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Abstract

Magnetic reconnection is an ubiquitous phenomenon in many plasma system
such as gamma-ray bursts and active galactic nuclei. In the magnetic reconnection,
the magnetic filed lines will reconfigure and the magnetic energy will be converted
to the kinetic energy. We reviewed the reconnection model in non-relativistic and
the relativistic case and discussed some reconnection experiments using lasers. In
the non-relativistic case, the Sweet-Parker model and the non-MHD model are
investigated. We also studied the relativistic Sweet-Parker model. The relativistic
model shows that the inflow velocity is proportional to the magnetic Reynolds

number as R
−1/2
M , which is the same as the non-relativistic case. The reconnection

can be produced in laboratory with two laser focusing on adjacent spots, giving
an opposite magnetic field in the middle of the two spots. Some examples of the
non-relativistic and relativistic reconnection using lasers are reviewed.

1



1 Theory and background

Magnetic reconnection is a common phenomenon in space where the magnetic field
lines are topologically changed and the magnetic energy is converted to the kinetic energy.
It is observed in solar wind interacting with the magnetosphere, solar flares, etc. When the
two opposite magnetic field lines are close to each other, the topology of the field lines will
change due to the finite resistivity. In this section, we will first review the Sweet-Parker
model, which is based on MHD formulation. And then we will talk about the non-mhd
model. Last bust not least the relativistic reconnection model will be introduced.

1.1 Sweet-Parker model

Figure 1: Configuration of Sweet-Parker reconnection.

In the Sweet-Parker model, we use the mass, momentum and energy conservation.
First we look at the mass conservation. Assuming the incompressible fluid, we have
∇ · v = 0. So the inflow mass is equal to the outflow mass, we get

ρ0vinL = ρ0vout∆. (1)

This gives the relation between vin and vout as vin = vout∆/L.
We then use the conservation of momentum in the x direction along the current sheet.

From the momentum equation, we can rearranege it and will get p + B2
0/8π + ρ20v/2 =

constant. In the middle of the current sheet, the velocity is zero and the magnetic field is
finite. On the other hand, at the end of the current the velocity is vout and the magnetic
field goes to zero. We have

p+
B2

0

8π
= p+

ρ0v
2
out

2
. (2)

This gives that vout = vA,where vA =
√
B2

0/(4πρ0) is the Alfven speed. So we get

vin = vA
∆

L
. (3)

Next we use the energy balance: the rate of inflow magnetic energy equal to the rate
of Ohmic dissipation. The Ohmic dissipation power is

POH =
J2

σ
∆L = (

c

2π
)2
B2

0

∆2

L∆

σ
, (4)
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where Ampere’s law is used. The magnetic energy flow power is

Pin = 2

(
B2

0

8π

)
vL. (5)

By equating the above two, we can get vin = η/∆, where η = c2/(πσ). Finally with
vin = vA∆/L, we will get

∆

L
= R

−1/2
M , and vin = voutR

−1/2
M , (6)

where RM = vAL/η is the magnetic Reynolds number.
We arrived that the reconnection time from Sweet-Parker model is

τSP = L/vin = (L/vA)R
1/2
M . (7)

The reconnection time is much longer than the Alfven time τA = L/vA, but much shorter
than the resistive decay time in macroscopic scale L, τdecay = LS/vA. According to
the observation data in solar flare [1], the reconnection time of Sweet-Parker model is
τSP ∼ 108 seconds. However the observed energy release time is about 103 to 104 seconds.
There is a huge discrepancy. There are also other models trying to explain this, such as
Petschek’s Model using shock explanation. We will discuss the non-MHD model in the
next subsection.

1.2 Non-MHD model

We so far consider the reconnection in resistive MHD formulation. It is necessary to
check the validity of the MHD. Take the example of the solar flare. The relative drift
velocity of electron and ion is

∆v = vi − ve =
c j

n e
=

c

n e

B0

4π∆
. (8)

Using the layer width ∆ from Sweet-Parker model, we have ∆ = L/
√
RM . Given the

parameters of solar flare that L = 109 cm, RM = 2.7 × 1012, B0 = 300 G, ρ = 10−12

g/cm3, we can get the relative drift velocity of ion and electron is ∆v = 2.5×109 cm/s [1].
Also the ion sound speed is about 107 cm/s for T = 102 eV. We will expect an ion acoustic
instability to happen for such large relative drift velocity. Thus, the Sweet-Parker model
fails since the relative drift is large enough to drive the ion acoustic instability, which will
make resistivity larger.

The validity of the resistive MHD depends on the comparison between the ion inertial
length c/ωpi and the thickness the the reconnection layer ∆. The resistive MHD is valid
when

∆ >
c

ωpi

√
β
, (9)

where β = 8πp/B2. Here p is the plasma pressure in the current sheet and the B is the
magnetic field outside the current sheet. And we also have

∆v

vi
=

c

ωpi∆
√
β
. (10)
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So if we need resistive MHD and Sweet-Parker model to be valid, we will have

∆v � vi. (11)

This is also the situation when ion-acoustic instability cannot occur.
The large relative drift velocity, ∆v � vi will lead to the ion acoustic instabilities.

