
LOCATING DATA ON THE NETWORK:
P2P NETWORKS, CHORD, AND DYNAMODB
Feb 17, 2022
George Porter

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Christo Wilson, NEU (used with permission)
• Kyle Jamieson, Princeton
• Tanenbaum and Van Steen, 3rd edition

ANNOUNCEMENTS

Project 5 is out
TA video on project 5 coming soon

Today: Locating data on the network

Tomorrow at 2pm!
Location: CSE 1242 (On ground floor near the building lobby)
Zoom Link: https://ucsd.zoom.us/j/91497330645

Title: What we talk about when we talk about networking

Abstract: Networks, and the applications they support, sometimes treat each
other as strangers. By shaking things up a bit—expressing networked systems as
compositions of small, pure functions and making their dataflow a first-class
consideration—we can often achieve friendlier couplings across the stack, to the
benefit of performance, robustness, and understandability. This approach has
proved helpful in several contexts: networking algorithms learned "in situ,"
feeding data from deployment back into training; real-time video conferencing,
especially for musicians and actors during the pandemic; image compression in a
distributed network filesystem; and a serverless computing framework that lets
software burst briefly to 10,000 cores. In ongoing work, we're building a
"functional" operating system that enforces a separation between IO (declared to
the OS) and computation (reproducible by default). If this system can support a
broad range of computational tasks with visibility into their dataflow, we envision a
new service model for cloud computing: "computation as a service.”

Bio: Keith Winstein is an assistant professor of computer science and, by courtesy,
of electrical engineering at Stanford University. (https://cs.stanford.edu/~keithw)

https://ucsd.zoom.us/j/91497330645
https://urldefense.proofpoint.com/v2/url?u=https-3A__cs.stanford.edu_-7Ekeithw&d=DwMFaQ&c=-35OiAkTchMrZOngvJPOeA&r=qWDWeqxJQCX7kWeseRYDoKIeRTnH7wdc4Iw6Tcg7bW8&m=i1S7hxNmlC4Wt4OgqJKz8OaiPjSDtGsBExqbZ9-IJlL7pfkOyDGdhw0wZAv9qF5e&s=JrngO2AL5KE4-TGAVyVZGuaa_5zb_IN6hD6mhkE1glc&e=

LOCATING ITEMS (AT SCALE) IS A PRETTY HARD
PROBLEM

• Consider our metadata store:

• Let’s figure out about how many files a single
server metadata store can store…

LET’S CHOOSE AN AWS INSTANCE TYPE

LET’S PICK THE ARM-BASED MEMORY INSTANCE

MEMORY INSTANCE TYPES

Cost (per hour) of the r6g.16xlarge instance type: $3.2256

HOW MANY FILES CAN FIT INTO R6G.16XLARGE?

• 512GB of RAM

• Data requirements of each entry in the
FileInfoMap?

• Depends on size of the block...

• Depends on distribution of file sizes…

• Lots of small files? (e.g. C++, Java, Python, Go development)

• Or big files? (audio or video files)

• Let’s see what the research literature says

TANENBAUM ET AL, 2004

LIU ET AL, 2013

A SIMPLE MODEL

BUT WHAT IF YOU NEED MORE SPACE?

• What if you have more than 20 million files??

• You need scale

SCALING

Vertical Scaling
(bigger machines)

Horizontal Scaling
(more machines)

VERTICAL SCALING

• Get a machine with more RAM, more storage, a
faster CPU, more CPUs, …

• Advantages:

• Simple: Single machine abstraction

• Simple: Only one IP address/hostname to consult

• Disadvantages:

• Machines only get so big (have so much ram, etc)

• What if the machine fails?

HORIZONTAL SCALING

• Form a cluster of 10, 100, 1000… servers that work
together

• Advantages:
• No one machine has to be very expensive/fancy

• A failure of one machine doesn’t result in everything
being lost

• Disadvantages:
• How to find the data you’re looking for??

• Performance is hard to reason about (subject of a future
lecture, in fact)

HORIZONTAL SCALING ISSUES

• Probability of any failure in given period = 1−(1−p)n

• p = probability a machine fails in given period

• n = number of machines

• For 50K machines, each with 99.99966% available

• 16% of the time, data center experiences failures

• For 100K machines, failures 30% of the time!

THE LOCATION PROBLEM

• Given a cluster C of N servers, how do we locate the
specific server Ci responsible for a data item?

• E.g. For a logical metadata storage service spread
across N machines, which machine has the hash list
for kitten.jpg? For puppy.mp4?

