DYNAMO DB

Feb 22, 2022
George Porter

UCSan Diego

@ ® ® ©

ATTRIBUTION

 These slides are released under an Attribution-NonCommercial-ShareAlike
3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license

* These slides are based on material from:

 Brad Karp
* Kyle Jamieson and Mike Freedman, Princeton

UC San Diego

Dynamo: The P2P context

* Chord intended for wide-area P2P systems
— Individual nodes at Internet’s edge, file sharing

 Central challenges: low-latency key lookup with small
forwarding state per node

* Techniques:
— Consistent hashing to map keys to nodes

— Replication at successors for availability under failure

Amazon’s workload (in 2007)

‘e Tens of thousands of servers in globally-distributed
elata centers

X .I_'Deak Ioad: Tens of millions of customers

Hos 'Tiered service-oriented architecture

"~ Stateless web page rendering servers, -atop ¢
- Stateless aggregator servers, atop
— Stateful data stores (e.g. Dynamo)
- ¢ put(.), get(): values “usually less than 1 MB" .

How does Amazon use Dynamo?

*«_ Shopping:cart;

- 'Session ihfo
. —Maybe recently visited products” efc.?

.. Product Ilst .
-.— Mostly read-only, replication for high read throughput

L
-

' .
/n

Dynamo requirements

i:llghly available writes despite failures
L Desplte dISkS failing, network routes flapping, “data
", Ae ;

Non-requwement. Seourlly, viz. authentication,

authorization (used in a non-hostile environment)

o :Low request response latency: focus on 99.9% SLA

e 'lncrementally scalable as servers grow to workload
— Adding “nodes” should be seamless

Comprehen3|ble conflict resolution :
— High avallablllty In above sense implies conflicts :

Design questions

 How is data placed and replicated?

 How are requests routed and handled in a replicated
system?

* How to cope with temporary and permanent node
failures?

Dynamo’s system interface

» Basic interface is a key-value store
— get(k) and put(k, v)
— Keys and values opaque to Dynamo

« get(key) = value, context
— Returns one value or multiple conflicting values
— Context describes version(s) of value(s)

» put(key, context, value) - “OK”

— Context indicates which versions this version
supersedes or merges

Dynamo’s techniques

 Place replicated data on nodes with consistent hashing

* Maintain consistency of replicated data with vector clocks

— Eventual consistency for replicated data: prioritize
success and low latency of writes over reads

« And availability over consistency (unlike DBs)
— Lamport’s vector clocks covered in CSE 223B (SP’22)

 Efficiently synchronize replicas using Merkle trees

Key trade-offs: Response time vs.
consistency vs. durability

Data placement

requests go to me

put(K....), get(K)]

Coordinator node
/ % Nodes B, C
\ ¢ and D store
. keysin

range (A,B)

\) i including
\
@@

K.

Each data item 1s replicated at NV virtual nodes (e.g., N = 3)

10

Data replication

Much like in Chord: a key-value pair - key's N
successors (preference lisft)

— Coordinator receives a put for some key

— Coordinator then replicates data onto nodes in the
key’s preference list

 Preference list size > N to account for node failures

* For robustness, the preference list skips virtual
tokens to ensure distinct physical nodes

11

Gossip and “lookup”

Gossip: Once per second, each node contacts a
randomly chosen other node

— They exchange their lists of known nodes
(including virtual node IDs)

Each node learns which others handle all key ranges

— Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)

* Reduces variability in response times

12

Partitions force a choice between
availability and consistency

« Suppose three replicas are partitioned into two and one

AT

* If one replica fixed as master, no client in other partition can write

« With RAFT, no client in the partition of one can write

 Traditional distributed databases emphasize consistency
over availability when there are partitions

Alternative: Eventual consistency

* Dynamo emphasizes availability over consistency when there
are partitions

 Tell client write complete when only some replicas have stored it
* Propagate to other replicas in background
* Allows writes in both partitions...but risks:

— Returning stale data
— Write conflicts when partition heals:

E© DD

put (k,v,) put (k,v;)

?2@%S$!1!
14

Mechanism: Sloppy quorums

If no failure, reap consistency benefits of single master
— Else sacrifice consistency to allow progress

Dynamo tries to store all values put() under a key on
first N live nodes of coordinator’s preference list

BUT to speed up get() and put():

— Coordinator returns “success” for put when W < N
replicas have completed write

— Coordinator returns “success” for get when R <N
replicas have completed read

15

Sloppy quorums: Hinted handoff

« Suppose coordinator doesn’t receive W replies when
replicating a put()

— Could return failure, but remember goal of high
availability for writes...

