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• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Jeffrey Dean and Luiz André Barroso. The tail at scale.



MANAGING YOUR MENTAL HEALTH DURING
CURRENT EVENTS
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Communication of the ACM 56, 2 (February 2013), 74-
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Google Fellow, VP of Engineering, Technical lead of 
Google’s infrastructure and datacenters
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AVAILABILITY METRICS

• Mean time between failures (MTBF)

• Mean time to repair (MTTR)

• Availability = (MTBF – MTTR)/MTBF

• Example:
• MTBF = 10 minutes

• MTTR = 1 minute

• A = (10 – 1) / 10 = 90% availability

• Can improve availability by increasing MTBF or by reducing 
MTTR
• Ideally, systems never fail but much easier to test reduction in MTTR 

than improvement in MTBF



HARVEST AND YIELD

• yield = queries completed/queries offered
• In some sense more interesting than availability 

because it focuses on client perceptions rather than 
server perceptions

• If a service fails when no one was accessing it…

• harvest = data available/complete data
• How much of the database is reflected in each query?

• Should faults affect yield, harvest or both?



DQ PRINCIPLE

• Data per query * queries per second à constant

• At high levels of utilization, can increase queries 
per second by reducing the amount of input for 
each response

• Adding nodes or software optimizations changes 
the constant



PERFORMANCE “HOCKEY STICK” GRAPH
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TAIL TOLERANCE: DEPENDENT/SEQUENTIAL PATTERN

• Consider iterative lookups in a service to build a 
web page

• E.g., Facebook

• Issue request, get response, based on response, 
issue new request, etc…

• How many iterations can we issue within a 
deadline D?



EFFECT OF LATENCY VARIATION



PERFORMANCE NOT AT SCALE

• What is the expected time to service one request 
to one server?

• 10ms? more? less?

Aggregator avg=10ms
99th=1,000ms



PERFORMANCE AT SCALE

• What is the expected time to service three correlated requests to three 
servers?

• Must wait until all complete before the load balancer can return a result to 
the user

• 10ms? more? less?

Aggregator

avg=10ms
99th=1,000ms

avg=10ms
99th=1,000ms

avg=10ms
99th=1,000ms



COMPONENT VARIABILITY AMPLIFIED BY SCALE

• Latency variability is magnified at the service 
level.

100



REQUEST LATENCY MEASUREMENT 

• Key Observation:

• 5% servers contribute nearly 50% latency.

• Why not just rid of those “slow” 5% of the servers?

50%+



FACTORS OF VARIABLE RESPONSE TIME

• Shared Resources (Local)

• CPU cores

• Processors caches

• Memory bandwidth

• Global Resource Sharing

• Network switches

• Shared file systems

• Daemons

• Scheduled Procedures



FACTORS OF VARIABLE RESPONSE TIME

• Maintenance Activities

• Data reconstruction in distributed file systems

• Periodic log compactions in storage  systems

• Periodic garbage collection in garbage-collected languages

• Queueing

• Queueing in intermediate servers and network switches



FACTORS OF VARIABLE RESPONSE TIME

• Power Limits

• Throttling due to thermal effects on CPUs

• Garbage Collection

• Random access in solid-state storage devices

• Twitter’s interesting take on GC…

• Energy Management

• Power saving modes

• Switching from inactive to active modes



RANDOM VARIABLES: NORM(0,1)



RANDOM VARIABLES: NORM(𝜇, 𝜎)



EXPLORING NORMAL RANDOM VARIABLES WITH 
GOOGLE SHEETS

• You too can generate observations of a normal 
random variable by adding this to a google 
sheets (or excel, numbers, etc) document:

• =NORMINV(rand(),0,1)



CASE STUDY: MEMCACHED

• Popular in-memory cache

• Simple get() and put() interface

• Useful for caching popular or expensive requests



BASELINE: DATABASE-DRIVEN WEB QUERY

Web server
Database Slow!

Complex query

Result



MEMCACHED EXAMPLE: CACHE HIT

Web server
Database

Memcached

Complex query
Result



MEMCACHED EXAMPLE: CACHE MISS

Web server
Database

Memcached

Slow!

Complex query

Complex query

Result

No result found!

Store result



CASE STUDY: MEMCACHED

• Popular in-memory cache

• Simple get() and put() interface

• Useful for caching popular or expensive requests

• LRU replacement policy



MEMCACHED DATA FLOW



EXPERIMENT: GET/SET WITH MEMCACHED

from pymemcache.client import base

client = base.Client(('localhost', 11211))

client.set('some_key', 'some value')

print(client.get('some_key'))



TAIL TOLERANCE: PARTITION/AGGREGATE

• Consider distributed memcached cluster

• Single client issues request to S memcached servers

• Waits until all S are returned

• Service time of a memcached server is normal w/ μ = 
90us, σ = 7us

• Roughly based on

measurements from my

former student



EXPLORING NORMAL RANDOM VARIABLES WITH 
GOOGLE SHEETS

• You too can generate observations of a normal 
random variable by adding this to a google 
sheets (or excel, numbers, etc) document:

• Based on Memcached:

• =NORMINV(rand(),90,7)



MATLAB SIMULATION
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WITHIN REQUEST SHORT-TERM ADAPTATIONS

• Tied Requests

• Hedged requests with cancellation mechanism.



REDUCING COMPONENT VARIABILITY

• Reduce Head-of-line 
Blocking

• Break long-running requests 
into a sequence of smaller 
requests.

• Synchronize Disruption

• Do background activities 
altogether.

• Differentiating Service 
Classes

• Differentiate non-
interactive requests

• High Level Queuing

• Keep low level queues short



LARGE INFORMATION RETRIEVAL SYSTEMS

• Google search engine

• No certain answers

• “Good Enough”

• Google’s IR systems are tuned to occasionally respond with 
good-enough results when an acceptable fraction of the 
overall corpus has been searched.



LARGE INFORMATION RETRIEVAL SYSTEMS

• Canary Requests

• Some requests exercising an 
untested code path may cause 
crashes or long delays.

• Send requests to one or two leaf 
servers for testing.

• The remaining servers are only 
queried if the root gets a successful 
response from the canary in a 
reasonable period of time.



HARDWARE TRENDS AND THEIR EFFECTS

• Hardware will only be more and more diverse

• So tolerating variability through software techniques are even 
more important over time.

• Higher bandwidth reduces per-message overheads. 

• It further reduces the cost of tied requests (making it more 
likely that cancellation messages are received in time).