WHAT IS “FLAT” NAMING?

• The name doesn’t give you an indication of
where the data is located

• Flat:

• MAC address: 00:50:56:a3:0d:2a

• Vs hierarchical:

• IP address: 206.109.2.12/24

• DNS name: starbase.neosoft.com

FLAT NAME LOOKUP PROBLEM

N1

N2 N3

N6N5

Publisher (N4)

Client
?Internet

put(“Shang-Chi.mov”,
[content])

get(“Shang-Chi.mov”)

CENTRALIZED LOOKUP (NAPSTER)

N1

N2 N3

N6N5

Publisher (N4)

Client

SetLoc(“Shang-Chi.mov”,
IP address of N4)

Lookup(“Shang-
Chi.mov”)DB

key=“Shang-Chi.mov”,
value=[content]

Simple, but O(N) state and a
single point of failure

Outline

• Peer-to-peer networks

• Chord DHT

• DynamoDB DHT

PEER-TO-PEER (P2P) NETWORKS

• A distributed system architecture:

• No centralized control

• Nodes are roughly symmetric in function

• Large number of unreliable nodes (could be reliable too)

Node

Node

Node Node

Node

Internet

FLOODED QUERIES (ORIGINAL GNUTELLA)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(“Shang
-Chi.mov”)

key=“Shang-Chi.mov”,
value=[content]

Robust, but O(N = number of peers)
messages per lookup

ROUTED DHT QUERIES (CHORD AND DYNAMODB)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(H(audio
data))

key=“H(audio data)”,
value=[content]Can we make it robust, reasonable
state, reasonable number of hops?

Outline

• Peer-to-peer networks

• Chord DHT

• DynamoDB DHT

SYSTEMATIC FLAT NAME LOOKUPS VIA DHTS

• Local hash table:

key = Hash(name)

put(key, value)

get(key) à value

• Service: Constant-time insertion and lookup

How can I do (roughly) this across
millions of hosts on the Internet or
within a giant datacenter application?
Distributed Hash Table (DHT)

WHAT IS A DHT (AND WHY)?

• Distributed Hash Table:
key = hash(data)

lookup(key) à IP addr

send-RPC(IP address, put, key, data)

send-RPC(IP address, get, key) à data

• Partitioning data in truly large-scale distributed systems
• Tuples in a global database engine
• Data blocks in SurfStore
• Files in a P2P file-sharing system

TWO EXAMPLES OF DHTS

• DynamoDB

• Managed within a single datacenter

• Some centralization

• 10s to 100s of end points

• Chord

• Fully decentralized

• Over wide-area Internet

• Designed for millions of end points

STRAWMAN: MODULO HASHING (E.G. HASHMAP)

• Consider problem of data partition:

• Given object id X, choose one of k servers to use

• Suppose instead we use modulo hashing:

• Place X on server i = hash(X) mod k

• What happens if a server fails or joins (k ß k±1)?

• or different clients have different estimate of k?

PROBLEMS WITH MODULO HASHING

Server

Object serial number

h(x) = x + 1 (mod 4)

7 10 11 27 29 36 38 40

4

3

2

1

0
5

Add one machine: h(x) = x + 1 (mod 5)

All entries get remapped to new nodes!
à Need to move objects over the network

CHORD LOOKUP ALGORITHM PROPERTIES

• Interface: lookup(key) ® IP address

• Efficient: O(log N) messages per lookup

• N is the total number of servers

• Scalable: O(log N) state per node

• Robust: survives massive failures

CHORD IDENTIFIERS

• Key identifier = SHA-1(key)

• Node identifier = SHA-1(IP address)

• SHA-1 distributes both uniformly

• How does Chord partition data?

• i.e., map key IDs to node IDs

CONSISTENT HASHING

0

4

8

12
Token

14

– Assign n tokens to random points on
mod 2k circle; hash key size = k

– Hash object to random circle position
– Put object in closest clockwise bucket

– successor (key) à bucket

• Desired features –
– Balance: No bucket has “too many” objects
– Smoothness: Addition/removal of token minimizes

object movements for other buckets

34

Bucket

CONSISTENT HASHING [KARGER ‘97]

Key is stored at its successor: node with next-higher ID

K80

N32

N90

N105 K20

K5

Circular 7-bit
ID space

Key 5

Node 105

CHORD: SUCCESSOR POINTERS

K80

N32

N90

N105
N10

N60

N120

BASIC LOOKUP

K80

N32

N90

N105
N10

N60

N120

“N90 has K
80”

“Where is K80?”

