
AVAILABILITY AND PERFORMANCE
Feb 24, 2022

George Porter

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Jeffrey Dean and Luiz André Barroso. The tail at scale.

MANAGING YOUR MENTAL HEALTH DURING
CURRENT EVENTS

READING FOR THIS TOPIC

Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communication of the ACM 56, 2 (February 2013), 74-
80. DOI: https://doi.org/10.1145/2408776.2408794

Head of Google ai; (Co-)designed Google’s Ad engine,
Web crawler, indexer, and query serving system.
Created Spanner, BigTable, MapReduce, LevelDB,
TensorFlow (AI/ML system), …

Google Fellow, VP of Engineering, Technical lead of
Google’s infrastructure and datacenters

AVAILABILITY

Load Balancer

CSE, Triton,
Price Center

Graphics,
Networking,
EBU3B

Turing,
CSE, UCSD

Search index
servers

Search
terms

AVAILABILITY METRICS

• Mean time between failures (MTBF)

• Mean time to repair (MTTR)

• Availability = (MTBF – MTTR)/MTBF

• Example:
• MTBF = 10 minutes

• MTTR = 1 minute

• A = (10 – 1) / 10 = 90% availability

• Can improve availability by increasing MTBF or by reducing
MTTR
• Ideally, systems never fail but much easier to test reduction in MTTR

than improvement in MTBF

HARVEST AND YIELD

• yield = queries completed/queries offered
• In some sense more interesting than availability

because it focuses on client perceptions rather than
server perceptions

• If a service fails when no one was accessing it…

• harvest = data available/complete data
• How much of the database is reflected in each query?

• Should faults affect yield, harvest or both?

DQ PRINCIPLE

• Data per query * queries per second à constant

• At high levels of utilization, can increase queries
per second by reducing the amount of input for
each response

• Adding nodes or software optimizations changes
the constant

PERFORMANCE “HOCKEY STICK” GRAPH

0

5

10

15

20

25

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
es

po
ns

e
tim

e

System load

Knee

TAIL TOLERANCE: DEPENDENT/SEQUENTIAL PATTERN

• Consider iterative lookups in a service to build a
web page

• E.g., Facebook

• Issue request, get response, based on response,
issue new request, etc…

• How many iterations can we issue within a
deadline D?

EFFECT OF LATENCY VARIATION

PERFORMANCE NOT AT SCALE

• What is the expected time to service one request
to one server?

• 10ms? more? less?

Aggregator avg=10ms
99th=1,000ms

PERFORMANCE AT SCALE

• What is the expected time to service three correlated requests to three
servers?

• Must wait until all complete before the load balancer can return a result to
the user

• 10ms? more? less?

Aggregator

avg=10ms
99th=1,000ms

avg=10ms
99th=1,000ms

avg=10ms
99th=1,000ms

COMPONENT VARIABILITY AMPLIFIED BY SCALE

• Latency variability is magnified at the service
level.

100

REQUEST LATENCY MEASUREMENT

• Key Observation:

• 5% servers contribute nearly 50% latency.

• Why not just rid of those “slow” 5% of the servers?

50%+

FACTORS OF VARIABLE RESPONSE TIME

• Shared Resources (Local)

• CPU cores

• Processors caches

• Memory bandwidth

• Global Resource Sharing

• Network switches

• Shared file systems

• Daemons

• Scheduled Procedures

FACTORS OF VARIABLE RESPONSE TIME

• Maintenance Activities

• Data reconstruction in distributed file systems

• Periodic log compactions in storage systems

• Periodic garbage collection in garbage-collected languages

• Queueing

• Queueing in intermediate servers and network switches

FACTORS OF VARIABLE RESPONSE TIME

• Power Limits

• Throttling due to thermal effects on CPUs

• Garbage Collection

• Random access in solid-state storage devices

• Twitter’s interesting take on GC…

• Energy Management

• Power saving modes

• Switching from inactive to active modes

RANDOM VARIABLES: NORM(0,1)

RANDOM VARIABLES: NORM(𝜇, 𝜎)

EXPLORING NORMAL RANDOM VARIABLES WITH
GOOGLE SHEETS

• You too can generate observations of a normal
random variable by adding this to a google
sheets (or excel, numbers, etc) document:

• =NORMINV(rand(),0,1)

CASE STUDY: MEMCACHED

• Popular in-memory cache

• Simple get() and put() interface

• Useful for caching popular or expensive requests

BASELINE: DATABASE-DRIVEN WEB QUERY

Web server
Database Slow!

Complex query

Result

MEMCACHED EXAMPLE: CACHE HIT

Web server
Database

Memcached

Complex query
Result

MEMCACHED EXAMPLE: CACHE MISS

Web server
Database

Memcached

Slow!

Complex query

Complex query

Result

No result found!

Store result

CASE STUDY: MEMCACHED

• Popular in-memory cache

• Simple get() and put() interface

• Useful for caching popular or expensive requests

• LRU replacement policy

MEMCACHED DATA FLOW

EXPERIMENT: GET/SET WITH MEMCACHED

from pymemcache.client import base

client = base.Client(('localhost', 11211))

client.set('some_key', 'some value')

print(client.get('some_key'))

TAIL TOLERANCE: PARTITION/AGGREGATE

• Consider distributed memcached cluster

• Single client issues request to S memcached servers

• Waits until all S are returned

• Service time of a memcached server is normal w/ μ =
90us, σ = 7us

• Roughly based on

measurements from my

former student

EXPLORING NORMAL RANDOM VARIABLES WITH
GOOGLE SHEETS

• You too can generate observations of a normal
random variable by adding this to a google
sheets (or excel, numbers, etc) document:

• Based on Memcached:

• =NORMINV(rand(),90,7)

MATLAB SIMULATION

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

M
ax

im
u
m

 E
x
p
ec

te
d
 L

at
en

cy
 (

in
 u

s)

Simulated Number of Servers

99% N(90,50) distribution
50% N(90,50) distribution

WITHIN REQUEST SHORT-TERM ADAPTATIONS

• Tied Requests

• Hedged requests with cancellation mechanism.

REDUCING COMPONENT VARIABILITY

• Reduce Head-of-line
Blocking

• Break long-running requests
into a sequence of smaller
requests.

• Synchronize Disruption

• Do background activities
altogether.

• Differentiating Service
Classes

• Differentiate non-
interactive requests

• High Level Queuing

• Keep low level queues short

LARGE INFORMATION RETRIEVAL SYSTEMS

• Google search engine

• No certain answers

• “Good Enough”

• Google’s IR systems are tuned to occasionally respond with
good-enough results when an acceptable fraction of the
overall corpus has been searched.

LARGE INFORMATION RETRIEVAL SYSTEMS

• Canary Requests

• Some requests exercising an
untested code path may cause
crashes or long delays.

• Send requests to one or two leaf
servers for testing.

• The remaining servers are only
queried if the root gets a successful
response from the canary in a
reasonable period of time.

HARDWARE TRENDS AND THEIR EFFECTS

• Hardware will only be more and more diverse

• So tolerating variability through software techniques are even
more important over time.

• Higher bandwidth reduces per-message overheads.

• It further reduces the cost of tied requests (making it more
likely that cancellation messages are received in time).

