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Dynamo theory aims to figure out how the magnetic fields of celestial bodies are generated and 

maintained. Since the evolutions of magnetic field and velocity field are strongly coupled, it is 

difficult to formulate a fully self-consistent model. To find out under which conditions a magnetic 

field can be excited, a series of kinematic dynamo theory is constructed, in which the velocity field 

is prescribed artificially. A powerful approach, called mean-field dynamo theory, is introduced. 

The novelty of this approach is that fields are divided into a mean part and a fluctuating part by 

taking proper averaging operation. In this theory, the magnetic field is excited by 𝛼-effect, which 

requires the turbulence has no mirror-symmetry. A simple quenching mechanism of the 𝛼-effect 

is also elucidated in this paper.  

1. Introduction: The History of Dynamo Theory 

In 1919, Sir Joseph Larmor posed a famous question—i.e., “How could rotating body such as 

the sun become a magnet?” Therefore, the story of dynamo theory starts from people’s interest in 

the origination of the magnetic field of the sun. One may ask why people were not motivated by 

the origination of the geomagnetic field? For a long time, it was believed that the interior of the 

earth was a permanent magnet, as shown in Fig. 1. As time went by, people realized that this is 

wrong. Because the core temperature of the earth is far beyond the Curie point, earth can by no 

means be ferromagnetic material. The long duration of the geomagnetic field and the cycle of the 

solar magnetic field ask for a theory to explain them. Larmor offered several suggestions, one of 

which provides the basis for dynamo theory: solar magnetic field originates from the motion of 

electrically conducting fluid within the rotating body. 

Fig. 1 The Earth’s Magnetic Field 



The rationality of this idea was first confirmed by Bullard’s ‘homopolar’ disc dynamo in 1955 

[1]. As shown in Fig. 2, a copper disc is rotating about a vertical axis with a constant angular 

velocity Ω. Its rim and axle are connected by a twisted conducting wire in which a current 𝐼(𝑡) 

flows. This current generates a magnetic flux across the disc, and, as the disc is rotating relative to 

the magnetic field, a motional electromotive force is generated. Since the disc and the wire form a 

closed circuit, we then have the following equation 

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 = ℰ = 𝑀Ω𝐼, (1.1) 

where 𝑀 , 𝐿 , and 𝑅  are the mutual inductance, self-inductance, and resistance of the system. 

Clearly, if Ω > 𝑅/𝑀, the current will grow exponentially without limit, provided the growing 

magnetic field has no feedback on disc’s rotation. This simple model reveals at least two insights: 

first, the system exhibits differential rotation. In this case the discontinuity of the rotation is 

concentrated at the rim of the disc. In a real dynamo system, the differential rotation can be 

distributed uniformly in space; second, there is no reflectional symmetry in this system. If the disc 

rotates in the opposite direction, the initial current can only decay exponentially. This property is 

of tremendous importance for the turbulent dynamo theory. As will be shown in Sec. 3, a 

nonvanishing electromotive force provided by turbulence requires a non-trivial turbulent helicity. 

There is, however, an essential difference between ‘homopolar’ disc dynamo and a real dynamo, 

i.e., the difference in topology. Bullard’s model is delicately devised. The conducting wire is 

twisted and covered by insulating material. This kind of ‘complex’ geometric structure does not 

exist in the celestial bodies, in which the conducting fluid is confined to a single-connected region.  

Fig. 2 The ‘Homopolar’ Disc Dynamo [2] 



As the rotation and magnetic field of the Earth and the sun are approximately axisymmetric, it 

is natural for people to focus on models owning this symmetry. However, in 1934, Cowling 

proposed the first ‘anti-dynamo’ theorem, which concluded that a steady axisymmetric magnetic 

field can not be maintained by axisymmetric motions [3]. Obviously, it was necessary to consider 

non-axisymmetric, especially three-dimensional cases. In 1946, Elsasser summarized the dynamo 

problem as the interaction between a general prescribed axisymmetric velocity field and a general 

non-axisymmetric magnetic field in a conducting fluid contained within a rigid spherical boundary 

(medium outside the sphere is assumed to be insulate) [4]. Theories of this type are called 

kinematic dynamo theory, as the feedback of magnetic field on the velocity field is not included in 

these models. Since then, a series of kinematic dynamo theories appeared. In 1958, Herzenberg 

constructed the first kinematic dynamo model [5]. In his model, two smaller separate spherical 

regions rotating like rigid bodies are inside a spherical conducting medium. With special rates of 

rotations and a special arrangement of the axes of rotation, self-excitation occurs. And in 1973, 

Gailitis proved that oscillatory magnetic field is also possible, which might explain the periodic 

changes of solar magnetic field. 