SIMPLE LOOKUP ALGORITHM

Lookup(key-id)

succ ß my successor

if my-id < succ < key-id // next hop

call Lookup(key-id) on succ

else // done

return succ

• Correctness depends only on successors

CONSISTENT HASHING AND LOAD BALANCING

• Each node owns 1/nth of the ID space in expectation
• Says nothing of request load per bucket

• If a node fails, its successor takes over bucket
• Smoothness goal ✔: Only localized shift, not O(n)

• But now successor owns twobuckets: 2/nthof key space
• The failure has upset the load balance

VIRTUAL NODES

• Idea: Each physical node now maintains v > 1 tokens

• Each token corresponds to a virtual node

• Each virtual node owns an expected 1/(vn)th of ID space

• Upon a physical node’s failure, v successors take over,
each now stores (v+1)/v×1/nth of ID space

• Result: Better load balance with larger v

IMPROVING PERFORMANCE

• Problem: Forwarding through successor is slow

• Data structure is a linked list: O(n)

• Idea: Can we make it more like a binary search?

• Need to be able to halve distance at each step

CHORD INTUITION

• Skip Lists (Pugh, 1989)

• Consider a linked list:

• Lookup time: O(n)

CHORD INTUITION

• Skip Lists (Pugh, 1989)

• Consider a linked list:

• Add 2nd row of pointers spaced further apart

• Still O(n), but more efficient

• Use 2nd row to get as close as possible without going over

• Then last row to get to the desired element

CHORD INTUTION

• Skip Lists (Pugh, 1989)

• Consider a linked list:

• Add log(N) rows

• Get as close as possible on top row, then drop down a row, then drop down
another row, until the bottom row

• O(log N) lookup time

“FINGER TABLE” ALLOWS LOG N-TIME LOOKUPS

N80

½¼

1/8

1/16
1/32
1/64

FINGER I POINTS TO SUCCESSOR OF N+2I

N80

½¼

1/8

1/16
1/32
1/64

K112
N120

IMPLICATION OF FINGER TABLES

• A binary lookup tree rooted at every node
• Threaded through other nodes' finger tables

• This is better than simply arranging the nodes in a
single tree

• Every node acts as a root
• So there's no root hotspot
• No single point of failure
• But a lot more state in total

LOOKUP WITH FINGER TABLE

Lookup(key-id)

look in local finger table for

highest n: my-id < n < key-id

if n exists

call Lookup(key-id) on node n // next
hop
else

return my successor // done

THE CHORD RING (2^5=32)

CHORD RING WITH SERVERS {1,4,6,9,12,14,21,24,28}

ADDING FINGER TABLES

4+2^0=4+1=5
4+2^1=4+2=6
4+2^2=4+4=8
4+2^3=4+8=12
4+2^4=4+16=20

6
6
9
12
21

4->17

12+2^0=12+1=13
12+2^1=12+2=14
12+2^2=12+4=16
12+2^3=12+8=20
12+2^4=12+16=28

14
14
21
21
28

Figure 5-4.
Resolving key 26
from node 1 and
key 12 from node
28 in a Chord
system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

AN ASIDE: IS LOG(N) FAST OR SLOW?

• For a million nodes, it’s 20 hops

• If each hop takes 50 milliseconds, lookups take a
second

• If each hop has 10% chance of failure, it’s a couple
of timeouts

• So in practice log(n) is better than O(n) but not great

JOINING: LINKED LIST INSERT

N36

N40

N25

1. Lookup(36) K30
K38

JOIN (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

JOIN (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

NOTIFY MESSAGES MAINTAIN PREDECESSORS

N36

N40

N25

notify N36

notify N25

STABILIZE MESSAGE FIXES SUCCESSOR

N36

N40

N25

stabilize

“My predecessor is
N36.”

✔

✘

JOINING: SUMMARY

• Predecessor pointer allows link to new node
• Update finger pointers in the background
• Correct successors produce correct lookups

N36

N40

N25

K30
K38

K30

WHAT DHTS GOT RIGHT

• Consistent hashing

• Elegant way to divide a workload across machines

• Very useful in clusters: actively used today in Amazon Dynamo and other systems

• Replication for high availability, efficient recovery after node failure

• Incremental scalability: “add nodes, capacity increases”

• Self-management: minimal configuration

• Unique trait: no single server to shut down/monitor

