
HTTP AND THE WEB
George Porter
January 20, 2022

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Computer Networks: A Systems Approach, 5e, by Peterson and Davie

AGENDA

Today:
- Overview of HTTP protocol
- History of the TritonSort project from UCSD
- Required reading now available:
- - Julia Evan’s HTTP “Zine” (linked from canvas)
- - Go networking book, chapter 8
- - “Most expensive one-byte mistake” (on canvas)

Monday:
- Project 3 goes out (due Feb 1)

Tuesday:
- Finish TritonSort talk; in-class unit testing about HTTP protocol activity

HTTP “ZINE”

This PDF is not free--its license fee
was paid for by a generous gift from
Facebook for the use of this class
only.

Please do not distribute to anyone
not registered for this class.

If you know of someone who might
like to have a copy, they can purchase
their own version for $12 from Evans’
website at
https://wizardzines.com/zines/http/

https://wizardzines.com/zines/http/

HTTP AS AN EMERGING TRANSPORT LAYER

• HTTP: HyperText Transfer
Protocol

• Tim Berners-Lee at CERN
in 1989

• Used for web browsing

• In addition to web browsing:
• Video streaming via DASH on YouTube/Netflix, etc

• REST (Representational state transfer)

• Chat apps like Slack

• Many others

WEB/HTTP OVERVIEW

• Documents link to other documents

• Specified in HTML files

• HTTP is the protocol for retrieving
HTML files from servers

• and images, sounds, video, …

• Implemented in servers

• Apache, nginx, MSFT IIS

• and clients

• Chrome

• MSFT Edge

• Apple Safari…

AGGREGATING CONTENT FROM WEB SERVERS

SAMPLE HTML FILE

A WEB REQUEST EXAMINED

• Steps that occur when a link is selected:
• Browser determines the URL

• Browser asks DNS for the IP address of the server

• DNS replies

• Browser opens a TCP connection

• Sends HTTP request for the page

• Server sends the page as HTTP response

• Browser fetches other URLs as needed

• Browser displays the page

• The TCP connections are released

EXAMPLE OF REQUESTS MAKING UP FCC.GOV

HTTP OVERVIEW

• HTTP is a text oriented protocol.

• HTTP is a request/response protocol

• Requests and responses both look like:

START_LINE <CRLF>

MESSAGE_HEADER <CRLF>

<CRLF>

MESSAGE_BODY <CRLF>

• The first line (START LINE) indicates whether this is a
request message or a response message.

carriage-return-line-feed

HTTP REQUESTS

• Request Messages define

• The operation (called method) to be performed

• The web page the operation should be performed on

• The version of HTTP being used.

• Examples:

• GET /index.html HTTP/1.0

• GET /images/catimg23.jpg HTTP/1.1

• GET /contracts/contract3.txt HTTP/1.1

HTTP METHODS

OPTIONAL HTTP REQUEST HEADERS

• After the start line are request headers:

• Text-based, key and value separated by a colon

• Example 1:

GET /index.html HTTP/1.0

User-Agent: Firefox 23.3.1

• Example 2:

GET /images/cat2.jpg HTTP/1.1

Host: www.cs.ucsd.edu

User-Agent: Chrome 12.1

HTTP HEADERS

HTTP RESPONSES

• Also begins with a single START LINE.

• The version of HTTP being used, A three-digit status code, text description of the code

• Example:

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 291

DESIGNING YOUR SERVER

• Steps the server performs in its main loop:

• Accept a TCP connection from a client (a browser)

• Get the path to the page, which is the name of the file requested

• Get the file (from disk)

• Send an HTTP header then contents of the file to the client

• Release the TCP connection

• Modern Web servers have more features

• For dynamic content
• Third step may be replaced by the execution of a program that

generates and returns the contents

TYPICAL SERVER DESIGN

HTTP PIPELINING (VERSION HTTP/1.1)

• HTTP/1.0 opened a new connection
for every data item it retrieved

• Overhead in establishing a new
connection to the same server over
and over again

• HTTP/1.1 Persistent Connections

• Reuse connection over many
requests/responses

• But more complex in terms of
framing/parsing

• How to know when one request
ends and the next begins?

• This is part of the 1.1 spec

EXAMPLE OF PIPELINING