At that stage, when people wanted to go one step forward— i.e., including the interaction 

between magnetic field and velocity field, they found that a fully self-consistent dynamo theory 

(which is called dynamic dynamo theory) is too complex to be solved by a purely computational 

approach. A more advanced theoretical approach was urgently needed to mitigate the difficulty in 

numerical computation. In 1955, Parker adopted an averaging method to incorporate the non-

axisymmetric upwellings in equations for mean magnetic field [6]. Although Parker’s idea was not 

mature enough, it is indeed a great breakthrough, and ignited a flame.  

Several years later, this idea was recognized, and two approaches were developed. The first of 

these two masterpieces was “nearly symmetric dynamo” by Braginskii in 1964 [7]. He considered 

that the generation of magnetic field is a result of the simultaneous presence of an axisymmetric 

motion and some special non-axisymmetric motions. The second approach, named as “mean-field 

magnetohydrodynamics” or “turbulent dynamo theory”, by Steenbeck, Krause, and Rädler in 1966 

[8], might be more general. They divide the velocity field and magnetic field into a mean part and 

a turbulent part. The key point is that turbulence can offer a mean electromotive force which has 

a component parallel to the prevailing local mean magnetic field. This is called “𝛼-effect”. As will 

be discussed in Sec. 3, 𝛼-effect requires the turbulence to have a non-vanishing helicity, which 



echoes the lack of the reflectional symmetry of Bullard’s ‘Homopolar’ disc dynamo. Unfortunately, 

even though the “mean-field magnetohydrodynamics” makes dynamic dynamo be manageable to 

some extent, the dynamic dynamo theory is still undeveloped compared with kinematic dynamo 

theory.  

The following sections of this paper are arranged as follows. In Sec. 2, I will focus on the 

kinematic dynamo theory. The formulation of this theory, and some fundamental types of dynamos 

are introduced. Instead of listing the zoology of different kinematic dynamo theories, I will show 

the constraints on the construction of a kinematic dynamo. In Sec. 3, I will show the equations for 

mean fields and elaborate how the mean-field theory is closed. A subsection will be devoted to the 

illustration of the 𝛼-effect and its relation to turbulence helicity. In Sec. 4, I will talk a little about 

the dynamical dynamo theory, focusing on the 𝛼-quenching effect. Finally, a brief conclusion is 

given in Sec. 5.  

2. Kinematic Dynamo Theory 

One of the most obvious features of kinematic dynamo theory is that the velocity field is 

prescribed and doesn’t evolve. Though it’s not self-consistent, it provides insights that under which 

conditions the magnetic field of a celestial body can be excited and sustained. In addition, 

kinematic dynamo theory is more developed than dynamic dynamo theorem, and a lot of brilliant 

work have been done on this topic, so it plays a key role in dynamo theory. 

2.1. Formulation of Kinematic Dynamo Theory 

According to resistive MHD theory, the evolution of the magnetic field is governed by the 

induction equation 

𝜕

𝜕𝑡
𝑩 = ∇ × (𝒗 × 𝑩) − 𝜂∇2𝑩, (2.1) 

where 𝜂 is the resistivity. Resembling what Braginskii did, we separate 𝑩 and 𝒗 into axisymmetric 

and asymmetric parts by writing 

𝑩 = 𝑩̅ + 𝑩̃,    𝒗 = 𝒗̅ + 𝒗̃. (2.2) 

More specifically, the axisymmetric parts of these two fields can be divided into zonal and 

meridional parts, i.e. 