 Hinted handoff: Coordinator tries next successors
in preference list (beyond first N) if necessary

— Indicates the intended replica node to recipient

— Recipient will periodically try to forward to the
intended replica node

16

Hinted handoff: Example

« Suppose C fails
— Node E is in preference list
* Needs to receive replica of @

the data @
— Hinted Handoff: replica at E/
points to node C @

« When C comes back

— E forwards the replicated data
back to C

Key K

‘ Coordinator
\ % Nodes B, c
\ i andD t

17

Wide-area replication

« Lastq], § 4.6: Preference lists always contain nodes
from more than one data center

— Consequence: Data likely to survive failure of
entire data center

* Blocking on writes to a remote data center would
Incur unacceptably high latency

— Compromise: W < N, eventual consistency

18

Sloppy quorums and get()s

« Suppose coordinator when
processing a get()

— Penultimate 4], § 4.5: “R is the min. number of nodes
that must participate in a successful read operation.”

» Sounds like these get()s fail

 Why not return whatever data was found, though?
— As we will see, consistency not guaranteed anyway. ..

Sloppy quorums and freshness

Common case given in paper: N =3; R=W =2
— With these values, do sloppy quorums guarantee
a get() sees all prior put()s?

If no failures, yes:

— Two writers saw each put()

— Two readers responded to each get()

— Write and read quorums must overlap!

20

Sloppy quorums and freshness

Common case given in paper: N =3, R=W =2
— With these values, do sloppy quorums guarantee
a get() sees all prior put()s?

With node failures, no:
— Two nodes in preference list go down
* put() replicated outside preference list

— Two nodes in preference list come back up
* get() occurs before they receive prior put()

21

Conflicts

« Suppose N =3, W=R =2, nodes are named A, B, C
— 1stput(k, ...) completes on A and B
— 2" put(k, ...) completes on B and C
— Now get(k) arrives, completes firstat A and C

« Conflicting results from A and C
— Each has seen a different put(k, ...)

* Dynamo returns both results; what does client do now?

22

Conflicts vs. applications

Shopping cart:
— Could take union of two shopping carts

— What if second put() was result of user deleting item
from cart stored in first put()?

* Result: “resurrection” of deleted item

Can we do better? Can Dynamo resolve cases when
multiple values are found?

— Sometimes. If it can’t, application must do so.

23

Removing threats to durability

* Hinted handoff node crashes before it can replicate
data to node in preference list

— Need another way to ensure that each key-value
pair is replicated N times

* Mechanism: replica synchronization
— Nodes nearby on ring periodically gossip
» Compare the (k, v) pairs they hold
« Copy any missing keys the other has

r How to compare and copy replica
i state quickly and efficiently?

24

Efficient synchronization with Merkle trees

* Merkle trees hierarchically summarize the key-value
pairs a node holds

* One Merkle tree for each virtual node key range
— Leaf node = hash of one key’s value
— Internal node = hash of concatenation of children

« Compare roots; if match, values match

— If they don’t match, compare children
* [terate this process down the tree

25

Merkle tree reconciliation

* B is missing orange key; A is missing green one

« Exchange and compare hash nodes from root
downwards, pruning when hashes match

A’s values: B’s values:
[O 2128 [O 2128)

[O 2127: I‘ 2127 2128 [O 2127i ; 2127 2128

| Finds differing keys quickly and with
minimum information exchange i

How useful is it to vary N, R, W?

NRWBehavior

3 2 2 Parameters from paper:
Good durability, good R/W latency

3 3 1 Slow reads, weak durability, fast writes

3 1 3 Slow writes, strong durabillity, fast reads

3 3 3 More likely that reads see all prior writes?
3 1 1 Read quorum doesn’t overlap write quorum

27

Dynamo: Take-away ideas

Consistent hashing broadly useful for replication—not only
In P2P systems

Extreme emphasis on availability and low latency,
unusually, at the cost of some inconsistency

Eventual consistency lets writes and reads return quickly,
even when partitions and failures

Version vectors allow some conflicts to be resolved
automatically; others left to application

28

