
FAULT TOLERANCE VIA REPLICATION

George Porter
Feb 3, 2022

Primary

Replica

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Tanenbaum and Van Steen, Dist. Systems: Principles and Paradigms
• Kyle Jamieson, Princeton University (also under a CC BY-NC-SA 3.0

Creative Commons license)

ANNOUNCEMENTS

Outline

1. Two-phase commit

2. Two-phase commit
failure scenarios

WHAT HAPPENS IF THE METADATA STORE CRASHES?

Surfstore
Client

All data is lost!

UpdateFile(
file=“kitten.jpg”,
ver=2,
hashlist = {h3,h4}

);

MOTIVATION: MULTI-SITE METADATA REPLICATION

• SurfStore needs to be resilient to whole-site failures

• Replicate the metadata, keep one copy in San
Francisco, one in New York

New York
San
Francisco

MOTIVATION: MULTI-SITE DATABASE REPLICATION

• Replicate the database, keep one copy in SF, one in NYC
• Client in Seattle creates ucsd.txt = “Go Tritons!” {h0}

• Client in Florida creates ucsd.txt = “Go Racoons!” {h1}

UpdateFile
(ver=1, {h0})

UpdateFile
(ver=1, {h1})

Inconsistent replicas!
Updates should have been performed
in the same order at each copy

ANOTHER EXAMPLE: SENDING MONEY

send_money(A, B, amount) {

Begin_Transaction();

if (A.balance - amount >= 0) {

A.balance = A.balance - amount;

B.balance = B.balance + amount;

Commit_Transaction();

} else {

Abort_Transaction();

}

}

SINGLE-SERVER: ACID

• Atomicity: all parts of the transaction execute or
none (A’s decreases and B’s balance increases)

• Consistency: the transaction only commits if it
preserves invariants (A’s balance never goes below
0)

• Isolation: the transaction executes as if it executed
by itself (even if C is accessing A’s account, that will
not interfere with this transaction)

• Durability: the transaction’s effects are not lost after
it executes (updates to the balances will remain
forever)

DISTRIBUTED TRANSACTIONS?

• Partition databases across multiple machines for
scalability (A and B might not share a server)

• A transaction might touch more than one
partition

• How do we guarantee that all of the partitions
commit the transactions or none commit the
transactions?

TWO-PHASE COMMIT (2PC)

• Goal: General purpose, distributed agreement on
some action, with failures

• Different entities play different roles in the action

• Running example: Transfer money from A to B

• Debit at A, credit at B, tell the client “okay”

• Require both banks to do it, or neither

• Require that one bank never act alone

STRAW MAN PROTOCOL

1. C à TC: “go!”
Client C

Transaction
Coordinator TC

Bank

go!

A B

STRAW MAN PROTOCOL

1. C à TC: “go!”

2. TC à A: “debit $20!”
TC à B: “credit $20!”
TC à C: “okay”

• A, B perform actions on receipt
of messages

Client C

Transaction
Coordinator TC

Bank

go!

de
bit

 $2
0!

credit $20!

A B

okay

REASONING ABOUT THE STRAW MAN PROTOCOL

What could possibly go wrong?

1. Not enough money in A’s bank account?

2. B’s bank account no longer exists?

3. A or B crashes before receiving message?

4. The best-effort network to B fails?

5. TC crashes after it sends debit to A but before sending
to B?

SAFETY VERSUS LIVENESS

• Note that TC, A, and B each have a notion of
committing

• We want two properties:
1. Safety
• If one commits, no one aborts

• If one aborts, no one commits

2. Liveness
• If no failures and Aand Bcan commit, action commits

• If failures, reach a conclusion ASAP

A CORRECT ATOMIC COMMIT PROTOCOL

1. C à TC: “go!”

Client C

Transaction
Coordinator TC

Bank

go!

A B

A CORRECT ATOMIC COMMIT PROTOCOL

1. C à TC: “go!”

2. TC à A, B: “prepare!”

Client C

Transaction
Coordinator TC

Bank

prepare! prepare!

