nent steel magnets. In 1866, the German industrialist
and engineer Werner Siemens had a clever idea: instead
of permanent magnets, install electromagnets. Then
take the generated current itself, wind it around the
electromagnets, and thereby greatly strengthen the mag-
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netic field through which the coils turn. Siemens named
his device (which helped make him a very wealthy man)
a dynamo-electric machine. Its dynamic character distin-
guished it from the older, permanent-magnet, magneto-
electric device.

The British physicist and science popularizer Silvanus
Thompson could scarcely contain his enthusiasm: ‘‘The
cost of producing electric currents of any required
power is now simply the cost of . . . a dynamo-machine
and a steam-engine, and of the coal and labour neces-
sary to supply and attend them.’’ 7 While Thompson
seems to have had an unusual notion of what constitutes
a bargain, he knew a good idea when he saw it, and he
suggested that these machines, soon to be in common
usage, be referred to succinctly as dynamos.

So efficient seemed the Victorian dynamo machine, it
has remained to this day the conceptual prototype of all
large-scale cosmic magnetic fields: planetary, stellar, and
galactic. None of these fields has well understood ori-
gins. According to classical dynamo theory, the time-
varying magnetic flux caused by bulk fluid motions in a
continuum, conducting, magnetized fluid induces cur-
rents in the fluid. If conditions are right, these currents
reenforce the original source currents which gave rise to
the flux in the first place. It is, however, no simple mat-
ter to decide what the ‘‘right conditions’’ are in all cir-
cumstances, and rather than remain wedded to the idea
of self-reenforcing inductive currents, we follow the lu-
cid text of Moffatt (1978) and adopt an operational defi-
nition of a dynamo: if the motions of an isolated, mag-
netized, resistive fluid maintain a finite magnetic energy
density as t→` , then the velocity field acts as a dynamo.
Clearly, by this definition, the instability in a weakly
magnetized disk leads to a dynamo. But, as we shall see,
accretion disk dynamos do not operate by principles that
would be familiar to Herr Siemens.

B. A brief review of mean-field dynamo theory

The fundamental equation for the evolution of a mag-
netic field in a conducting fluid is the induction equation
(6c)

]B
]t

5“3~v3B2hB“3B!, (162)

which is a combination of the laws of Ampère, Faraday,
and Ohm. The last of these ‘‘laws’’ is phenomenological,
not fundamental, and excludes such effects as inertial
and pressure forces on the charge carriers (Spitzer,
1962). The result is the absence of a source term in the
induction equation and the need for a seed field to be
inserted by hand. For a binary disk this is not an issue,
since the gas presumably retains its stellar magnetiza-
tion, but it is very much an issue for the galaxy (Parker,
1979; Kulsrud and Anderson, 1992), a point we shall
touch on very briefly. ‘‘Battery forces’’ (Biermann, 1950)

7The quotation is from the dynamo entry in the Oxford En-
glish Dictionary.
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and radiative electron drag are strongly limited by self-
induction, and the resulting fields have associated Lar-
mor radii comparable to the macroscopic scale of the
system (Balbus, 1993). For the galaxy this is a disap-
pointing field strength of some 10219 G. Amplification
by pre-galactic turbulence has recently been suggested
by Kulsrud et al. (1997), while Rees (1993) has argued
that stellar dynamos may be the galaxy’s ultimate source
of magnetism. The problem remains open.

For the problem at hand, we take as our starting point
a weakly magnetized accretion disk. For the turbulent
velocity and magnetic fields, it is customary to decom-
pose these quantities into mean plus fluctuating compo-
nents. Averages are taken on scales over which the local
mean is treated as a constant, very much in the style of
Sec. III.A, where steady-state accretion was discussed.
There, as here, the large scale is defined by the disk
radius R , while the smaller averaging size is of order the
vertical scale height H or less. In our earlier treatment,
however, we did not distinguish between mean magnetic
fields and fluctuation fields, and we decomposed the ve-
locity field into a circular and noncircular component,
not a mean plus fluctuation. We shall nevertheless con-
tinue to use the notation u in this section for the fluctua-
tion velocity. The small (u^u&u!^u2&1/2) nonazimuthal
drift velocities, which formally ought to be absorbed into
our definition for the mean velocity, are immaterial to
our present purposes.