𝑩̅ = 𝐵(𝑠, 𝑧, 𝑡)𝒆𝝓 + 𝑩𝑴,   𝑩𝑴 = ∇ × [𝐴(𝑠, 𝑧, 𝑡)𝒆𝝓]

𝒗̅ = 𝑠𝜁(𝑠, 𝑧, 𝑡)𝒆𝝓 + 𝒗𝑴,   𝒗𝑴 = ∇ × [𝜒(𝑠, 𝑧, 𝑡)𝒆𝝓]
, (2.3) 



where 𝜁 represents the differential rotation. Then, substituting Eq. (2.2) into Eq. (2.1), we can get 

𝜕

𝜕𝑡
𝑩̃ − ∇ × (𝒗̅ × 𝑩̃) − ∇ × (𝒗̃ × 𝑩̃) − 𝜂∇2𝑩̃

= −
𝜕

𝜕𝑡
𝑩̅ + ∇ × (𝒗̅ × 𝑩̅) + ∇ × (𝒗̃ × 𝑩̅) + 𝜂∇2𝑩̅

. (2.4) 

By taking the average over azimuthal angle 𝜙, Eq. (2.4) can be divided into two equations: 

𝜕

𝜕𝑡
𝑩̅ − ∇ × (𝒗̅ × 𝑩̅) − 𝜂∇2𝑩̅ = ∇ × 𝓔̅, (2.5) 

𝜕

𝜕𝑡
𝑩̃ − ∇ × (𝒗̅ × 𝑩̃ + 𝓔̃) − 𝜂∇2𝑩̃ = ∇ × (𝒗̃ × 𝑩̅), (2.6) 

where 𝓔 = 𝒗̃ × 𝑩̃ is the electromotive force created by asymmetric fields, and 𝓔 = 𝓔̅ + 𝓔̃. In terms 

of the representation Eq. (2.3), Eq. (2.5) can be rewritten as 

𝜕

𝜕𝑡
𝐴 +

1

𝑠
𝒗𝑴 ⋅ ∇(𝑠𝐴) = 𝜂∇2𝐴 + 𝓔̅𝜙, (2.7) 

𝜕

𝜕𝑡
𝐵 + 𝑠𝒗𝑴 ⋅ ∇ (

𝐵

𝑠
) = 𝑠𝑩𝑴 ⋅ ∇𝜁 + 𝜂∇2𝐵 + (∇ × 𝓔̅)𝜙. (2.8) 

Here comes a subtle question, what is the expression for the mean electromotive force 𝓔̅? In Eq. 

(2.4), the left-hand side is linear in 𝑩̃, and the right-hand side is linear in 𝑩̅. Therefore, 𝑩̃ is, in 

principle, a functional of 𝒗̅, 𝒗̃, and 𝑩̅, especially, a functional proportional to 𝑩̅. Consequently, 𝓔̅ 

is proved to be a functional of 𝒗̅, 𝒗̃, and 𝑩̅ which proves to be linear in 𝑩̅. Therefore, it is fair to 

guess that 𝓔̅ can be approximated by 𝑩̅ and its first-order derivative—i.e., in isotropic case 

𝓔̅ = 𝛼𝑩̅ − 𝛽∇ × 𝑩̅. (2.9) 

This approximation can be better justified in turbulence dynamo theory. Note that 𝓔 is vector while 

𝑩 is a pseudo-vector, this implies that 𝛼 is a pseudo-scalar. Therefore, for a system with mirror 

symmetry, 𝛼 can only be equal to zero. In other words, a non-vanishing 𝛼 requires a system that 

has no reflectional symmetry, which is consistent with the result of the ‘homopolar’ disc dynamo. 

Plugging Eq. (2.9) into Eq. (2.7) and Eq. (2.8). we get 

𝜕

𝜕𝑡
𝐴 +

1

𝑠
𝒗𝑴 ⋅ ∇(𝑠𝐴) = 𝜂𝑇∇2𝐴 + 𝛼𝐵, (2.10) 

𝜕

𝜕𝑡
𝐵 + 𝑠𝒗𝑴 ⋅ ∇ (

𝐵

𝑠
) = 𝜂𝑇Δ𝐵 + [∇𝜁 × ∇(𝑠𝐴)]𝜙 − [𝛼∇2𝐴 +

1

𝑠
∇𝛼 ⋅ ∇(𝑠𝐴)] , (2.11) 

where 𝜂𝑇 = 𝜂 + 𝛽 is the total diffusivity. The boundary conditions of this system are 

[𝐴] = [𝜕𝐴/𝜕𝑛] = [𝐵] = 0  𝑜𝑛 𝑆. (2.12) 



Two differential equations Eq. (2.10), Eq. (2.11), and along with boundary conditions Eq. (2.12), 

formulate the basic kinematic dynamo theory. 

