HTTP AND THE WEB

George Porter
January 20, 2022

UCSan Diego

@ ® ® ©

ATTRIBUTION

e These slides are released under an Attribution-NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0) Creative Commons license

* These slides incorporate material from:

 Computer Networks: A Systems Approach, 5e, by Peterson and Davie

UC San Diego

AGENDA

Today:
- Overview of HTTP protocol
History of the TritonSort project from UCSD
Required reading now available:
- Julia Evan’s HTTP “Zine” (linked from canvas)
- - Go networking book, chapter 8
- - “Most expensive one-byte mistake” (on canvas)

Monday:
- Project 3 goes out (due Feb 1)

Tuesday:
- Finish TritonSort talk; in-class unit testing about HTTP protocol activity

UC San Diego

HTTP “ZINE”

This PDF is not free--its license fee
was paid for by a generous gift from
Facebook for the use of this class
only.

Please do not distribute to anyone
not registered for this class.

If you know of someone who might
like to have a copy, they can purchase
their own version for S12 from Evans’
website at
https://wizardzines.com/zines/http/

by Julia Evans

UC San Diego

https://wizardzines.com/zines/http/

HTTP AS AN EMERGING TRANSPORT LAYER

e HTTP: HyperText Transfer t &
Protocol

e Tim Berners-Lee at CERN
in 1989

e Used for web browsing

* |n addition to web browsing:
* Video streaming via DASH on YouTube/Netflix, etc
 REST (Representational state transfer)
 Chat apps like Slack
e Many others

WEB/HTTP OVERVIEW

* Documents link to other documents C e——
* Specified in HTML files S M
e HTTP is the protocol for retrieving | = AT
HTML files from servers — -
Request HTML page -
e and images, sounds, video, ...
<HTML>
: -4
* Implemented in servers
Parses HTMLB]
e Apache, nginx, MSFT IIS
Request image
e and clients = .
<Image>
* Chrome <
Request video >
* MSFT Edge <Video>
4

* Apple Safari...

AGGREGATING CONTENT FROM WEB SERVERS

Document
Program /}I_____ 1

Objects
\\ (e.g., fonts.gstatic.com)

- * HTTPS Request E
— — — —-—-

) HTTPS Response \yep Server

PSIX-ESIX ECFS

EDOCS uLs)

’ FRN Auctions

Web Page
Web

Browser

/

==/

Ads Trackers ete

SAMPLE HTML FILE

4 test.html X

<html>

<head>

<title>It works!</title>
</head>

<body>

<h1l>It works</hl>

nice!

</body>

</html>

O OSSNV B WN =

p—

A WEB REQUEST EXAMINED

e Steps that occur when a link is selected:
* Browser determines the URL
 Browser asks DNS for the IP address of the server
* DNS replies
* Browser opens a TCP connection
e Sends HTTP request for the page
 Server sends the page as HTTP response
* Browser fetches other URLs as needed
 Browser displays the page

