
QUORUMS AND THE GOOGLE FILE SYSTEM
George Porter
Feb 8, 2020

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Tanenbaum and Van Steen, Dist. Systems: Principles and Paradigms
• Kyle Jamieson, Princeton University (also under a CC BY-NC-SA 3.0

Creative Commons license)

OUTLINE

1. Quorums

2. Google File System

SURFSTORE METADATA SERVER PROBLEM

Surfstore
Client

All data is lost!

UpdateFile(
file=“kitten.jpg”,
ver=2,
hashlist = {h3,h4}

);

IDEA 1: ADAPT TWO-PHASE COMMIT TO SAVE DATA

1. C à TC: “UpdateFile()”

2. TC à Seoul (S), Mumbai (M):
“prepare!”

3. S, M àP: “yes” or “wrong_version”

4. TC àS, M: “commit!” or “abort!”

• TC sends commit if bothsay yes

• TCsends abort if eithersay no

5. TC àC: “okay” or “failed”

• S, M commit on receipt of commit
message

Client C

Transaction
Coordinator TC

okay

Seoul

Mumbai

IDEA 2: ASSUME TC DOESN’T FAIL (FOR NOW)

1. C à TC: “UpdateFile()”

2. TC à Seoul (S), Mumbai (M):
“prepare!”

3. S, M àP: “yes” [why always yes?]

4. TC àS, M: “commit!”

• TC sends commit

5. TC àC: “okay”

• S, M commit on receipt of commit
message

• Why do we still need the commit?

Client C

Transaction
Coordinator TC

okay

Seoul

Mumbai

NETWORK PARTITIONS

• Some failure (either network or host) keeps
replicas from communicating with one another

• Two-phase commit (even if we assume all
replicas agree) only works if all nodes can be
contacted

• How to proceed with read/write transactions in
case where not all replicas can be contacted?

QUORUM-BASED PROTOCOLS

• Idea: Tell client that a file’s version is updated after a
majority of SurfStoreServers get the update

• Form a “read quorum” of size 𝑁!
• Contact 𝑁! servers and read all their versions

• Select highest version as the “correct” version

• Form a “write quorum” of size 𝑁"
• Contact 𝑁" servers

• Increment the highest version from that set

• Write out that new version to the servers in the write
quorum

CONSTANTS AND CONSTRAINTS

• N: Total #Replicas
• NR: #Replicas in Read Quorum

• NW: #Replicas in Write Quorum
• Constraints:

1. NR + NW > N

2. NW > N/2

QUORUM CONSENSUS

• Write operations can be propagated in
background to replicas not in quorum

• Assumes eventual repair of any network partition

• Operations are slowed by the necessity of first
gathering a quorum

• Though previously, all writes had to go to all replicas

• With quorum system, must only contact subset of replicas

QUORUMS IN MICROSOFT ACTIVE DIRECTORY

QUORUM EXAMPLE

• 5 replicas, read quorum: 3, write quorum: 3
• R+W>5 votes ensures overlap between any read/write

quorum

• How does this perform for reads?
• How does this perform for writes?

Write
quorum Read

quorum

ver:2 ver:2 ver:2 ver:1 ver:1

QUORUM EXAMPLE

• 5 replicas, read quorum: 5, write quorum: 1

• R+W>5 votes ensures overlap between any read/write quorum

• How does this perform for reads?

• How does this perform for writes?

Write
quorum

Read
quorum

ver:3 ver:2 ver:2 ver:1 ver:1

QUORUM EXAMPLE

• 5 replicas, read quorum: 1, write quorum: 5
• R+W>5 votes ensures overlap between any read/write quorum

• Also called ROWA (read one, write all)

• How does this perform for reads?

• How does this perform for writes?

Write
quorum Read

quorum

ver:2 ver:2 ver:2 ver:2 ver:2

EXAMPLES

• (a) Correct choice

• (b) Possible write-write conflict (why?)

• (c) ROWA

OUTLINE

1. Quorums

2. Google File System

LEASES

• Client obtains lease on file for read or write

• “A lease is a ticket permitting an activity; the lease is
valid until some expiration time.”

• Read lease allows client to cache clean data

• Guarantee: no other client is modifying file

• Write lease allows safe delayed writes

• Client can locally modify than batch writes to server

• Guarantee: no other client has file cached

USING LEASES

• Client requests a lease
• May be implicit, distinct from file locking

• Issued lease has file version number for cache coherence

• Server determines if lease can be granted
• Read leases may be granted concurrently

• Write leases are granted exclusively

• If conflict exists, server may send eviction notices
• Evicted write lease must write back

• Evicted read leases must flush/disable caching

• Client acknowledges when completed

BOUNDED LEASE TERM SIMPLIFIES RECOVERY

• Before lease expires, client must renew lease

• Client fails while holding a lease?

• Server waits until the lease expires, then unilaterally reclaims
• If client fails during eviction, server waits then reclaims

• Server fails while leases outstanding? On recovery,

• Wait lease period + clock skew before issuing new leases
• Absorb renewal requests and/or writes for evicted leases