We therefore have

B5^B&1b, (163)

v5^v&1u. (164)

The magnetic and velocity fluctuations are, respectively,
b and u. If, following Moffatt (1978), we insert these
expressions into the induction equation and sort out the
resulting mean and fluctuating components, we find

]^B&
]t

5“3~^v&3^B&1^u3b&2hB“3^B&!, (165)

]b
]t

5“3~u3^B&1^v&3b1G2hB“3b!, (166)

where

G5u3B2^u3B&. (167)

In classical dynamo theory, we are invited to view the
turbulent velocity field v as a prescribed function of po-
sition and time, at least in a statistical sense. The main
point is that when the field is ‘‘weak,’’ Lorentz forces are
taken to be unimportant to the statistical properties of
the turbulence. Fluid forces are hydrodynamic, not mag-
netohydrodynamic. Conceptually, the hydrodynamic
turbulence molds the current to mimic the coil winding
of the dynamo machine, allowing the field to be self-
strengthening. Lorentz forces should not interfere with
how the coils are wound. Mathematically, the develop-
ment of dynamo theory begins with the argument that
^u3b& scales linearly with the local mean field ^B&. This
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would follow if u had no dependence upon B, for then
Eq. (166) would assure us of a linear scaling of b with
^B&.

This conclusion, that the mean electromotive force
^u3b& scales linearly with the mean magnetic field ^B&, is
the cornerstone of kinematic dynamo theory. It has been
suggested (Moffatt, 1978) that it is the absence of a cor-
responding relationship between ^v& and ^uiuj& that has
prevented shear turbulence theory from enjoying a mea-
sure of success comparable to that ascribed to dynamo
theory.

It is only fair to forewarn the reader that this formal-
ism does not fare well as an approach to accretion disk
dynamos. It is nevertheless important, for several rea-
sons, to have a sense of where this approach leads. First,
it is a benchmark with many years of literature behind it,
and it is inevitable that other turbulent fluid field ampli-
fication schemes will be compared with it. Second, ven-
ues other than disks are sites of field amplification, and
here kinematic dynamo theory may do better. Its do-
main of applicability is very much a lively and vigorously
contested issue (Cattaneo and Vainshtein, 1991; Kulsrud
and Anderson, 1992). Finally, even if kinematic dynamo
theory fails quantitatively, it has important lessons to
teach us with respect to how field ordering is influenced
by the symmetry of the turbulence.

The linearity ansatz suggests a relationship of the
form

^u3b& i5a ij^Bj&1b ijk

]^Bj&
]xk

1••• (168)

which is expected to converge rapidly with increasing
order of the derivatives. The b-parameter term leads to
an effective turbulent dissipation of the mean field [be-
cause of the presence of higher-order derivatives in Eq.
(165)], and we shall not pursue its consequences here.
The a term is the heart of the classical dynamo.

If the fluid may be approximated as isotropic on the
scales of interest, then

a ij^Bj&5aBi ,

where now a is a simple scalar. Clearly the possibility for
mean-field growth is at hand. If the mean velocity and
resistivity may be neglected, then the induction equation
is

]B
]t

5“3~aB!. (169)

Solutions to this equation based on, for example, force-
free configurations (“3B5CB with C constant) grow
exponentially while remaining force free. To develop a
feel for what properties of the fluid go into determining
a, start with

^u3b&k5^u3B&k5« ijkK uiBm

]xj

]Xm
L , (170)

where we have used the Lagrangian solution (15) and
ignored density variations. It is customary to argue that
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correlations in the velocity ui and Lagrangian Jacobian
]xj /]Xm will be stronger with each other than with the
magnetic field, whence

« ijkK uiBm

]xj

]Xm
L .« ijkK ui

]xj

]Xm
L ^Bm& ,

so that the a tensor takes the form

akm[« ijkK ui

]xj

]Xm
L . (171)

We may express this in terms of the velocity by noting

]xj

]Xm
5d jm1E
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t ]uj
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dt (172)

so that

akm5« ijkE
0

t K ui

]uj

]Xm
L dt . (173)

Returning once again to the assumption of isotropy, we
find
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(174)

where the “x notation indicates Lagrangian coordinates.
When the turbulence is isotropic, dynamo amplification
relies on the presence of mean helicity (‘‘coil windings’’)
in the velocity field.

We shall not comment further here on the assump-
tions and approximations that go into the derivation of
Eq. (174). They are often subtle, and mathematical rigor
is difficult to establish. Our point here is to arrive at the
salient physical features of classical mean-field dynamo
theory. To summarize, they are as follows:

(i) When the magnetic field is weak, it is assumed that
turbulence in a magnetized fluid can affect B, but the
back reaction on the turbulence is statistically unimpor-
tant.