e The TCP connections are released

EXAMPLE OF REQUESTS MAKING UP FCC.GOV

500 ms 1000 ms 1500 ms 2000 ms 2500 ms
Name Status Type Initiator Size Time Waterfall
__| icons-sa0dc29a632.png 200 png (index) (memory c... Oms I
__| bg-pattern-gray.png?1528211709 200 png (index) (memory c... 0Oms |
= icon-xls.gif?1528211709 200 gif (index) (memory c... 0ms |
| icon-pdf.gif?1528211709 200 gif (index) (memory c... Oms |
|= consumer-bg.png?1528211709 200 png (index) (memory c... 0Oms |
__| icons-2x-s4a93a70c85.png 200 png (index) (memory c... 0ms |
[| icons-2x-sb1583bf5f5.png 200 png (index) (memory c... 0Oms |
~~| menu-active-pointer.png?1528211709 200 png jquery.min.js:3 (memory c... 0Oms
__| shadow-mask.png?1528211709 200 png jquery. (memory c... 0oms
_| widget_iframe.69e02060c7c44baddf1b562... 200 document widgets.js:8 (disk cache) 2ms
__| settings 200 fetch VM15:1 236 B 73 ms)
| aejs 200 script (index):934 0B 15ms
|| moment-~timeline~tweet.a1aa0f6410f7eaad... 200 script widgets.js:1 (disk cache) 2ms
__| timeline.f7ace10bb00711bb451dd3652315... 200 script widgets.js:1 (disk cache) 2ms
__| favicon.ico 200 vnd.micros... Other 15.1 KB 54 ms I
_| profile?callback=__twttr.callbacks.tl_i0_pro... 200 script widgets.js:8 11.3 KB 133 ms .
| Y9ZQaf24?format=jpg&name=144x144_2 200 ipeg widgets.js:8 (memory c... 0ms I
@ DJY-k5tn?format=jpg&name=144x144_2 200 ipeg widgets.js:8 (memory c. 0Oms |
= LCORTDgM?format=jpg&name=600x314 200 ipeg widgets.js:| (memory c... 0ms I
= bkTBOOHO?format=png&name=600x314 200 png widgets.js:8 (memory c. 0Oms I
& VinVtERd?format=jpg&name=144x144_2 200 jpeg (memory c.. 0ms I
=~ sVaf8fcU?format=jpg&name=600x314 200 ipeg widgets.| (memory c. 0Oms I
& uNvZOkjK?format=jpg&name=144x144_2 200 ipeg widgets.js:8 (memory c... 0ms |
=~ 0T7W1nAj?format=jpg&name=600x314 200 ipeg widgets.js:8 (memory c... oms I
@ deTaOkd4?format=jpg&name=144x144_2 200 jpeg widgets.js:8 (memory c... 0ms |
1f6a8.png 200 webp widgets.js:8 34B 9ms |
2b07.png 200 webp widgets.js:8 34B 9ms |
_ timeline.b19b28e5dd6afdadd09507e64bad... 200 text/css widgets.js:8 52.5 KB 5ms |
@ 9WfkWdsl_bigger.jpg 200 ipeg moment~timeline~tw... (memory c... 0ms |
| 60GQ7WO00_bigger.jpg 200 ipeg moment~timeline~tw... (memory c. 0Oms |
_ syndication_bundle_v1_73385286cca9d22... 200 text/css widgets.js:8 44.1 KB 43 ms |
| data:iimage/svg+xml;... 200 svg+xml Other (memory c. Oms |
__| data:image/svg+xml;... 200 svg+xml Other (memory c... 0ms |
| data:image/svg+xml;... 200 svg+xml Other (memory c. oms |
_| data:image/svg+xml;... 200 svg+xml Other (memory c... 0Oms I
data:image/svg+xml;... 200 svg+xml Other (memory c. 0Oms |
© data:image/svg+xmi;... 200 svg+xml Other (memory c... 0Oms |
| jot 200 document widgets.js:8 0B 3ms

64 requests = 139 KB transferred = 3.2 MB resources ~ Finish: 2.79s = DOMContentLoaded: 597 ms | Load: 811 ms

HTTP OVERVIEW

« HTTP is a text oriented protocol.
« HTTP is a request/response protocol

 Requests and responses both look like:

START_LINE <CRLF> « - carriage-return-line-feed

— Srmegeeineeee

MESSAGE_HEADER <CRLF>

<CRLF>
MESSAGE_BODY <CRLF>

« The first line (START LINE) indicates whether this is a
request message or a response message.

HTTP REQUESTS

 Request Messages define
» The operation (called method) to be performed
 The web page the operation should be performed on
» The version of HTTP being used.

« Examples:
« GET /index.html HTTP/1.0
« GET /images/catimg23.jpg HTTP/1.1
« GET /contracts/contract3.txt HTTP/1.1

HTTP METHODS

Method Description
GET Read a Web page
HEAD Read a Web page’s header
POST Append to a Web page
PUT Store a Web page
DELETE Remove the Web page
TRACE Echo the incoming request
CONNECT | Connect through a proxy
OPTIONS Query options for a page

