
RPCS AND GOOGLE RPC (GRPC)

George Porter
Jan 27, 2022

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Kyle Jamieson, Princeton University (also under a CC BY-NC-SA 3.0
Creative Commons license)

Outline

1. RPC fundamentals

2. Protocol Buffers demo

3. gRPC demo (in the weekly TA
session)

WHY RPC?

• The typical programmer is trained to write single-
threaded code that runs in one place

• Goal: Easy-to-program network communication
that makes client-server communication
transparent

• Retains the “feel” of writing centralized code

• Programmer needn’t think about the network

REMOTE PROCEDURE CALL (RPC)

• Distributed programming is challenging
• Need common primitives/abstraction to hide

complexity

• E.g., file system abstraction to hide block layout,
process abstraction for scheduling/fault isolation

• In early 1980’s, researchers at PARC noticed
most distributed programming took form of
remote procedure call

WHAT’S THE GOAL OF RPC?

• Within a single program, running in a single process,
recall the well-known notion of a procedure call:

• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,

• executes, puts return value in register,

• returns to next instruction in caller

RPC’s Goal: To make communication appear like a
local procedure call: transparency for procedure calls

RPC EXAMPLE

Remote computing

server = connectToServer(S);

Try:

X = server.mult(3,10);

print(X)

Except e:

print “Error!”

> 30

or

> Error

Local computing

X = 3 * 10;

print(X)

> 30

RPC ISSUES

• Heterogeneity

• Client needs to rendezvous with the server

• Server must dispatch to the required function

• What if server is different type of machine?

• Failure

• What if messages get dropped?

• What if client, server, or network fails?

• Performance

• Procedure call takes ≈ 10 cycles ≈ 3 ns

• RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower

PROBLEM: DIFFERENCES IN DATA REPRESENTATION

• Not an issue for local procedure call

• For a remote procedure call, a remote machine
may:

• Represent data types using different sizes

• Use a different byte ordering (endianness)

• Represent floating point numbers differently

• Have different data alignment requirements
• e.g.,4-byte type begins only on 4-byte memory boundary

BYTE ORDER

• x86-64 is a little endian architecture

• Least significant byte of multi-
byte entity at lowest memory
address

• “Little end goes first”

• Some other systems use big endian

• Most significant byte of multi-
byte entity at lowest memory
address

• “Big end goes first”

0000 0101

0000 0000

0000 0000

0000 0000

0x1000:

0x1001:

0x1002:

0x1003:

0000 0000

0000 0000

0000 0000

0000 0101

0x1000:

0x1001:

0x1002:

0x1003:

int 5 at address 0x1000:

int 5 at address 0x1000:

PROBLEM: DIFFERENCES IN PROGRAMMING
SUPPORT

• Language support varies:

• Many programming languages have no inbuilt
concept of remote procedure calls

• e.g., C, C++, earlier Java

• Some languages have support that enables RPC

• e.g., Python, Haskell, Go

SOLUTION: INTERFACE DESCRIPTION LANGUAGE

• Mechanism to pass procedure parameters and return
values in a machine-independent way

• Programmer may write an interface description in the IDL

• Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:

• Code to marshal (convert) native data types into machine-
independent byte streams

• And vice-versa, called unmarshaling

• Client stub: Forwards local procedure call as a request to server

• Server stub: Dispatches RPC to its implementation

A DAY IN THE LIFE OF AN RPC

1. Client calls stub function (pushes params onto
stack)

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

A DAY IN THE LIFE OF AN RPC

1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

A DAY IN THE LIFE OF AN RPC

2. Stub marshals parameters to a network message

3. OS sends a network message to the server

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server OS
proc: add | int: 3 | int: 5

A DAY IN THE LIFE OF AN RPC

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS
proc: add | int: 3 | int: 5

A DAY IN THE LIFE OF AN RPC

4. Server OS receives message, sends it up to stub
5. Server stub unmarshals params, calls server

function
Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

A DAY IN THE LIFE OF AN RPC

5. Server stub unmarshals params, calls server
function

6. Server function runs, returns a value
Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

A DAY IN THE LIFE OF AN RPC

6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

A DAY IN THE LIFE OF AN RPC

7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

A DAY IN THE LIFE OF AN RPC

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

A DAY IN THE LIFE OF AN RPC

9. Client OS receives the reply and passes up to stub
10.Client stub unmarshals return value, returns to

client
Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

PETERSON AND DAVIE VIEW

THE SERVER STUB IS REALLY TWO PARTS

• Dispatcher
• Receives a client’s RPC request

• Identifies appropriate server-side method to invoke

• Skeleton
• Unmarshals parameters to server-native types

• Calls the local server procedure

• Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
• Dispatcher and skeleton may be integrated

• Depends on implementation

Outline

1. RPC fundamentals

2. Protocol Buffers demo

3. gRPC demo (in the weekly TA
session)

GOOGLE RPC (GRPC)

• Cross-platform RPC toolkit developed by Google

• Languages:

• C++, Java, Python, Go, Ruby, C#, Node.js, Android,
Obj-C, PHP

• Defines services

• Collection of RPC calls

service Search {
rpc searchWeb(SearchRequest) returns (SearchResult) {}
}

IDL: INTERFACE DEFINITION LANGUAGE

• Language-neutral way of specifying:

• Data structures (called Messages)

• Services, consisting of procedures/methods

• Stub compiler

• Compiles IDL into Python, Java, etc.

IDL
$ protoc search.proto

$ protoc search.proto Java

Python

IDL LANGUAGE: PROTOCOL BUFFERS

• Defines Messages (i.e., data structures)

syntax = "proto3";

message SearchRequest {
string query = 1;
int32 page_number = 2;
int32 result_per_page = 3;

}

We’re using version 3 of
protocol buffers

Name of the
message

Field 1: query
Type: String

Field 2:
page_number
Type: 32-bit
signed int

Field 3:
results_per_page
Type: 32-bit
signed int

PROTOCOL BUFFERS: BASE TYPES

• Python:

• float, float

• int, int/long

• int, int/long

• bool

• str

• str

• protobuf IDL:

• double, float

• int32, int64

• uint32, uint64

• bool

• string

• bytes

• Java:

• double, float

• int, long

• int, long

• Boolean

• String

• ByteString

• C++:

• double, float

• int32, int64

• uint32, uint64

• bool

• string

• string

IDL POSITIONAL ARGUMENTS

• Why do we label the fields with numbers?

• So we can change “signature” of the message
later and still be compatible with legacy code

syntax = "proto3";

message SearchRequest {
string query = 1;
int32 page_number = 2;
int32 result_per_page = 3;

}

syntax = "proto3";

message SearchRequest {
string query = 1;
int32 page_number = 2;
int32 shard_num = 4;

}

MAKING SERVICES EVOLVABLE

• No way to “stop everything” and upgrade

• Clients/servers/services must co-exist

• For newly added fields, old services use defaults:
• String: “”

• bytes: []

• bools: false

• numeric: 0

• …

PROTOCOL BUFFERS: MAP TYPE

• map<key_type, value_type> map_field = N;

• Example:

• map<string, Project> projects = 3;

IMPLEMENTING IN DIFFERENT LANGUAGES

IDL

C++: reading from a file

Java: writing to a file

A C++ EXAMPLE

• Can read/write protobuf Message objects to files/stream/raw sockets

• In particular, gRPC service RPCs

• Take Message as argument, return Message as response