(ii) Velocity and velocity gradient fluctuations are sig-
nificantly more correlated with each other than with
magnetic-field fluctuations.

(iii) The primary field amplification method is a sort
of self-inductive bootstrap, analogous to the dynamo-
electric machine described in Sec. VI.A.

(iv) The dynamics of the flow are not directly impor-
tant; flow kinematics determine the nature of field am-
plification. Some ‘‘handedness’’ in the velocity field is
necessary to produce amplification by self-induction.

C. Mean-field theory and nonlinear evolution of the
magnetorotational instability

It is difficult to reconcile several of the items high-
lighted above with the behavior of weak magnetic fields
in accretion disks. The fundamental problem is the as-
sumption that the velocity field u(r) may be prescribed
independently of B. The essence of the magnetorota-
tional instability is precisely the opposite: any wisp of a
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magnetic field is enough to drive and ultimately to main-
tain a turbulent velocity field. Lorentz forces, assumed
to be negligible while the field is ‘‘weak,’’ are in fact
never negligible. The field is never really weak because
there is nothing for it to be weak with respect to:
Alfvénic and slow-mode disturbances are indifferent to
the pressure, and the pressure is the only nonmagnetic
characteristic fluid stress that, in this context, sets an
intrinsic scale. As noted in the discussion in Sec. IV.B,
the presence of a magnetic field introduces degrees of
freedom to the fluid which have no purely hydrody-
namic counterpart. Since the u field is not defined inde-
pendently of B, the arguments leading to the conclusion
that ^u3b& scales linearly with ^B& break down. That
lost, the basis for kinematic mean-field dynamo theory is
gone.

The nature of dynamo activity in accretion disks has
been investigated in two numerical studies: Branden-
burg et al. (1995) and Hawley, Gammie, and Balbus
(1996). The first was a vector potential code, the second
used the MOCCT algorithm described in Sec. V.B.2.
Both studies simulated local shearing boxes, both used
the same boundary conditions in radius (quasiperiodic,
see Sec. III.D.3), and azimuth (periodic), but the vertical
boundary conditions were handled differently. Hawley
et al. (1996) used periodic boundary conditions in z .
This allowed flow through the vertical bounding sur-
faces, but did not allow the mean-field value ^B& to
evolve. Brandenburg et al. (1995) bounded the flow ver-
tically by enforcing what amount to reflecting wall
boundary conditions on the top and bottom boundaries.
This proscribed vertical outflow, but allowed the mean
azimuthal magnetic-field component to change with
time. Over the course of their simulation, Brandenburg
et al. (1995) noted changes in ^B&, including several field
reversals.

The two simulations, notwithstanding differences in
technique and boundary conditions, are in agreement on
their most important conclusion: Accretion disks are the
site of self-sustaining magnetic-field amplification, which
occurs despite the presence of significant grid loss, and
this amplification lies outside the domain of kinematic
dynamo theory. The broad significance of this finding is
that the conceptual picture of turbulence amplifying a
passive magnetic field,

turbulence→magnetic field

is replaced by the synergy of MHD turbulence:

turbulence↔magnetic field.

Magnetic fields are able not only to induce self-
reenforcing currents, but also to produce the turbulent
velocity field itself. It is simply not possible to prescribe
the statistical properties of the velocity field a priori.

In one respect, the underlying physics of an accretion
disk dynamo is simpler than that of a classical dynamo.
The disk dynamo operates by a linear process that feeds
off the differential rotation and is in essence no more
complicated than the stretching of a spring connecting
orbiting point masses (see Sec. IV.B). Stretching of
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magnetic-field lines increases their energy density at the
expense of differential rotation, and the process is ulti-
mately controlled, at least in simulations, by the field
lines’ pinching off and reconnecting. The energy effec-
tively lost in this reconnection is replenished by the on-
going field-line stretching, and a balance is struck. Be-
cause the fluid displacements and field-line stretching
are predominantly in the disk plane—a behavior whose
roots go back to the linear instability—by the time satu-
ration is reached, the azimuthal (Bf) and radial (BR)
components of the magnetic field are significantly larger
than the vertical (BZ) component (Hawley et al., 1996).
Moreover, Bf is fed both directly by shear and by the
instability, BR only by the instability, while any growth
in BZ is due to secondary agitation of the fluid. In what
Hawley et al. designated their ‘‘fiducial run’’—a random
initial magnetic field with b5800 in a box with
31363331 (x ,y ,z) grid zones—88% of the magnetic
energy was in the Bf

2 component, 9% in BR
2 , and 3% in

BZ
2 at saturation. Accretion disks are likely to be domi-

nated by their azimuthal magnetic-field component, a
trait they would share with the interstellar medium in
the disk of our own galaxy.

