
TritonSort
A Balanced Large-Scale Sorting System

CSE 224 – Jan 20, 2022

Alex Rasmussen, George Porter, Michael Conley,
Radhika Niranjan Mysore, Amin Vahdat (UCSD)

Harsha V. Madhyastha (UC Riverside)
Alexander Pucher (Vienna University of Technology) ���

��������������	��
���������

The Rise of Big Data Workloads

• Very high I/O and storage requirements
– Large-scale web and social graph mining
– Business analytics – “you may also like …”
– Large-scale “data science”

• Recent new approaches to “data deluge”: data
intensive scalable computing (DISC) systems
– MapReduce, Hadoop, Dryad, …

2

Size of “data-intensive” has grown

3

1985 1990 1995 2000 2005 2010 2015

Size of “data-intensive” has grown

4

1985 1990 1995 2000 2005 2010 2015

100MB 1 TB 100 TB
1,000,000x increase

“Data-intensive” commonly means
MapReduce

Input: Set<key-value pairs>
1. Apply map() to each pair
2. Group by key; sort each group
3. Apply reduce() to each sorted

group

5

M M M M M M M M M M

R R R R R R R R R R

Sorting is the
challenge!

Map tasks

Reduce tasks

Performance via scalability
• 10,000+ node MapReduce clusters deployed

– With impressive performance
• Example: Yahoo! Hadoop Cluster Sort

– 3,452 nodes sorting 100TB in less than 3 hours
• But…

– Less Than 3 MB/sec per node
– Single disk: ~100 MB/sec

• Not an isolated case
– See “Efficiency Matters!”,

SIGOPS 2010

6

Overcoming Inefficiency With
Brute Force

• Just add more machines!
– But expensive, power-hungry

mega-datacenters!
• What if we could go from

3 MBps per node to 30?
– 10x fewer machines

accomplishing the
same task

– or 10x higher throughput

7

• Sorting contest [Jim Gray et al.,1985]
• Importance of the IO

subsystem
• 1985: Sort 100MB
• 1999: Sort 1TB

• 2009: Sort 100 TB

Evaluating IO efficiency:
GraySort

11

Anon et al, "A measure of
transaction processing power,"
Datamation 31, 7 (April 1985), 112-
118.

Sorting records
• GraySort:

– Time to sort 100TB
• MinuteSort:

– How much in 60s
• JouleSort:

– How much in 1 Joule
• PennySort:

– How much for 1¢
• CloudSort:

– How much $$ to sort
100TB?

Inefficiency of deployed scale-out
systems

• Analysis of GraySort contest results*
– On average: 94% disk IO idle; 33% of CPU

idle

• Case study: 2009 Yahoo! Hadoop
Cluster
– Sorted 100TB with 3,452 nodes in ≈3

hours
– 1% disk efficiency

13
* Anderson and Tucek, “Efficiency matters!” SIGOPS OSR 44, 1 (March 2010)

3452 nodes at 1% efficiency

14

15

35 nodes at 100% efficiency

TritonSort Goals
• Build a highly efficient DISC system that

improves per-node efficiency by an order of
magnitude vs. existing systems
– Through balanced hardware and software

• Secondary goals:
– Completely “off-the-shelf” components
– Focus on I/O-driven workloads (“Big Data”)
– Problems that don’t come close to fitting in RAM
– Initially sorting, but have since generalized

16

Outline
• Define hardware and software balance
• TritonSort design

– Highlighting tradeoffs to achieve balance
• Evaluation with sorting as a case study

17

Building a “Balanced” System

• Balanced hardware drives
all resources as close to
100% as possible
– Removing any resource

slows us down
– Limited by commodity

configuration choices
• Balanced software fully

exploits hardware resources

18

Hardware Selection (in 2010)
• Designed for I/O-heavy workloads

– Not just sorting
• Static selection of resources:

– Network/disk balance
• 10 Gbps / 80 MBps ≈ 16 disks

– CPU/disk balance
• 2 disks / core = 8 cores

– CPU/memory
• Originally ~1.5GB/core… later 3 GB/core

19

Resulting Hardware Platform
52 Nodes:
• Xeon E5520, 8 cores

(16 with hyperthreading)
• 24 GB RAM
• 16 7200 RPM hard drives
• 10 Gbps NIC
• Cisco Nexus 5020

10 Gbps switch

20

Software Architecture
• Staged, pipeline-oriented dataflow system
• Program expressed as digraph of stages

– Data stored in buffers that move along edges
– Stage’s work performed by worker threads

• Platform for experimentation
– Easily vary:

• Stage implementation
• Size and quantity of buffers
• Worker threads per stage
• CPU and memory allocation to each stage

21

Why Sorting?
• Easy to describe
• Industrially applicable
• Uses all cluster resources

22

Current TritonSort Architecture

• External sort – two reads, two writes*
– Don’t read and write to disk at same time

• Partition disks into input and output
• Two phases

– Phase one: route tuples to appropriate
on-disk partition (called a “logical disk”) on
appropriate node

– Phase two: sort all logical disks in parallel

23

* A. Aggarwal and J. S. Vitter. The input/output complexity
of sorting and related problems. CACM, 1988.