2.2. 𝜶𝟐-dynamo and 𝜶𝝎-dynamo 

An important observation of Eq. (2.10) and Eq. (2.11) is that there are two parameters: 𝛼 and 

𝜁. In Eq. (2.9), the first term on the right-hand side means there is an electromotive force parallel 

to the local magnetic field, which is not predicted in classical electrodynamics, and has been known 

as “𝛼-effect” (the choice of the letter 𝛼 is just a coincidence in history). As defined by Eq. (2.3), 𝜉 

represents the differential zonal rotation which called “𝜔-effect” (again, the choice of the letter 𝜔 

is due to historical reasons). Then we can define two dimensionless numbers 

𝑅𝛼 =
𝛼0𝐿

𝜂𝑇
,   𝑅𝜔 =

𝜁0𝐿2

𝜂𝑇
. (2.13) 

According to the ratio of 𝑅𝛼 to 𝑅𝜔,  there are two extreme cases: ⅰ) 𝑅𝜔 ≪ 𝑅𝛼 (𝛼2-dynamo); ⅱ) 

𝑅𝜔 ≫ 𝑅𝛼 (𝛼𝜔-dynamo). These two limiting cases will be discussed separately. 

i. 𝛼2-dynamo 

In this case, 𝛼-effect appears in both Eq. (2.10) and Eq. (2.11), which means 𝛼-effect can 

generate not only 𝐴 from 𝐵 , but also 𝐵  from A. When 𝑅𝛼  reach a critical value 𝑅𝛼𝑐 , 𝛼2-

dynamo can maintain a magnetic field. Here we only analyze the free modes of the 𝛼2-dynamo. 

For simplicity, we can assume 𝒗𝑴 = 𝜁 = 0, 𝛼 and 𝛽 are uniform and constant. Then Eq. 

(2.5) can be rewritten as 

𝜕

𝜕𝑡
𝑩̅ − 𝜂𝑇∇2𝑩̅ = α∇ × 𝑩̅. (2.14) 

For a ‘force-free’ field, 

∇ × 𝑩̅ = 𝑘𝑩̅, (2.15) 

∇2𝑩̅ = −∇ × ∇ × 𝑩̅ = −𝑘2𝑩̅, (2.16) 

where 𝐾  is a constant. So, if 𝑩̅(𝒙, 0) = 𝑩̂(𝒙) , and 𝑩̅(𝒙, 𝑡) = 𝑩̂(𝒙)𝑒𝑝𝑡 , the growth rate 𝑝 

satisfies 

𝑝 = 𝛼𝑘 − 𝜂𝑇𝑘2. (2.17) 

Hence the mean magnetic field will grow exponentially if 0 < 𝑘 < 𝑘𝑐 = 𝛼/𝜂𝑇 , and the 

maximum growth rate is 𝑝𝑚 = 𝛼2/4𝜂𝑇.  

ii. 𝛼𝜔-dynamo 



In this case, the 𝛼-effect in Eq. (2.11) can be neglected, which means only 𝐴 is generated 

from 𝛼-effect, and 𝐵 is generated from A. The 𝜔-effect is illustrated in Fig. 3. For a rotating 

conducting sphere, if there is a meridional magnetic field threading though it, due to the flux-

freezing law, field lines inside the sphere will rotate with the sphere and be twisted. A toroidal 

field is thus generated. To maintain a magnetic field, the product of these two numbers, called 

the dynamo number, 𝐷 = 𝑅𝛼𝑅𝜔, must be not less than a critical value, 𝐷𝑐. Again, here we only 

discuss the free modes of the 𝛼𝜔-dynamo.  

In Cartesian coordinate, the 𝛼𝜔-dynamo is described by 

𝜕

𝜕𝑡
𝐴 + 𝒗𝑴 ⋅ ∇𝐴 = 𝛼𝐵 + 𝜂𝑇∇2𝐴, (2.18) 

𝜕

𝜕𝑡
𝐵 + 𝒗𝑴 ⋅ ∇𝐵 = 𝑩𝑴 ⋅ ∇𝑣 + 𝜂𝑇∇2𝐵, (2.19) 

where 𝑩̅ = 𝐵𝒆𝒚 + ∇ × (𝐴𝒆𝒚), 𝒗̅ = 𝑣𝒆𝒚 + 𝒗𝑴. Over regions of limited extent in which 𝒗𝑴, 𝛼, 

and ∇𝑣 can be treated as constant, these equations have local solutions of the form 

(𝐴, 𝐵) = (𝐴̂, 𝐵̂) exp(𝑝𝑡 + 𝑖𝒌 ⋅ 𝒙) , 𝒌 = (𝑘𝑥, 𝟎, 𝒌𝒚). (2.20) 

Then the growth rate 𝑝 satisfies 

𝑝2 = (𝑝 + 𝜂𝑇𝑘2 + 𝑖𝒗𝑴 ⋅ 𝒌)2 = 2𝑖𝛾 = −𝑖𝛼(𝒌 × ∇𝑣)𝑦. (2.21) 

To simplify the analysis, we can assume 𝒗𝑴 = 0. Then we can conclude that it is possible to 

maintain a magnetic field when |𝛾| > 𝜂𝑇
2 𝑘2. 