The mean helicity of the fiducial run was found to be
small: in nondimensionalized units (velocity as a fraction
of sound speed, length normalized to the vertical box
size),

2^v·“3v&;431023.

In the same units, the kinetic-energy fluctuations were
an order of magnitude larger. Though small, the finite
size of the helicity would be of interest if it were really a
true time-steady value, since there is no obvious pseudo-
scalar symmetry built into the initial conditions. Shear-
ing box simulations that do have such symmetry [e.g.,
the vertically stratified boxes of Stone et al. (1996) with
finite V ·“r] show mean helicity at saturation of about
the same size. Since fluctuations in the helicity are large,
and since a nonzero value for its mean is difficult to
understand, the statistical significance of finite ^v·“3v&
needs to be more firmly established. What is clear how-
ever, is that the field amplification in accretion disk dy-
namos does not depend upon mean finite helicity for its
existence.

Hawley et al. (1996) compared their work with earlier
simulations by Meneguzzi, Frisch, and Pouquet (1981).
The latter used a spectral code to simulate the three-
dimensional dynamo activity in an enclosed box result-
ing from explicit external driving forces. Both helical
and nonhelical driving were studied, and both types of
driving led to dynamo amplification. While the helical
stirring produced fairly coherent large-scale fields, the
nonhelical forces gave rise to a more intermittent field
structure. The accretion disk dynamo was qualitatively
very similar to the nonhelical dynamo of Menneguzzi
et al., as one might expect.

The finding that helicity in the turbulent velocity field
is not a prerequisite for dynamo amplification may lead
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one to the conclusion that the simple combination of
turbulence plus magnetic field invariably causes field
amplification. That this is not the case is clearly illus-
trated by the simulations of Hawley et al. (1996) of mag-
netized Cartesian shear flow. As discussed in Sec.
III.D.3, such flows are nonlinearly hydrodynamically un-
stable and break down into turbulence. The addition of
a weak magnetic field does not alter this behavior quali-
tatively, and it affords the possibility of following the
evolution of a magnetic field in self-produced non-MHD
turbulence.

The results of the Hawley et al. shear layer simulation
are compared with a disk dynamo simulation in Figs.
24(a) and 24(b). As these figures show, the sharp differ-
ence in the relative behavior of the magnetic and kinetic
energies is striking. In the shear layer [Fig. 24(a)], the
kinetic-energy fluctuations grow by feeding directly off
the background velocity gradient. But in the absence of
true differential rotation, the magnetic-field fluctuations
do not grow. Instead, the ever present large-scale shear
drives magnetic structure to ever larger radial wave
numbers, where it is lost to grid dissipation. The role of

FIG. 24. Evolution of turbulent magnetic and kinetic energies:
(a) Simulation of a simple shear flow. The kinetic energies
grow due to hydrodynamic instability, but despite the presence
of shear and turbulence, the magnetic energy declines after an
initial rise. From Hawley et al., 1996. (b) A dynamo simulation
driven by the weak-field MHD instability. The behavior of the
magnetic energy density relative to the kinetic energy is in
sharp contrast to the shear turbulence result of Fig. 24(a).
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the large-scale shear is important, as nonhelical ran-
domly forced turbulence does not drive down magnetic
energy and seems in fact to amplify it slowly (Meneguzzi
et al., 1981). By way of contrast, the kinetic and mag-
netic energies both rise to roughly equal levels in the
disk dynamo results of Fig. 24(b).

The long-term fate of the magnetic field in shear tur-
bulence is unclear (does it level off or vanish as t→`?),
and the grid dissipation surely enhances losses well be-
yond what is to be expected in an astrophysical plasma,
but the qualitatively different behavior of shear layers
and local disk patches is dynamic and real. Whereas a
shear layer is characterized by a long-term kinetic en-
ergy well in excess of the magnetic energy density, the
magnetic energy is comparable to or larger than the ki-
netic in a local disk box. What must be appreciated here
is that amplification of magnetic fields by hydrodynamic
turbulence cannot be taken for granted. Each problem is
special.