Then the ion acoustic waves will drag ion and electron toward the wave phase velocity.
This force from wave-particle interaction will cause larger effective resistivity. Larger
resistivity will result in larger layer width ∆ and larger reconnection speed vin. From Eq.
10, we can see that the larger ∆ will give smaller ∆v. As the ∆v gets smaller than the
critical relative drift velocity, there will be no instablity. We can get the critical layer
width ∆c by equating Eq. 10 to 1, giving that

∆c =
c

ωpi

√
β
. (12)

We then do the derivation of Sweet-Parker model again with ∆ = ∆c. From the mass
conservation, we have

vin =
∆c

L
vA =

vA
L

c

ωpi

√
β
. (13)

and the reconnection time is

τ ∼ L

∆cvin
= L2vA

ωpi

√
β

c
. (14)

The reconnection time τ ∼ 5× 105 seconds for the solar flare example [1], which is closer
to the observation value but still roughly 500 times longer.

1.3 relativistic reconnection

In this section we investigate the relativistic reconnection. The relativistic reconnec-
tion happens when the magnetic energy before the field reconnects is much larger than the
total enthalpy of the particles. Then the particles are relativistic before the reconnection.
This can be quantified as relativistic magnetization parameter σ, [2] given as

σ =
B2

0

4πmnc2ωn

. (15)

The reconnection is relativistic if σ > 1. Note that ωn = γ + p/(mnc2) is the enthalpy
per particle and p is the particle pressure and γ is the mean particle Lorentz factor.

Relativistic reconnection is very common in the astrophysical magnetized object, such
as active galactic nuclei, pulsars, magnetars and gamma-ray bursts. And relativistic
reconnection is often the mechanism for accelerating the particles to high energies. During
the relativistic reconnection, the magnetized plasma goes toward the central current sheet
with inflow velocity vin. After that magnetic field line will change topologically. Then
there is an outflow plasma in the original field line direction with the outflow velocity vout.
According to the momentum conservation, vout is about the relativistic Alfven velocity
vA, written as

vout = vA = c

√
σ

1 + σ
∼ c (16)
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for σ � 1 in the relativistic regime.
We now consider the relativistic Sweet-Parker model [3]. We consider the 3D model

with the current sheet in the xz plane. The width of the current sheet is 2∆ and the length
of the current sheet is 2L. Using the pressure balance across the sheet in y direction, we
have

p =
B2

0

8π
, (17)

where p is the pressure at the middle of the current sheet and B0 is the magnetic field
outside the current sheet.

Next from the momentum equation, we have

∂

∂x

(
ω
v2out
c2
γ2out − p

)
= −jzBy. (18)

Here we can approximate ∂/∂x as 1/L. Also we have

jz =
B0

4π∆
(19)

from Ampere’s law. Withe the flux conservation By ∼ ∆B0/L and the Ampere’s law, we
can write the momentum equation as

ω
v2out
c2
γ2out =

B2
0

8π
. (20)

In the case of the inflow magnetic energy density much larger than the plasma rest
energy density, we have the enthalpy as ω = 4p = B2

0/2π. By plugging the expression
the ω into the above momentum equation, we can get that

γout ∼ 1, vout ∼ c. (21)

So the outflow velocity is about speed of light, which is consistent with Eq. 16.
We then consider the energy conservation. The inflow energy is vinB

2
0/8π and the

outflow energy is ωvout. Note that the enethalpy can be written as ω = 4p = B2
0/2π. By

using the energy balance,

vin
B2

0

8π
L = ωvout∆, (22)

we will get
vin
vout
∼ ∆

l
. (23)

This relations between vin and vout also implies the flow is almost incompressible.
In the Maxwell–Faraday equation of steady state, we have ∇ × E = 0. So the Ez is

the same outside and within the current sheet. Within the current sheet, the Ohm’s law
implies that Ez = ηjz, where η is the resistivity. Outside the current sheet, the ideal
MHD approximation gives that Ez = (vin/c)B0. So we have

Ez = ηjz = (vin/c)B0. (24)

Then substitute the Ampere’s law jz = B0/(4π∆) and ∆ = Lvin/c into above equation,
we will get

v2in
c2

=
cη

4πL
, (25)
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giving that
vin
c

= R
−1/2
M , (26)

where RM = 4πL/(cη) � 1. We can see that the inflow veleocity vin is roughly non-
relativistic. Also, this relativistic Sweet-Parker has the same scaling with RM as the
non-relativistic case.

Though the above discussion of the relativistic Sweet-Parker model doesn’t include
the kinetic effects, it still gives some feeling what the relativistic model will look like. The
more detailed model including kinetic effect can be found in [4]. This work introduces
the inertial ion length c/ωpi into the analysis.

