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Abstract

Helicity is a measure of a field’s self circulation or ”knottedness”, and
is invariant for incompressible Ideal MHD. Within incompressible Ideal
MHD the helicity takes the form of a collection of tangled vortex lines. In
this paper we will construct the helicity of vortex loops in terms of topo-
logical invariants (Gauss Linking Number) and use that to then construct
the helicity for knotted plasmas in terms of a new invariant (Calugareanu
Invariant). The main interest in helicity is that it offers a lower bound on
how the plasma can relax. We will reexamine this lower bound and find
some knots whose helicity would suggest that the system can fully relax
(whitehead link and borromean rings), but are non-trivial and can’t. In
response to this a method of finding the minimum magnetic energy of a
knot based off its path instead of helicity is found. Finally, a discussion
of numeric methods (PENCIL-code) resent uses in the topic and findings
with regards to relaxation of these plasmas.

1 Tangled Vortex Lines

To gain some insight into properties of MHD helicity we will first examine how
tangled vortex lines can be broken down into connected loops and their helicity
expressed as topological invariants. Consider A⃗ is the vector field of a fluid
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who’s curl forms of two closed vortex filaments that are unknotted, C1 C2, with
strength, κ1 & κ2, the circulation around C1,

K1 =

∮
C1

A⃗ · d⃗l =
∮
S1

(∇× A⃗) · dS⃗ (1)

K1 equal either 0 or ±κ2 depending on whether the loops are connected and
their orientation. This can be generalized to any two knotted filaments by seeing
that adding pairs of equal and opposite vorticity segments allows us to break
C2 into unknotted subloops around C1.

K1 =

∮
C1

A⃗ · d⃗l = α12κ2 (2)

Where α12 = α21 is the winding number of the two loops or the number of times
they wind around each other.

If instead of two loops connected to each other there was one loop that is
knotted (linked to itself). The same method could be used, but now we count
both parts of the connection since they are both parts of the original knot.∮

C1

A⃗ · d⃗l =
∑
i

∮
Ci

A⃗ · d⃗l = 2α11κ1 (3)

Given that C1 =
∑

i Ci. [1]
The most basic example of this method of inserting opposite and equal lines

to break a closed integral into a group of them is the decomposition of the trefoil
knot into two linked and unknotted loops.

Figure 1: The trefoil knot, where the pair of lines can be inserted to separate a
part of the tangle and turn the knot into two connected and unknotted loops.

One might see that the strength of a filament κi is the curl of A⃗ along the
filament Ci, so we can say κid⃗l = (∇× A⃗)dV where dv is the volume containing

2



dl.

κiKi =

∮
ci

A⃗ · κid⃗l =

∫
vi

A⃗ · (∇× A⃗)dV (4)

Therefor

HM =

∫
V

A⃗ · (∇× A⃗)dV =
∑
i,j

αijκiκj (5)

This integral is invariant under the Euler equations of ideal fluid flow when
A⃗ · n⃗ = 0, so too is the description of helicity in terms of winding numbers and
filament strength. [1]

It is important to note that by substatutin the geneal expression,

A⃗(r⃗) = − 1

4π

∫
(r⃗ − r⃗′)× (∇× A⃗(r′))

|r⃗ − r⃗′|3
dV

in for HM and re-expression as line integrals we get

αij = αji =
1

4π

∮
Ci

∮
Cj

(r⃗ − r⃗′) · [dl⃗i × dl⃗j ]

|r⃗ − r⃗′|3
(6)

which is Gauss’s integral definition for the linking number of two loops.
One can see that this discussion of tangled vortex line is not the same as

the magnetic helicity in MDH, the helicity in MDH is in magnetic Fields not
discrete vortex lines of the B field. Regardless, this has still offers us insight into
how to think and describe these knots. This insight is very clear with regards
to tangled flux tubes, which we will construct a description for using knotted
vortex lines. [1]

