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Abstract

Instabilities in a plasma can arise when the drift velocity of the electron distribution with
respect to ion distribution surpasses a critical value. These instabilities excite waves which are
damped through linear and non-linear wave-particle interactions. The Anomalous resistivity
then emerges due to momentum transfer of electrons through their interaction with the excited
waves. It is important to relate the anomalous resistivity to phenomena that produces the
instability. This paper will discuss the anomalous resistivity due to current driven ion-acoustic
instability.

I Introduction

The evolution of magnetic field in the resistive-MHD is governed by the induction equation.

∂B
∂ t

= ∇× (V ×B)+
ηc
4π

∇
2B S = 4π

LvA

ηc

the inclusion of the resistive diffusion term allows the flux freezing to be violated. In particular
if the resistive diffusion term is much greater then convection term, S ≪ 1 then the topology of
the magnetic field is allows to change. The phenomenon of the magnetic field lines breaking and
reconnecting is called magnetic reconnection. During magnetic reconnection the magnetic field
gets dissipated and the magnetic energy is converted to plasma kinetic energy. This causes the
Ohmic heating of the plasma and can cause instabilities to arise.

I.1 The Sweet-Parker Model of Magnetic Reconnection and Faster Reconnections

The Sweet-Parker models the steady state magnetic reconnection of oppositely align magnetic
fields due to micro-resistivity. The magnetic reconnection speed in the Sweet-Parker model is given
by vR = vA√

S
∝
√

η . This reconnection speed is observed to be too slow compared to observational
results [1]. In order agree with the observe reconnection rates we must modify the Sweet-Parker
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model to get a faster reconnection rate. One approach to seek faster reconnection rates is to con-
sider the current-driven micro-instabilities arises due to Ohmic heating. The momentum transfer
between the excited waves due to instability and the particles provides an effective resistivity to the
system.

I.2 Experimental Tests of Sweet Parker with Anomalous Resistivity

The magnetic reconnection experiments in (MRX) indicates by inclusion of Anomalous Resistivity
to the Sweet-Parker model. The new magnetic reconnection rate agrees with cases of magnetic
reconnection simulated in laboratory.

Figure 1: Magnetic reconnection in generalized Sweet-Parker including anomalous resistivity com-
pare to magnetic reconnection in Laboratory plasma. Taking from reference [2]

II Fluctuations in Warm Plasma

II.1 Evolution of Distribution Function and Electrostatic waves

Consider a collisionless plasma with zero guide field and take the constant current density to be
along x̂. Denote the electron and ion distribution functions as fe(r,v, t) and fi(r,v, t) respectively.
Since our problem is one dimensional it is useful to integrate f over the orthogonal components
to k and denote it as F .Furthermore we restrict ourselves to the electrostatic perturbations hence
E = Ek/k so there is no perturbed magnetic field. The evolution of the distribution functions is
governed by the Vlasov equation

∂ fe

∂ t
+ v

∂ fe

∂x
− e

me
E

∂ fe

∂v
= 0

∂ fi

∂ t
+ v

∂ fi

∂x
+

e
me

E
∂ fi

∂v
= 0
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and the Poisson‘s equation takes the form

∇
2
φ = 4π(ni −ne)e = 4πe

∫
( fi − fe)d3v

Suppose a small perturbation of the distribution function f (r,v, t) = f0(v)+ f1(r,v, t) where f0 is
the equilibrium distribution and f1 is the non-stationary perturbation. Then the linearized equations
are given by

∂ f1

∂ t
+ v

∂ f1

∂x
+

q
m

E
∂ f0e

∂v
= 0 ∇

2
φ = 4πe

∫
( f1i − f1e)d3v

where q =±e and we dropped the subscripts. Therefore perturbations of the distribution function
result in the perturbation of electric field which in turn feed backs to the perturbation of the dis-
tributions. Now we consider the initial value problem at t = 0 for the perturbed fields and Fourier
transform with respect to the spatial dimension

E(x, t) =
∫

∞

−∞

Ê1(k, t)eikxdk

Hence the linearized equations take the form

∂ F̂1

∂ t
+ ikvF̂1 +

q
m

Ê
∂F0

∂v
ikÊ = 4πe

∫
∞

−∞

(F̂1i − F̂1e)dv

To solve the initial value problem we take the Laplace transform with respect to time

Ẽ(k, ω̄) =
∫

∞

−∞

Ê(k, t)eiω̄tdt Ê(k, t) =
1

2π

∫
∞+iµ

−∞+iµ
Ẽ(k, ω̄)e−iω̄tdω̄

where ω̄ = ω + iγ and γ > 0. Hence the equations take the form

−F̂1(v, t = 0)− i(ω̄ − kv)F̃1(k, ω̄)+
q
m

Ẽ
∂F0

∂v
= 0

Solving for F̃1 and substituting into the equation for Ẽ we obtain

Ẽ(k, t) =
4πe

kε(k, ω̄)