2.3. Fast Dynamo and Slow Dynamo [9] 

Fig. 3 Generation of a Toroidal Field Due to the 𝜔-effect [2] 



Besides 𝛼2 -dynamo and 𝛼𝜔 -dynamo, there is another way to classify dynamos—i.e., fast 

dynamo and slow dynamo.  

For ideal MHD, the magnetic field obeys Alfven’s theorem. In terms of the initial field 𝑩(𝑿, 0), 

the expression for 𝑩(𝒙, 𝒕) is 

𝐵𝑖(𝒙, 𝑡) = 𝐵𝑗(𝑿, 𝑡)𝜕𝑥𝑖/𝜕𝑋𝑗 , (2.22) 

where 𝒙(𝑿, 𝑡) is the position of the fluid element initially at 𝒙(𝑿, 0) = 𝑿. Since field lines are 

frozen into the fluid element, the growth rate of the magnetic field is determined by “deformation 

gradient matrix” 𝜕𝑥𝑖/𝜕𝑋𝑗 . If one of the eigenvalues of this matrix grows exponentially, 

characterized by a positive Lyapunov exponent, 

𝜆𝐿(𝑿) = lim
𝑡→∞

(𝑡−1 ln Λ) > 0, (2.23) 

the magnetic field will also grow exponentially on the advective time scale, 𝑇𝑎𝑑𝑣 = 𝜆𝐿
−1. Dynamos 

in which magnetic field grows exponentially are classified as “fast dynamo”. Otherwise, if 

𝜆𝐿(𝑿) = 0, for example, Λ(𝑡) ∝ 𝑡, this kind of dynamos is classified as “slow dynamo”.  

The mechanism behind fast dynamo can be illustrated by stretch-twist-fold picture (see Fig. 4) 

by Vainshtein and Zeldovich in 1972 [10]. Suppose a closed flux tube of magnetic flux Φ0 =

∫ 𝑩 ⋅ 𝒏𝑑𝑆
𝑆

, where 𝑆 is a cross section of the tube. If we stretch this tube to double its length, as the 

plasma is incompressible, the cross section of this tube will reduce by a half. Due to the flux-

freezing law, the flux across the cross section is conserved, which means the magnitude of the 

magnetic field also doubles. Then the tube is twisted in a way shown in Fig. 4 and is folded so that 

the number of the loops becomes two. Finally, these two loops merge with each other to make this 

process irreversible. Repeating this process for 𝑛 times, the field inside the loop will be amplified 

by a factor of 2𝑛 . Several points are worth addressing. First, shear is needed in this process. 

Without shear, flux tube cannot be twisted, and then the field in the folded loop would cancel 

rather than add coherently. Second, the last step, i.e., merging, can be done at any time, and 

dynamo growth is not limited by this step. This is why the characteristic time scale of fast dynamo 

is the convection time instead of the resistive diffusion time. However, if the merging rate is slow, 

as we can expect, twisting field lines will cost more and more energy, the exponential grow 

becomes hard to be kept. 

In 1989, Vishik argued that, when there is no stretching anywhere in a smooth fluid flow 

(mathematically, 𝜆𝐿 = 0 everywhere), the resulting dynamo is slow dynamo [11]. Another simple 



picture can illustrate a slow dynamo. Consider a uniform magnetic field. When there is a shear 

flow transverse to the field, field lines will be stretched perpendicular to the magnetic field (see 

Fig. 5). In this condition, Λ is proportional to 𝑡. 

2.4. Necessary Conditions for Dynamo  

In the development of dynamo theory, several necessary conditions for dynamos are found. The 

most remarkable one must be Cowling’s “anti-dynamo” theorem, as mentioned in Sec. 1. 