A B

A CORRECT ATOMIC COMMIT PROTOCOL

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

Client C

Transaction
Coordinator TC

Bank A B

ye
s

yes

A CORRECT ATOMIC COMMIT PROTOCOL

commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”

• TC sends commit if bothsay yes

• TCsends abort if eithersay no

Client C

Transaction
Coordinator TC

Bank A B

A CORRECT ATOMIC COMMIT PROTOCOL

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B àP: “yes” or “no”

4. TC àA, B: “commit!” or “abort!”

• TC sends commit if bothsay yes

• TCsends abort if eithersay no

5. TC àC: “okay” or “failed”

• A, B commit on receipt of commit
message

Client C

Transaction
Coordinator TC

Bank A B

okay

REASONING ABOUT ATOMIC COMMIT

• Why is this correct?

• Neither can commit unless both agreed to commit

• What about performance?

1. Timeout: I’m up, but didn’t receive a message I expected

• Maybe other node crashed, maybe network broken

2. Reboot: Node crashed, is rebooting, must clean up

TIMEOUTS IN ATOMIC COMMIT

Where do hosts wait for messages?

1. TC waits for “yes” or “no” from A and B

• TC hasn’t yet sent any commit messages, so can safely abort after a
timeout

• But this is conservative: might be network problem

• We’ve preserved correctness, sacrificed performance

2. A and B wait for “commit” or “abort” from TC

• If it sent a no, it can safely abort (why?)

• If it sent a yes, can it unilaterally abort?

• Can it unilaterally commit?

• A, B could wait forever, but there is an alternative…

SERVER TERMINATION PROTOCOL

• Consider Server B (Server A case is symmetric) waiting for
commit or abort from TC
• Assume B voted yes (else, unilateral abort possible)

• B à A: “status?” A then replies back to B. Four cases:
• (No reply from A): no decision, B waits for TC
• Server A received commit or abort from TC: Agree with the

TC’s decision
• Server A hasn’t voted yet or voted no: both abort
• TC can’t have decided to commit

• Server A voted yes: both must wait for the TC
• TC decided to commit if both replies received
• TC decided to abort if it timed out

REASONING ABOUT THE SERVER TERMINATION
PROTOCOL

• What are the liveness and safety properties?

• Safety: if servers don’t crash, all processes will reach the same
decision

• Liveness: if failures are eventually repaired, then every
participant will eventually reach a decision

• Can resolve some timeout situations with guaranteed
correctness

• Sometimes however A and B must block

• Due to failure of the TC or network to the TC

• But what will happen if TC, A, or B crash and reboot?

HOW TO HANDLE CRASH AND REBOOT?

• Can’t back out of commit if already decided

• TC crashes just after sending “commit!”

• A or B crash just after sending “yes”

• If all nodes knew their state before crash, we
could use the termination protocol…

• Use write-ahead log to record “commit!” and “yes” to
disk

DURABILITY ACROSS REBOOTS

RECOVERY PROTOCOL WITH NON-VOLATILE STATE

• If everyone rebooted and is reachable, TC can just
check for commit record on disk and resend action

• TC: If no commit record on disk, abort
• You didn’t send any “commit!” messages

• A, B: If no yes record on disk, abort
• You didn’t vote “yes” so TC couldn’t have committed

• A, B: If yes record on disk, execute termination
protocol
• This might block

TWO-PHASE COMMIT

• This recovery protocol with non-volatile logging is
called Two-Phase Commit (2PC)

• Safety: All hosts that decide reach the same decision

• No commit unless everyone says “yes”

• Liveness: If no failures and all say “yes” then commit

• But if failures then 2PC might block

• TC must be up to decide

• Doesn’t tolerate faults well: must wait for repair

Outline

1. Two-phase commit

2. Two-phase commit
failure scenarios

WHAT IF PARTICIPANT FAILS BEFORE SENDING
RESPONSE?

WHAT IF PARTICIPANT FAILS AFTER SENDING VOTE

WHAT IF PARTICIPANT LOST A VOTE?

WHAT IF COORDINATOR FAILS BEFORE SENDING
PREPARE?

WHAT IF COORDINATOR FAILS AFTER SENDING
PREPARE?

WHAT IF COORDINATOR FAILS AFTER RECEIVING
VOTES

WHAT IF COORDINATOR FAILS AFTER SENDING
DECISION?

DO WE NEED THE COORDINATOR?