D. Saturation

Magnetic fields grow in accretion disks through the
action of the weak-field instability. What limits the
growth? There are two principal mechanisms: buoyancy
and dissipation. We consider each in turn.

When the magnetic pressure becomes comparable to
the thermal pressure in a gas, it is difficult to keep it
confined in a thin disk. Relative to its surroundings,
strongly magnetized gas has a smaller thermal pressure,
which often translates to a smaller density, and tends to
rise out of the disk because it is buoyant. Even static
equilibria are not immune to field expulsion because of
the magnetic analog of convective instabilities (New-
comb, 1961; Parker, 1966). To cross one vertical scale
height of a disk in a time 1/V requires a velocity on the
order of cs— roughly speaking, the sound speed. Buoy-
ant velocities are likely to be a small fraction of this, and
as a mechanism to continuously rid the disk of generated
magnetic field, buoyancy is too inefficient. One could
imagine, however, the field building up to a level at
which the magnetic instability was suppressed. Without
this source, even sluggish vertical motions would be able
to clear the field, leaving behind a weak remnant which
would retrigger the instability. The cycle would then re-
peat. This picture is the basis of a simple disk dynamo
scenario outlined by Tout and Pringle (1992).

The vertically stratified simulations reveal a more
complex picture, however. Power is injected at the
wave-number scale k;V/uA and quickly spreads to
both larger and smaller scales. Resistive dissipation oc-
curs at small grid scales at a rate which continuously
balances the injection. Velocities and magnetic fields are
dominated by their radial and azimuthal components.
Dissipation, not vertical advection, determines the level
of field saturation—at least in the numerical simulations.

Granting that the simulations vastly overestimate the
scale at which resistive losses occur, they may yet be
telling us something important. First, Hawley et al.
(1996) carried out runs at several different resolutions
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and found that the saturation field levels were statisti-
cally identical. These simulations had no vertical back-
ground gradients, but the Stone et al. (1996) simulations
did, and they showed very similar statistical behavior. In
particular, although regions of high magnetic-field
strength were seen to rise over periods of tens of orbits,
buoyancy was never the dominant field limitation
mechanism. Even regions of relatively large field rose
too slowly to outpace the instability.

It appears likely, therefore, that there is a dynamo
regime that is characterized by unstable growth continu-
ously balancing dissipation scale losses. This leads to
subthermal magnetic fields and a dimensionless stress
tensor a (the a of Shakura and Sunyaev, not the helicity
parameter) of order 1022. Whether there are other
modes of dynamo operation that arise naturally in accre-
tion disks—at different magnetic Prandtl numbers, for
example—is a fascinating and completely open question.

VII. SUMMARY

It does not seem possible to understand any facet of
turbulence-enhanced accretion disk transport without
the active participation of magnetic fields. Conversely,
when a subthermal magnetic field is present, turbulence
is well nigh unavoidable; when the field is suprathermal,
its Maxwell stress will be dynamically significant, and
once again enhanced transport will be hard to avoid.
There is a very good possibility that the decades old
mystery of the origin of accretion disk turbulence has
been solved.

At one level, matters are very simple, which lends cre-
dence to this claim. The origin of disk turbulence is a
local linear instability, akin to the classical Rayleigh
problem. But instead of inertial waves turning into eva-
nescent instabilities when the specific angular momen-
tum decreases outward, this fate befalls slow MHD
waves when the angular velocity decreases outward. The
formal result of all of this is that angular velocity
gradients—not angular momentum gradients—are the
critical stability discriminants in a weakly magnetized
gas. There is a very simple algorithm for correcting ro-
tational hydrodynamic stability criteria for the presence
of a weak magnetic field: replace all angular momentum
gradients with angular velocity gradients in the relevant
criterion. The new forms, for example, of the classical
Ho” iland criteria are given by Eqs. (130) and (132). Since
it is hard to imagine the usual stellar interior application
of these criteria to be devoid of any magnetic field, in
their original form they are of very limited validity.