OPTIONAL HTTP REQUEST HEADERS

e After the start line are request headers:
 Text-based, key and value separated by a colon
e Example 1:
GET /index.html| HTTP/1.0
User-Agent: Firefox 23.3.1

e Example 2:
GET /images/cat2.jpg HTTP/1.1
Host: www.cs.ucsd.edu

User-Agent: Chrome 12.1

HTTP HEADERS

Header Type Contents
User-Agent Request Information about the browser and its platform
Accept Request The type of pages the client can handle
Accept-Charset Request The character sets that are acceptable to the client
Accept-Encoding Request The page encodings the client can handle
Accept-Language Request The natural languages the client can handle
If-Modified-Since Request Time and date to check freshness
If-None-Match Request Previously sent tags to check freshness
Host Request The server’s DNS name
Authorization Request A list of the client’s credentials
Referrer Request The previous URL from which the request came
Cookie Request Previously set cookie sent back to the server
Set-Cookie Response | Cookie for the client to store
Server Response | Information about the server
Content-Encoding | Response | How the content is encoded (e.g., gzip)
Content-Language | Response | The natural language used in the page
Content-Length Response | The page’s length in bytes
Content-Type Response | The page’s MIME type
Content-Range Response | ldentifies a portion of the page’s content
Last-Modified Response | Time and date the page was last changed
Expires Response | Time and date when the page stops being valid
Location Response | Tells the client where to send its request
Accept-Ranges Response | Indicates the server will accept byte range requests
Date Both Date and time the message was sent
Range Both Identifies a portion of a page
Cache-Control Both Directives for how to treat caches
ETag Both Tag for the contents of the page
Upgrade Both The protocol the sender wants to switch to

HTTP RESPONSES

Also begins with a single START LINE.

The version of HTTP being used, A three-digit status code, text description of the code

Example:
HTTP/1.1 200 OK
Content-Type: text/html

Content-Length: 291

Code Meaning Examples
1xx Information 100 = server agrees to handle client’s request
2XX Success 200 = request succeeded; 204 = no content present

3xX Redirection | 301 = page moved; 304 = cached page still valid
4xX Client error 403 = forbidden page; 404 = page not found
SXX Server error | 500 = internal server error; 503 = try again later

DESIGNING YOUR SERVER

* Steps the server performs in its main loop:
 Accept a TCP connection from a client (a browser)
e Get the path to the page, which is the name of the file requested
e Get the file (from disk)
 Send an HTTP header then contents of the file to the client
* Release the TCP connection

e Modern Web servers have more features

* For dynamic content

 Third step may be replaced by the execution of a program that
generates and returns the contents

TYPICAL SERVER DESIGN

Processing——~ /" \

| |
! module [== :
|
. (thread) VY -
| -t] |
| =>| Disk |1
Request | . - :
5 Front end <> Cache |=> . :
e - a i :
|
|
|
|
|
|
|

(m)

Client Response

D
i
i

HTTP PIPELINING (VERSION HTTP/1.1)

Pipelined request/response
 HTTP/1.0 opened a new connection

for every data item it retrieved

Create TCP connection o |

4

e Overhead in establishing a new
connection to the same server over
and over again

Process Request #[%l

e HTTP/1.1 Persistent Connections g Send HTTPResponse #1
esponse

Send HTTPRequest #2

|

| |
|
| |
| |
| |
| |
|
. | Generate Response #Illl
:
| |
]
| |
| |
L]
| |
| |

* Reuse connection over many
requests/responses

Send HTTPRequest #3

Process Request #[%l

e But more complex in terms of

Generate Response #'%I
framing/parsing

< Send HTTPResponse #2

* How to know when one request process Request #3)

ends and the next begins?

Generate Response #3B|

< Send HTTPResponse #3

* This is part of the 1.1 spec

: Close TCP connection
-

Client

EXAMPLE OF PIPELINING

Request page
HIl

JEVVELS

i

o
(TN |
(T |

f—

-

Here is the page

Request style sheet

i

=
T,
[

P Here is the style sheet
S 3
D Request image 1
- — =Lorr OB
Here is image 1
Request image 2
= 0= E 1
- el
\/ Here is image 2
Request page
- = 5E I []
Here is the page + style sheet
- - iequest |mage; - 'E"EEE mm’
equest image = EE
23 q 9 > |ZlEE 1
Here is image 2 ‘-—EZ‘ EEE |||"||]]
’I == =
v Here is image 1

UC San Diego