2 Laser-driven reconnection

In this section, we will talk about some laser experiments for magnetic reconnection.
When the laser irradiates the plasma, the laser EM waves will accelerate the electrons to
move forward. This will form an electric current, generating an azimuthal magnetic field.
From the PIC simulation done by myself, this azimuthal magnetic field can be at most
20 percent of the laser magnetic field. So we can use self-generated azimuthal experiment
to do some experiments for reconnection. Two laser adjacent are used to irradiate the
plasma at the same time. Then two laser target will have the same azimuthal magnetic
field. And in the middle of the two target, we will see that there’s an opposite magnetic
field line, which corresponding to the setup of the magnetic reconnection. In the following,
I will review two laser experiments for the magnetic reconnection. The second one has a
higher laser intensity than the first one, giving a higher azimuthal magnetic field.

Figure 2: The geometry of the laser target and the magnetic field configuration. Courtesy
of [5].

Nilson et al. (2006) [5] presents a laser experiment for magnetic reconnection at
the Rutherford Appleton Laboratory, UK. Fig. 2 is the schematic of the experiment.
Two lasers with intensity 1 × 1015 W cm−2 and wavelength λ = 1.054 micron are used
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to irradiate the aluminum or gold target foil. The two laser beams were aligned with
different target distances. From the experiment results, the magnetic field of 0.7 ∼ 1.3
MG at the focal spot edges is observed.

For the aluminum plasma, the experiments show that the Alfven velocity is about vA =
1.35× 107. We can see that the outflow velocity, or Alfven velocity, is much smaller than
the speed of light. So this reconnection is non-relativistic. Other experiment parameters
are L = 100 µm, Te = 800 eV , B = 1MG. Using these parameters, we can get the Sweet-
Parker reconnection rate as 4 ns, which is an approximate number since there are still
some uncertainty in the length of the current sheet L. This experiment has confirmed that
this is a magnetic reconnection but not a hydrodynamic collision without the magnetic
fields. It can provide some studies on the microphysics, such as the heating mechanism
and the particle acceleration mechanism.

Figure 3: The experiment setup in [6].

Raymond et al. (2018) [6] presents laser experiments for relativistic reconnection.
The experiments were performed both at the University of Michigan with λ = 800 µm
and intensity of 2×1019Wcm−2 normal incidence and the Laboratory of Laser Energetics
(LLE) with λ = 1.053 µm and intensity of 1.2 × 1018 Wcm−2at 57.2o incidence. The
targets are both copper foil. The two laser beams are separated by a distance Xsep. The
setup of the experiment is in Fig. 3.

According to the basics of the direct laser acceleration theory, the electron can be
accelerated to relativistic energy when laser intensity is larger than 1018 W cm−2. So it is
evident that these experiment with intense lasers will generate the relativistic magnetic
reconnection. It can also be seen in Fig. 4 that the electron energy goes to several MeV,
which is highly relativistic. As for the strength of the magnetic field, this work doesn’t
present it. The experiments done on the same laser in Michigan [7] shows that the laser
of intensity 4× 1019 Wcm−2 can generate the magnetic fields of order 100 MG.
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Figure 4: Electron energy spectrum from the experiment in LLE. [6]

This work [6] also provides a 3D PIC simulation result. The simulation setup is similar
the real experiment. The simulation results show that the azimuthal magnetic field near
the reconnection layer is about 20 MG. And the calculated magnetization parameter σ is
larger than 10, which satisfy the criterion for the relativistic reconnection. However, the
comparison of relativistic Sweet-Parker model with the experiments is not yet clear.

To model the relativistic reconnection more accurately, the quantum electrodynamics
(QED) effect must be considered. The laser-generated plasma is now very close to the
astrophysical conditions like the AGN or gamma-ray bursts. At such high energy system,
the QED effect such as radiation reaction can be significant. The more detailed analysis
of the magnetic reconnection with QED effect can be found in Bulanov (2016) [8].

3 Conclusion

In this report, we reviewed the basics of the Sweet-Parker model for the magnetic
reconnection. It shows that the inflow velocity is equal to the outflow velocity multiplied
by R

−1/2
M , where RM is the magnetic Reynolds number. Then we discussed the non-MHD

model that the ion-acoustic instability is taken into account. And the non-MHD model
gives that the the inflow velocity is proportional to the ion inertial length c/ωpi. Next
the derivation of the relativistic Sweet-Parker model is given. The outflow velocity is
about speed of light and the inflow velocity is much smaller than the speed of light.
The inflow velocity in relativistic case has the scaling of R

−1/2
M , which is the same as the

non-relativstic case.
As for the experiment, we reviewed two laser experiments for the reconnection. The

reconnection can be produced in laboratory by using two laser focuses on adjacent spots,
giving an opposite magnetic field in the middle of the two spots. Nilson et al. (2006)
[5] presents a laser experiment for the non-relativistic reconnection. Raymond et al.
(2018) [6] presents a relativistic reconnection experiment using lasers. To more accurately
model the relativistic reconnection, the quantum electrodynamics effect must be taken
into account.
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