There is an exact mechanical analog of the instability
when applied to disks: two orbiting point masses con-
nected by a weak spring (one whose oscillation fre-
quency is less than the orbital frequency) will drift apart
at an exponentially increasing rate. Alfvénic tension acts
precisely as such a spring, tethering neighboring fluid
elements. Ultimately, understanding the origins of ac-
cretion disk turbulence is no more difficult than simple
orbital mechanics.
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What is known of the turbulence itself? Here, of
course, matters become rapidly more complex. Still,
there are some reassuring patterns that emerge. It is
clear, for example, that the outcome of the instability is
outwardly directed enhanced angular momentum trans-
port. This is the hallmark of a true shearing instability,
as seen in both planar and Rayleigh-unstable Couette
flow. Externally driven disk turbulence need not lead to
outward angular momentum transport, as experience
with convection and tidal forcing has shown. The cou-
pling between the stress tensor TRf and differential ro-
tation is the energy source of the fluctuations if the tur-
bulence is self-generated [see Eq. (89)]. Outward flow of
angular momentum is a prerequisite for this coupling to
act as a source, not as a sink. Three-dimensional MHD
simulations verify this conclusion and produce values of
the phenomenological a parameter ranging from ;1022

to 0.6, depending upon the magnetic-field geometry. The
largest values of a occur when the magnetic field has a
nonvanishing mean vertical component. These magni-
tudes roughly bracket the range of a inferred from ob-
servations (Lin and Papaloizou, 1996). How reliable are
the numerical a values? We cannot yet be sure.

The central problem in accretion disk theory is no
longer to find out what turns turbulence on. It is to find
out what tries to turn it off. We do not yet know the role
of global disk geometry, for the problem of understand-
ing accretion disk turbulence is intimately linked to un-
derstanding the dynamo behavior of the fluid. We do
not know how the relative sizes of the microscopic vis-
cosity and resistivity influence the final field strength,
but there is just a hint that it is important: raising the
artificial viscosity parameter in numerical simulations
enhances the final magnetic-field strength at saturation.
Astrophysically, the viscosity-to-resistivity ratio (mag-
netic Prandtl number) is likely to be very temperature
sensitive. What are the phenomenological conse-
quences? Might there be a secondary instability taking
the disk from one turbulent saturated state to another,
as suggested by dwarf novae eruptions? How does any
of this relate to formation of diagnostic emission lines or
the maintenance of an x-ray corona? Again and again
we are ignorant.

The good news is that, for the first time, it appears
that we know in which directions we should be looking
to begin to find answers to questions like these.
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Brandenburg, A., Å Nordlund, R. F. Stein, and U. Torkelsson,
1995, Astrophys. J. 446, 741.

Brummel, N., F. Cattaneo, and J. Toomre, 1995, Science 269,
5229; 269, 1370.

Cabot, W., 1996, Astrophys. J. 465, 874.
Cabot, W., and J. B. Pollack, 1992, Geophys. Astrophys. Fluid

Dyn. 64, 97.
Cameron, A. G. W., 1978, Moon Planets 18, 5.
Canizzo, J. K., P. Ghosh, and J. C. Wheeler, 1982, Astrophys.

J. Lett. 260, L83.
Cattaneo, F., and S. I. Vainshtein, 1991, Astrophys. J. Lett.

376, L21.
Chandrasekhar, S., 1960, Proc. Natl. Acad. Sci. USA 46, 253.
Chapman, S., and T. G. Cowling, 1970, Mathematical Theory of

Nonuniform Gases (Cambridge University, Cambridge, En-
gland).

Coles, D., 1965, J. Fluid Mech. 21, 385.
Crawford, J. A., and R. P. Kraft, 1956, Astrophys. J. 123, 44.
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
Curry, C., and R. Pudritz, 1996, Mon. Not. R. Astron. Soc. 281,
119.

Donnelly, R. J., and M. Ozima, 1960, Phys. Rev. Lett. 4, 497.
Draine, B. T., W. G. Roberge, and A. Dalgarno, 1983, Astro-

phys. J. 264, 485.
Drazin, P. G., and W. H. Reid, 1981, Hydrodynamic Stability

(Cambridge University, Cambridge, England).
Dwarkadas, V. V., and S. A. Balbus, 1996, Astrophys. J. 467,

87.
Eardley, D. M., and A. P. Lightman, 1975, Astrophys. J. 200,

187.
Evans, C. R., and J. F. Hawley, 1988, Astrophys. J. 332, 659.
Frank, J., A. R. King, and D. J. Raine, 1985, Accretion Power

in Astrophysics (Cambridge University, Cambridge, En-
gland).

Frieman, E., and M. Rotenberg, 1960, Rev. Mod. Phys. 32, 898.
Frisch, U., and S. A. Orszag, 1990, Phys. Today 43, 1,24.
Gammie, C. F., 1996, Astrophys. J. 457, 355.
Gammie, C. F., 1997, private communication.
Gammie, C. F., and S. A. Balbus, 1994, Mon. Not. R. Astron.