∫
∞

−∞

F̂1i(v,0)− F̂1e(v,0)
ω̄ − kv

dv J(k, ω̄)≡ Ẽ(k, ω̄)ε(k, ω̄)

where ε(k, ω̄) is the dielectric constant

ε(k, ω̄) = 1+
4πe2

mik

∫
∂F0i/∂v
ω̄ − kv

dv+
4πe2

mek

∫
∂F0e/∂v
ω̄ − kv

dv
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II.2 Ion-Acoustic Wave

Since we restrict ourselves to the electrostatic waves, the dielectric constant is ε(k,ω). This fol-
lows as by definition of the dielectric constant ∇×B1 =−i(ω/c)ε ·E but we have B1 = 0. Hence
the dispersion relation for the electrostatic waves are obtained through ε(k,ω) = 0. In particular it
is given by

1 =−4πe2

mik

∫
∂F0i/∂v
ω̄ − kv

dv− 4πe2

mek

∫
∂F0e/∂v
ω̄ − kv

dv

Suppose the equilibrium distribution functions of electrons and ions are Maxwellian.

F0i =
n0√
2πvi

exp(−v2/2v2
i ) F0e =

n0√
2πve

exp(−v2/2v2
e)

where v2
i = kTi/mi and v2

e = kTe/me are ion and electron thermal velocities respectively and n0 =∫
f0d3v.

Consider the phase velocities which satisfy vi ≪ ω/k ≪ ve.

In the dispersion relation in the contribution of electron distribution we have ω − kv ≈−kv.

−4πe2

mek

∫
∂F0e/∂v
−kv

dv =−
ω2

pe

k2v2
e

In the dispersion relation in the contribution of ion distribution we have ω − kv ≈ ω .

−4πe2

mik

∫
∂F0i/∂v

ω
dv =

ω2
pi

ω2

Therefore the dispersion relation for waves in this limit is

1 =
ω2

pi

ω2 −
ω2

pe

k2v2
e
=⇒ ω

2 =
k2v2

eω2
pi

k2v2
e +ω2

pe
=

me

mi

k2v2
e

1+ k2λ 2
D
=

k2c2
s

1+ k2λ 2
D

where cs =
√

me/mive is the effective sound speed and λD = ve/ωe is the Debye length. Waves
in this regime are called Ion-Acoustic waves which correspond to longitudinal oscillations of the
ions.

II.3 Landau Damping

Consider the expression we obtain for the Laplace transform of Ê: J(k, ω̄)≡ Ẽ(k, ω̄)ε(k, ω̄). Tak-
ing the inverse Laplace form of the equation extending the integral to the contour closed from the
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lower half plane γ →−∞ and applying the Cauchy-Residue Theorem we obtain

Ê(k, t) = i ∑
ε(k,ω̄)=0

J(k, ω̄)

∂ε/∂ω̄
e−iω̄t

Hence we observe that the evolution of the electrostatic wave induced by the small perturbations
in the distribution function can be determined by the root of the dielectric constant and so from the
equilibrium distributions. Denote the root ω̄1 = ω1 + iγ1 be the root of ε with largest γ . Hence for
t ≫ 1 the electric field will behave

Ê(k, t)≈ e−iω1+γ1t

In particular, if γ1 < 0 then this corresponds to the damping of the electrostatic wave. This is called
the Landau damping. On the other hand if γ1 > 0 this corresponds to exponential growth and is
called the Landau growth.

Consider k sufficiently small such that vi,ve ≪ |ω/k| then we have the following expansion

1
ω − kv

≈ 1
ω

(
1+

kv
ω

+
k2v2

ω2 +
k3v3

ω3

)
Substituting this expansion into the dispersion relation given by ε(k,ω) and noting that the equi-
librium distributions are Maxwellian we obtain the following dispersion relation

ω
2 ≈ ω

2
pe +3kv2

e

the term 3kv2
e is called the Bohm-Gross correction. Now we consider the plasma oscillation with

resonant particles in this limit. To the first order interaction we have ω̄ = ω0 +ω1 with ω0 = ωpe.
Decomposing the dielectric constant to real and imaginary part the root equation takes the form

ε1(ω0 +ω1)+ iε2(ω0) = 0

The imaginary part can be obtained by integrating over ω/k with a semi-circle contour

iε2 =−πi
4πe2

k2me

∂F0e

∂v

∣∣∣
ω/k

−πi
4πe2

k2mi

∂F0i

∂v

∣∣∣
ω/k

The real part of the dielectric constant from the above expansion is given by

ε1(ω0 +ω1)≈ 1−
ω2

pe +3kv2
e

(ω0 +ω1)2
∂ε1

∂ω
=

2
ω0

Hence substituting inside the root equation and noting that ε1(ω0) = 0 we have

ω1 =− iε2(ω0)

∂ε1/∂ω0

5



Hence the growth rate is given by

γ1 =
ω1

i
=

πω0

2n0k2

[
ω

2
pe

∂F0e

∂v
+ω

2
pi

∂F0i

∂v

]

Ignoring the contribution of the ion distribution and noting that the equilibrium electron distribution
is Maxwellian ∂F0e/∂v =−(v/ve2)F0e the growth rate can be written as

γ1

ω0
=−

√
π

8
1

k3λ 3
D

exp(−1/2k2
λ

2
D)

Note that the growth rate strictly negative hence the waves are damped. However this damping rate
γ1 is small compare to ω1 if kλD ≪ 1.