Architecture Phase One

24

Input Disks

Reader Node
Distributor Sender

Architecture Phase One

25

Receiver LD
Distributor Coalescer Writer

Output Disks
Disk 8

Disk 7

Disk 6

Disk 5

Disk 4

Disk 3

Disk 2

Disk 1

Linked list per partition

Reader

26

• 100 MBps/disk * 8 disks = 800 MBps
• No computation, entirely I/O and memory

operations
– Expect most time spent in iowait
– 8 reader workers, one per input disk

üAll reader workers co-scheduled on a single core

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

NodeDistributor

27

• Appends tuples onto a buffer per
destination node

• Memory scan + hash per tuple
• 300 MBps per worker

– Need three workers to keep up with readers

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Sender &
Receiver

28

• 800 MBps (from Reader) is 6.4 Gbps
– All-to-all traffic

• Must keep downstream disks busy
– Don’t let receive buffer get empty
– Implies strict socket send time bound

• Multiplex all senders on one core
(single-threaded tight loop)
– Visit every socket every 20 µs
– Didn’t need epoll()/select()

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Balancing at Scale

29

t1t0

Logical Disk
Distributor

30

t0 t1 t2

0

1

N
…

H(t0) = 1H(t1) = N

12.8 KB

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Logical Disk
Distributor

31

• Data non-uniform and bursty at
short timescales
– Big buffers + burstiness = head-of-line blocking
– Need to use all your memory all the time

• Solution: Read incoming data into smallest
buffer possible, and form chains

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Coalescer &
Writer

32

• Copies tuples from LDBuffer chains into a
single, sequential block of memory

• Longer chains = larger write before seeking
= faster writes
– Also, more memory needed for LDBuffers

• Buffer size limits maximum chain length
– How big should this buffer be?

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Writer

33

Reader Node
Distributor Sender

Receiver L.D.
Distributor Coalescer Writer

Appending records to partitions

34

Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1 P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

Approach #1: Delegate to OS

- Low performance due to insufficient batching

35

Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1 P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

write(),
writev(),
mmap(),

…

Approach #2: Per-partition
buffers

36

Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1 P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs
Strawman (20GB)

Partition 1 (20GB / P)

Partition 2 (20GB / P)

Partition 3 (20GB / P)

Partition 4 (20GB / P)

Partition …

Approach #2: Per-partition
buffers

37

Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1 P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs
Strawman (20GB)

- Non-uniform arrivals result in “hot” buffers

38

Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1

P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

PartitionAppender

10KB
10KB

10KB 10KB

10KB

20GB pool
(≈2M buffers)

TritonSort: Load-balancing across partitions

Fine-grained allocation of small buffers to
partitions

39

Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1

P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

PartitionAppender

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
…

10KB
10KB

10KB 10KB

20GB pool

TritonSort: Load-balancing across partitions

One “chain” of buffers per partition

40

Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1

P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

PartitionAppender

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
…

10KB
10KB

10KB 10KB

20GB pool

Handling “hot” partitions

Largest chain = Largest possible write

41

Writer 1

Writer 2

Writer M

M output disks
P/M partitions

per disk

k1

P/M

P/M

P/M

k2 k3 k4 k5 k6 k7 k8 …

Buffer of k/v pairs

PartitionAppender

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
…

10KB
10KB

10KB 10KB

20GB pool

Handling slow disks

Slow disks accept writes less often, leading to larger
writes

Architecture Phase Two

42

Reader Sorter Writer

Input Disks Output Disks

Evaluation
100TB
GraySort

2009

2010

2011

2012

2013

43

1.42 TB/min
2,200 nodes

100TB JouleSort

TritonSort

TritonSort

TritonSort

TritonSort

0.725 TB/min
52 nodesTritonSort

TritonSort

0.578 TB/min
3,452 nodes

(11.3 MB/sec/node)

(2.8 MB/sec/node)

(232.4 MB/sec/node)

Created in 2010

Going after CloudSort
• Our team, with lead student Mike Conley,

ported Themis to Amazon’s Cloud
Infrastructure

• Goal:
– Learn how to migrate a system designed for

dedicated resources to an on-demand
service

– Break the record using cloud computing

The project in a nutshell...

Key challenges
• “The cloud” often doesn’t have any rain

– We frequently couldn’t get enough nodes L
• Performance(N-node cluster) !=

N * Performance(1 node)
• Network bandwidth is not good

Characterizing each type of node

What a 100TB sort should cost

But then... the network...

Factoring in the network

Results
Category Previous

record
UCSD 2014

Result
Indy GraySort 1.42 TB/min

(2,100 nodes)
6.76 TB/min
(178 nodes)

Daytona
GraySort

1.42 TB/min
(2,100 nodes)

4.35 TB/min
(186 nodes)

Indy
MinuteSort

1401 GB
(256 nodes)

4094 GB
(178 nodes)

Indy CloudSort N/A $449.53
(330 nodes)

Daytona
CloudSort

N/A $449.53
(330 nodes)

For more information
• TritonSort: A Balanced Large-Scale Sorting System, Alexander Rasmussen,

George Porter, Michael Conley, Harsha V. Madhyastha, Radhika Niranjan
Mysore, Alexander Pucher, and Amin Vahdat, Proceedings of the 8th
ACM/USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Boston, MA, March 2011.

• Themis: An I/O-Efficient MapReduce, Alexander Rasmussen, Michael
Conley, Rishi Kapoor, Vinh The Lam, George Porter, and Amin Vahdat,
Proceedings of the ACM Symposium on Cloud Computing (SOCC), San
Jose, CA, October 2012.

52

