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The Rise of Big Data Workloads

• Very high I/O and storage requirements
– Large-scale web and social graph mining
– Business analytics – “you may also like …”
– Large-scale “data science”

• Recent new approaches to “data deluge”: data 
intensive scalable computing (DISC) systems
– MapReduce, Hadoop, Dryad, …
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Size of “data-intensive” has grown
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Size of “data-intensive” has grown
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1985 1990 1995 2000 2005 2010 2015

100MB 1 TB 100 TB
1,000,000x increase



“Data-intensive” commonly means 
MapReduce

Input: Set<key-value pairs>
1. Apply map() to each pair
2. Group by key; sort each group
3. Apply reduce() to each sorted 

group
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Sorting is the 
challenge!

Map tasks

Reduce tasks



Performance via scalability
• 10,000+ node MapReduce clusters deployed

– With impressive performance
• Example: Yahoo! Hadoop Cluster Sort

– 3,452 nodes sorting 100TB in less than 3 hours
• But…

– Less Than 3 MB/sec per node
– Single disk: ~100 MB/sec

• Not an isolated case
– See “Efficiency Matters!”, 

SIGOPS 2010
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Overcoming Inefficiency With 
Brute Force

• Just add more machines!
– But expensive, power-hungry

mega-datacenters!
• What if we could go from 

3 MBps per node to 30?
– 10x fewer machines

accomplishing the 
same task

– or 10x higher throughput
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• Sorting contest [Jim Gray et al.,1985]
• Importance of the IO 

subsystem
• 1985: Sort 100MB
• 1999: Sort 1TB

• 2009: Sort 100 TB

Evaluating IO efficiency: 
GraySort
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Anon et al, "A measure of 
transaction processing power," 
Datamation 31, 7 (April 1985), 112-
118.



Sorting records
• GraySort:

– Time to sort 100TB
• MinuteSort:

– How much in 60s
• JouleSort:

– How much in 1 Joule
• PennySort:

– How much for 1¢
• CloudSort:

– How much $$ to sort 
100TB?



Inefficiency of deployed scale-out 
systems

• Analysis of GraySort contest results*
– On average: 94% disk IO idle; 33% of CPU 

idle

• Case study: 2009 Yahoo! Hadoop
Cluster
– Sorted 100TB with 3,452 nodes in ≈3 

hours
– 1% disk efficiency
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* Anderson and Tucek, “Efficiency matters!” SIGOPS OSR 44, 1 (March 2010)



3452 nodes at 1% efficiency
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35 nodes at 100% efficiency



TritonSort Goals
• Build a highly efficient DISC system that 

improves per-node efficiency by an order of 
magnitude vs. existing systems
– Through balanced hardware and software

• Secondary goals:
– Completely “off-the-shelf” components
– Focus on I/O-driven workloads (“Big Data”)
– Problems that don’t come close to fitting in RAM
– Initially sorting, but have since generalized

16



Outline
• Define hardware and software balance
• TritonSort design

– Highlighting tradeoffs to achieve balance
• Evaluation with sorting as a case study
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Building a “Balanced” System

• Balanced hardware drives 
all resources as close to 
100% as possible
– Removing any resource 

slows us down
– Limited by commodity 

configuration choices
• Balanced software fully 

exploits hardware resources
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Hardware Selection (in 2010)
• Designed for I/O-heavy workloads

– Not just sorting
• Static selection of resources:

– Network/disk balance
• 10 Gbps / 80 MBps ≈ 16 disks

– CPU/disk balance
• 2 disks / core = 8 cores

– CPU/memory
• Originally ~1.5GB/core… later 3 GB/core
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Resulting Hardware Platform
52 Nodes:
• Xeon E5520, 8 cores 

(16 with hyperthreading)
• 24 GB RAM
• 16 7200 RPM hard drives
• 10 Gbps NIC
• Cisco Nexus 5020 

10 Gbps switch
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Software Architecture
• Staged, pipeline-oriented dataflow system
• Program expressed as digraph of stages

– Data stored in buffers that move along edges
– Stage’s work performed by worker threads

• Platform for experimentation
– Easily vary:

• Stage implementation
• Size and quantity of buffers
• Worker threads per stage
• CPU and memory allocation to each stage
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Why Sorting?
• Easy to describe
• Industrially applicable
• Uses all cluster resources
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Current TritonSort Architecture

• External sort – two reads, two writes*
– Don’t read and write to disk at same time

• Partition disks into input and output
• Two phases

– Phase one: route tuples to appropriate 
on-disk partition (called a “logical disk”) on 
appropriate node

– Phase two: sort all logical disks in parallel
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* A. Aggarwal and J. S. Vitter. The input/output complexity 
of sorting and related problems. CACM, 1988.