II.4 Current Driven Ion-Acoustic Instability

Now we take account the addition of electron drift velocity to the ion-acoustic wave. Set our frame
such that the ion distribution function is Maxwellian and the electron is a shifted Maxwellian.

∂F0i/∂v =−(v/vi2)F0i ∂F0e/∂v =−((v− vd)/ve2)F0e

Consider phase velocities in the limit vi ≪ ω/k and |ω/k− vd | ≪ ve. In this case we have ω2
0 =

k2c2
s

1+k2λ 2
D

. Decomposing the dielectric constant to real and imaginary parts again we have obtain

∂ε1/∂ω|ω0 = 2ω
2
pi/ω

3
0

instead and the imaginary part stays the same. Hence the corresponding growth rate is

γ1

ω0
=

πω2
0

2n0k2

(
mi

me

∂F0e

∂v
+

∂F0i

∂v

)∣∣∣
ω0/k

Denote α = (1+ k2λ 2
D). Substituting the equilibrium distribution F0e and F0i we obtain

γ1

ω0
=

√
π

8
α

3c3
s

[
mi

me

(
vd

αcs
−1

)
exp(−(αcs − vd)

2/2v2
e)

v3
e

− exp(−(αcs)
2/2v2

i )

v3
i

]
= α

3
√

π

8
α

3c3
s

[√
mi

me

(
vd

αcs
−1

)
−
(

Te

Ti

)3/2

exp(−(αcs)
2/2v2

i )

]

In the limit kλD ≪ we have α → 1 hence the growth rate becomes

γ1

ω0
≈
√

π

8
c3

s

[√
mi

me

(
vd

cs
−1

)
−
(

Te

Ti

)3/2

exp(−Te/−2Ti)

]
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In particular the destabilization of the ion acoustic wave occurs when the electron drift velocity
satisfies

vd > cs

[
1+

√
mi

me
exp(−Te/−2Ti)

]
we note that this limit is valid when Te ≫ Ti and thus the exponential factor reduces the threshold
to vd > cs as Te/Ti is increased.

Figure 2: Current Driven Ion-Acoustic Instability: F0i (blue) and F0e (orange)

III Energy Spectrum and Anomalous Resistivity

The anomalous resistivity is due to the momentum transfer of the electrons. In order to calculate the
anomalous resistivity we calculate the energy spectrum of ion-acoustic waves in the steady state.
After obtaining the wave amplitudes over the spectrum we can calculate the momentum transfer
rate.

The effective resistivity is obtain through the Ohm’s law which takes the form

dPe

dt
=−n0eEe f f

The wave-particle interactions dominates the momentum loss of the electrons. This process cor-
responds to linear Landau damping and the momentum loss of the electrons are derived from the
conservation of momentum. In particular the loss of the momentum of the non-resonant particles
transfer to the resonant particles, ion-acoustic waves. The expression for the momentum loss of the
particles are derived in Galeev Sagdeev (1969) to be

dPe

dt
=−π

e2

m

∫ dk
k

Î(k, t)
∂F0e

∂dv

∣∣∣
ω/k
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where Î(k) is the intensity of the electric field per unit wave number given by Î(k) = |Ê(k)|2/L and
L is the length scale of the system. From the definition of resistivity it follows that

η
e f f ( j) =

c2

4πσ e f f =
Ee f f ( j)c2

4π j
=

c2

4πn2
0e2vd

∣∣∣∣dPe

dt

∣∣∣∣
Plugging in the momentum transfer rate of the electrons due to the wave-particles interactions we
obtain the anomalous resistivity to be [3].

η
e f f (vd) =

c2

ωpi

cs

4vd

∫ dk
kλD

Î(k, t)
n0mev2

e

v2
e

n0

∂F0e

∂v

∣∣∣
ω/k

Note the dependence of the anomalous resistivity to the electron drift velocity. In particular for
the regime Te ≫ Ti the threshold for exciting ion-acoustic instability hence anomalous resistivity is
vd > cs while for Te ≈ Ti the threshold becomes much higher. Either case as vd ≈ ve the anomalous
resistivity will flatten out.

Figure 3: The Anomalous resistivity ηe f f as a function of the electron drift velocity vd . The figure
is taken from reference [3]
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