Soc. 270, 138.
Gat, O., and M. Livio,, 1992, Astrophys. J. 396, 542.
Gehrels, T., 1978, Ed., Protostars and Planets (University of

Arizona, Tucson).
Giacconi, R., H. Gursky, F. R. Paolini, and B. B. Rossi, 1962,

Phys. Rev. Lett. 9, 439.
Goldreich, P., J. Goodman, and R. Narayan, 1986, Mon. Not.

R. Astron. Soc. 221, 339.
Goldreich, P., and D. Lynden-Bell, 1965, Mon. Not. R. Astron.

Soc. 130, 125.
Goldreich, P., and G. Schubert, 1967, Astrophys. J. 150, 571.
Goldreich, P., and S. D. Tremaine, 1978, Astrophys. J. 222,

850.
Goldreich, P., and S. D. Tremaine, 1979, Astrophys. J. 233,

857.
Goodman, J., 1993, Astrophys. J. 406, 596.
Goodman, J., and G. Xu, 1994, Astrophys. J. 432, 213.
Goodstein, D., 1974, States of Matter (Prentice-Hall, Engle-

wood Cliffs, NJ).
Hawley, J. F., 1991, Astrophys. J. 381, 496.
Hawley, J. F., and S. A. Balbus, 1991, Astrophys. J. 376, 223.
Hawley, J. F., and S. A. Balbus, 1992, Astrophys. J. 400, 595.
Hawley, J. F., C. F. Gammie, and S. A. Balbus, 1995, Astro-

phys. J. 440, 742.
Hawley, J. F., C. F. Gammie, and S. A. Balbus, 1996, Astro-

phys. J. 464, 690.
Hawley, J. F., and J. M. Stone, 1995, Comput. Phys. Commun.

89, 127.
Hayashi, C., 1981, Prog. Theor. Phys. Suppl. 70, 35.
Hill, G. W., 1878, Am. J. Math. 1, 5.
Horne, K., 1995, Astron. Astrophys. 297, 273.
Howard, L. N., 1962, J. Fluid Mech. 13, 158.
Howard, L. N., and A. S. Gupta, 1962, J. Fluid Mech. 14, 463.
Jackson, J. D., 1975, Classical Electrodynamics, 2nd ed. (Wiley,

New York).
Katz, J. I., 1985, in Cataclysmic Variables and Low-mass X-Ray

Binaries, edited by D. Q. Lamb and J. Patterson (Reidel,
Dordrecht), p. 359.

Kley, W., J. C. B. Papaloizou, and D. N. C. Lin, 1993, Astro-
phys. J. 416, 679.

Knobloch, E., 1992, Mon. Not. R. Astron. Soc. 255, 25p.
Kuiper, G., 1941, Astrophys. J. 93, 133.
Kulsrud, R. M., and S. W. Anderson, 1992, Astrophys. J. 396,

606.
Kulsrud, R. M., R. Cen, J. P. Ostriker, and D. Ryu, 1997, As-

trophys. J. 480, 481.



52 S. A. Balbus and J. F. Hawley: Instability and turbulence in accretion disks
Lada, C. J., 1985, Annu. Rev. Astron. Astrophys. 23, 267.
Larson, R. B., 1989, in The Formation and Evolution of Plan-

etary Systems, Space Telescope Institute Symposium Series 3,
edited by H. A. Weaver and L. Danly (Cambridge Univer-
sity, Cambridge England), p. 31.

Levy, E. H., and J. I. Lunine, 1993, Protostars and Planets III
(University of Arizona Press, Tucson, Arizona).

Lin, C. C., and F. H. Shu, 1964, Astrophys. J. 140, 646.
Lin, D. N. C., 1989, in Theory of Accretion Disks, edited by F.

Meyer, W. J. Duschl, J. Frank, and E. Meyer-Hofmeister
(Kluwer, Dordrecht), p. 89.

Lin, D. N. C., and J. C. B. Papaloizou, 1980, Mon. Not. R.
Astron. Soc. 191, 37.

Lin, D. N. C., and J. C. B. Papaloizou, 1996, Annu. Rev. As-
tron. Astrophys. 34, 703.

Lin, D. N. C., J. C. B. Papaloizou, and G. Savonije, 1990, As-
trophys. J. 364, 326.

Livio, M., 1994, in Interacting Binaries, Saas–Fee Advanced
Course 22, edited by H. Nussbaumer and A. Orr (Springer,
Berlin), p. 142.