Architecture Phase One
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Input Disks

Reader Node 
Distributor Sender



Architecture Phase One
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Receiver LD
Distributor Coalescer Writer

Output Disks
Disk 8

Disk 7

Disk 6

Disk 5

Disk 4

Disk 3

Disk 2

Disk 1

Linked list per partition



Reader
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• 100 MBps/disk * 8 disks = 800 MBps
• No computation, entirely I/O and memory 

operations
– Expect most time spent in iowait
– 8 reader workers, one per input disk

üAll reader workers co-scheduled on a single core

Reader Node 
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer



NodeDistributor
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• Appends tuples onto a buffer per 
destination node

• Memory scan + hash per tuple
• 300 MBps per worker

– Need three workers to keep up with readers

Reader Node 
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer



Sender & 
Receiver
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• 800 MBps (from Reader) is 6.4 Gbps
– All-to-all traffic

• Must keep downstream disks busy
– Don’t let receive buffer get empty
– Implies strict socket send time bound

• Multiplex all senders on one core 
(single-threaded tight loop)
– Visit every socket every 20 µs
– Didn’t need epoll()/select()

Reader Node 
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer



Balancing at Scale
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t1t0

Logical Disk 
Distributor
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t0 t1 t2

0

1

N
…

H(t0) = 1H(t1) = N

12.8 KB

Reader Node 
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer



Logical Disk 
Distributor
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• Data non-uniform and bursty at 
short timescales
– Big buffers + burstiness = head-of-line blocking
– Need to use all your memory all the time

• Solution: Read incoming data into smallest 
buffer possible, and form chains

Reader Node 
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer



Coalescer & 
Writer
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• Copies tuples from LDBuffer chains into a 
single, sequential block of memory

• Longer chains = larger write before seeking 
= faster writes
– Also, more memory needed for LDBuffers

• Buffer size limits maximum chain length
– How big should this buffer be? 

Reader Node 
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer



Writer
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Reader Node 
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer



Appending records to partitions
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Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1 P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs



Approach #1: Delegate to OS

- Low performance due to insufficient batching
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Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1 P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

write(), 
writev(),
mmap(),

…



Approach #2: Per-partition 
buffers
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Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1 P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs
Strawman (20GB)

Partition 1 (20GB / P)

Partition 2 (20GB / P)

Partition 3 (20GB / P)

Partition 4 (20GB / P)

Partition …



Approach #2: Per-partition 
buffers
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Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1 P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs
Strawman (20GB)

- Non-uniform arrivals result in “hot” buffers
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Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1

P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

PartitionAppender

10KB
10KB

10KB 10KB

10KB

20GB pool
(≈2M buffers)

TritonSort: Load-balancing across partitions

Fine-grained allocation of small buffers to 
partitions
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Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1

P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

PartitionAppender

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
…

10KB
10KB

10KB 10KB

20GB pool

TritonSort: Load-balancing across partitions

One “chain” of buffers per partition
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Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1

P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

PartitionAppender

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
…

10KB
10KB

10KB 10KB

20GB pool

Handling “hot” partitions

Largest chain = Largest possible write
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Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1

P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

PartitionAppender

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
…

10KB
10KB

10KB 10KB

20GB pool

Handling slow disks

Slow disks accept writes less often, leading to larger 
writes



Architecture Phase Two
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Reader Sorter Writer

Input Disks Output Disks



Evaluation
100TB 
GraySort

2009

2010

2011

2012

2013
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1.42 TB/min
2,200 nodes

100TB JouleSort

TritonSort

TritonSort

TritonSort

TritonSort

0.725 TB/min
52 nodesTritonSort

TritonSort

0.578 TB/min
3,452 nodes

(11.3 MB/sec/node)

(2.8 MB/sec/node)

(232.4 MB/sec/node)

Created in 2010



Going after CloudSort
• Our team, with lead student Mike Conley, 

ported Themis to Amazon’s Cloud 
Infrastructure

• Goal:
– Learn how to migrate a system designed for 

dedicated resources to an on-demand
service

– Break the record using cloud computing



The project in a nutshell...



Key challenges
• “The cloud” often doesn’t have any rain

– We frequently couldn’t get enough nodes L
• Performance(N-node cluster) !=

N * Performance(1 node)
• Network bandwidth is not good



Characterizing each type of node



What a 100TB sort should cost



But then... the network...



Factoring in the network



Results
Category Previous 

record
UCSD 2014 

Result
Indy GraySort 1.42 TB/min

(2,100 nodes)
6.76 TB/min
(178 nodes)

Daytona 
GraySort

1.42 TB/min
(2,100 nodes)

4.35 TB/min
(186 nodes)

Indy
MinuteSort

1401 GB
(256 nodes)

4094 GB
(178 nodes)

Indy CloudSort N/A $449.53
(330 nodes)

Daytona 
CloudSort

N/A $449.53
(330 nodes)



For more information
• TritonSort: A Balanced Large-Scale Sorting System, Alexander Rasmussen, 

George Porter, Michael Conley, Harsha V. Madhyastha, Radhika Niranjan 
Mysore, Alexander Pucher, and Amin Vahdat, Proceedings of the 8th 
ACM/USENIX Symposium on Networked Systems Design and 
Implementation (NSDI), Boston, MA, March 2011.

• Themis: An I/O-Efficient MapReduce, Alexander Rasmussen, Michael 
Conley, Rishi Kapoor, Vinh The Lam, George Porter, and Amin Vahdat, 
Proceedings of the ACM Symposium on Cloud Computing (SOCC), San 
Jose, CA, October 2012. 
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