2 Knotted Flux Tubes

To construct the helicity for knotted vortex tubes we treat them as a collection
of vortex lines. The easiest example of this is the two linked, untwisted, and
unknotted flux tubes, where their vortex lines are unlinked with lines from the
same tube. They therefor are connected in the same way as the tubes, so they
have helicity HM 1i = ±α12κ1iϕ2, since the sum of the vortex line strength
passing through line 1i is the flux of tube 2. Summing this helicity over all the
vortex lines in tube 1 gives us the helicity of tube 1, and this argument can be
mirrored for the perspective of tube 2. Therefor, the total helicity of the tubes
is

HM = ±2α12ϕ1ϕ2 (7)

Where ϕ1 & ϕ2 are the fluxes of the tubes.
Once again we are interested in the helicity of a knot (self linkage). Now

we will examine the helicity of a knotted tube with flux ϕ and form C (the
innermost part of the knot is given by curve C). The helicity of the flux tube is

H = hϕ2 (8)
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where h is the Calugareanu invariant. The Calugareanu invariant is sum of
the writhe (Wr), average torsion (T), and rotation (N) of the flux tube ie.
h = Wr + T +N . N is an integer since the vortex loops are continues, writhe
is the same expression for αij when i = j

Wr =
1

4π

∮
C

∮
C

(r⃗ − r⃗′) · (d⃗l × dl⃗′)

|r⃗ − r⃗′|3

and the torsion is a function of position on C, τ(l), so

T =
1

2π

∮
C

τ(l)dl

It should be noted that the Wr, T , and N are still subject to change under
certain conditions so long as h is conserved.[2] Figure 2 is a diagram of showing
the change in T in relation to N .

Figure 2: In diagram (a) we see that the vortex filament (solid line) twists
around the center of the tube 5 times, but in (b) it only twists 2 times. This is
due to the center of the tube in (b) making these three loops due to its torsion.

One assumption we make in this approach to knotted flux tubes in MHD is
that the vortex lines in the tubes are all of the same rotation N. In reality the
vortex lines can rap around C a different number of times, but taking this into
account required more advanced methods.

3 Magnetic Relations

The magnetic energy has a lower bound placed in it by the field’s helicity since
it cannot infinitely contract field lines trapped by the knots topology. From this
we have the expression,

EM ≥ |HM |/l0 = |h|ϕ2/l0 (9)
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where l0 is the initial length scale of the knot. An issue with this expression can
be see, the field’s ability to relax is based on its topology, but our expression
is based off its Calugareanu invariant, these are not always equivalent. For
example, both the Whitehead link and Borromean Rings (figure 3) haveHM = 0
but non-trivial topology that stops them from relaxing to EM = 0. [2]

Figure 3: A Whitehead link and Borromean Rings. both have h = 0 since for
each right-handed circulation of each other there is a corresponding left-handed
one, but they they still not topologically trivial, so their minimum magnetic
energy is greater than 0.

The question becomes how to express this minimum energy in a way that
takes into account any non-trivial topology. We start with a dimensional ex-
pression

EMmin = m(h)ϕ2V −1/3 (10)

and see that the minimum energy occurs when there is no more dissipation of
kinetic energy due to viscosity since dissipation is the mechanism by which it
relaxes. This mean the fluid is in magnetostatic equilibrium, so

∇p = (∇× B⃗)× B⃗

This gives us that the minimum energy of the knot is one that has the same
topology as the initial knot, and is stable since its the minimum energy. For flux
tubes of circular uniform cross section and no kinks, m(h) can be computed and
a graph of them for T2,n is included below. If there were kinks and non-uniform
cross sections the minimum energy would go down, by an undetermined, though
likely small for small h, amount. [2]
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Figure 4: graphs ofm(h). The minimum ofm(h) is gives the minimum magnetic
energy through equation 10.

4 Numerical Methods and Simulation

More recently numeric methods have been used to show that when incom-
pressible MHD relaxes the minimum energy caused by helicity adds stability.
It was found that as the plasmas relax their initial helicities organize to form
nested toroidal surfaces. The method used to find this is the PENCIL-code,
a solver favored in astrophysics for its versatility, which was chose since it can
solve for the vector potential, letting the condition ∇·B⃗ = 0 be maintained. Us-
ing this method it was found that various non-trivial topologies all time evolved
into resulted in the same shape with a different distribution of energies. Re-
markably, this relaxation still conserves helicity, would potentially offer stability
to the magnetic fields of fusion plasmas . [3]
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