Lubow, S. H., J. E. Pringle, and R. R. Kerswell, 1993, Astro-
phys. J. 419, 758.

Lynden-Bell, D., 1969, Nature (London) 223, 690.
Lynden-Bell, D., and J. E. Pringle, 1974, Mon. Not. R. Astron.

Soc. 168, 603.
Marsh, T. R., and K. Horne, 1988, Mon. Not. R. Astron. Soc.

235, 269.
Matsumoto, R., and K. Shibata, 1997, in Accretion Phenomena

and Related Outflows, edited by D. Wickramsinghe, L. Fer-
rario, and G. Bicknell (Astronomical Society of the Pacific,
San Francisco), p. 443.

Matsumoto, R., and T. Tajima, 1995, Astrophys. J. 445, 767.
Matsumoto, R., Y. Uchida, S. Hirose, K. Shibata, M. R. Ha-

yashi, A. Ferrari, G. Bodo, and C. Norman, 1996, Astrophys.
J. 461, 115.

Matsuzaki, T., R. Matsumoto, T. Tajima, and K. Shibata, 1997,
in Accretion Phenomena and Related Outflows, edited by D.
Wickramsinghe, L. Ferrario, and G. Bicknell (Astronomical
Society of the Pacific, San Francisco), p. 766.

Meneguzzi, M., U. Frisch, and A. Pouquet, 1981, Phys. Rev.
Lett. 47, 1060.

Mineshige, S., M. Kusnose, and R. Matsumoto, 1995, Astro-
phys. J. 445, 43.

Moffatt, K., 1978, Magnetic Field Generation in Electrically
Conducting Fluids (Cambridge University, Cambridge, En-
gland).

Moreno, C., R. G. M. Rutten, and V. S. Dhillon, 1996, in Cata-
clysmic Variables and Related Objects, edited by A. Evans
and J. H. Woods (Kluwer, Dordrecht), p. 15.

Narayan, R., 1996, in Physics of Accretion Disks, edited by S.
Kato, S. Inagaki, S. Mineshige, and J. Fukue (Gordon and
Breach, Amsterdam), p. 15.

Narayan, R., I. Yi, and R. Mahadevan, 1995, Nature (London)
374, 623.

Newcomb, W., 1961, Phys. Fluids 4, 391.
Novikov, I. D., and K. S. Thorne, 1973, in Black Holes—Les

Astres Occlus, edited by C. De Witt (Gordon and Breach,
New York), p. 346.

Ogilvie, C., and J. E. Pringle, 1996, Mon. Not. R. Astron. Soc.
279, 152.

Oran, E. S., and J. P. Boris, 1993, Comput. Phys. 7, 523.
Orszag, S. A., L. C. Kells, 1980, J. Fluid Mech. 96, 161.
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
Papaloizou, J. C. B., and D. N. C. Lin, 1995, Annu. Rev. As-
tron. Astrophys. 33, 505.

Papaloizou, J. C. B., and J. E. Pringle, 1984, Mon. Not. R.
Astron. Soc. 208, 721.

Papaloizou, J. C. B., and E. Szuszkiewicz, 1992, Geophys. As-
trophys. Fluid Dyn. 66, 223.

Parker, E. N., 1966, Astrophys. J. 145, 811.
Parker, E. N., 1979, Cosmical Magnetic Fields (Oxford Univer-

sity Press, Oxford).
Petterson, J. A., 1983, in Accretion Driven X-ray Sources, ed-

ited by W. H. G. Lewin and E. P. J. van den Heuvel (Cam-
bridge University, Cambridge, England), p. 367.

Pierrehumbert, R. T., 1986, Phys. Rev. Lett. 57, 2157.
Prendergast, K. H., and G. R. Burbidge, 1968, Astrophys. J.

Lett. 151, L83.
Pringle, J. E., 1981, Annu. Rev. Astron. Astrophys. 19, 137.
Porter, D. H., and P. R. Woodward, 1994, Astrophys. J., Suppl.

Ser. 93, 309.
Porter, D. H., P. R. Woodward, W. Yang, and Q. Mei, 1990,

Ann. (N.Y.) Acad. Sci. 617, 234.
Rees, M. J., 1984, Annu. Rev. Astron. Astrophys. 22, 471.
Rees, M. J., 1993, in Cosmical Magnetism, edited by D.

Lynden-Bell (Kluwer, Dordrecht), p. 155.
Reynolds, O., 1883, Philos. Trans. R. Soc. London 174, 935.
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