According to Eq. (2.7) and Eq. (2.8), if magnetic field and velocity field are both axisymmetric, 

i.e., 𝒗̃ = 𝑩̃ = 0, then we have (assuming there is no meridional convection) 

𝜕

𝜕𝑡
𝐴 − 𝜂Δ𝐴 = 0, (2.24) 

𝜕

𝜕𝑡
𝐵 − 𝜂Δ𝐵 = 𝑠𝑩𝑴 ⋅ ∇𝜁. (2.25) 

Obviously, in Eq. (24), as there is no source for 𝐴, 𝐴 will decay exponentially. In Eq. (2.25), the 

only source for 𝐵  is 𝑩𝑴 . However, after 𝐴  decays to zero, 𝐵  will lose its source and decay 

exponentially, either. Later, this theorem is further developed, and leads to a conclusion that a 

steady axisymmetric magnetic field can never be maintained by dynamo action. Nevertheless, a 

non-axisymmetric magnetic field can be maintained by a steady axisymmetric velocity field. This 

is proved by Gailitis in 1970 [12]. 

For spherical models with constant electrical conductivity, in 1964, Braginskii generalized 

Cowling’s theorem by including non-steady magnetic fields. He proved that any field which is 

symmetric with respect to a given axis is bound to decay if 𝒗  is solenoidal (∇ ⋅ 𝒗 = 0) and 

Fig. 5 Flux of Tube Doubles by the Stretch-Twist-Fold Mechanism [9] Fig. 4 An Illustration of a Slow Dynamo 



symmetric with respect to the same axis. Actually, this statement retains its validity even if the 

velocity field is not symmetric. 

As Cowling’s theorem provides a condition for the magnetic field, Elsasser (in 1946), and 

Bullard and Gellman (in 1954), and Moffatt (in 1978) concluded that a magnetic field cannot be 

maintained by solenoidal motions without radial components if electrical conductivity is a constant. 

A lower bound for the magnitude of the radial motion necessary for dynamo action has been given 

by Busse in 1975. 

Last but not least, Childress gave a requirement of the magnitude of the velocity field. In 

particular, for a spherical model with constant electrical conductivity and solenoidal motions, the 

magnetic Reynolds number should satisfy 

𝑅𝑀 =
𝑈𝑚𝑎𝑥𝑅

𝜂
≥ 𝜋, (2.26) 

where 𝑈𝑚𝑎𝑥 is the maximum relative velocity inside the sphere and 𝑅 is the radius. 

3. Mean-Field Dynamo Theory 

In both the core of the Earth and the convection zone of the sun, the motions of conducting 

fluids have been observed to be highly turbulent. In addition, the solar magnetic field has a wide 

range of spatial and temporal scales. However, there is no doubt that the magnetic fields of the 

Earth and the sun have large-scale structures. These facts imply that the emergence of self-excited 

dynamos is closely connected to turbulence, and there is a separation of scales between the large-

scale structures and small-scale structures (e.g., turbulent motions, irregular fields). Therefore, it 

is possible to divide the magnetic field and velocity field into a mean field and a fluctuating field 

by adopting proper averaging operation. This is known as mean-field magnetohydrodynamics, 

which is concerned with the evolution and behavior of mean electromagnetic and hydrodynamic 

fields in a turbulent conducting medium.   

In both Sec. 1 and Sec. 2, there is a common feature in technical dynamos and the kinematic 

dynamo theory—i.e., systems lack mirror-symmetry. The lack of reflectional symmetry is the 

origin of 𝛼-effect. But one question still remains unsolved: where does the Eq, (2.9), i.e., the 

expression for the mean electromotive force, come from? Up to now, this equation appears as a 

magic. This question can be better answered in mean-field dynamo theory. 

3.1. Equations for the Mean Fields 



Before constructing the equations for the mean field, we need to clarify one question: what is 

the definition of the averaging operation here? This question is of great subtlety. Theoretically, the 

averaging operation we use is ensemble average (statistical average). For example, as the cycle of 

the solar magnetic field is 22 years, each complete cycle can be treated as a sample of the ensemble. 

Then we just need to take the average over a large number of different cycles to get the ensemble 

average. However, in reality, it is common to admit space or time average. 

Assume the characteristic length and time scales of the mean field are 𝜆̅ and 𝜏̅, and those of the 

fluctuations are 𝜆𝑐𝑜𝑟 and 𝜏𝑐𝑜𝑟. We denote the scale of the averaging range by 𝜆𝑎𝑣 and 𝜏𝑎𝑣. In order 

to separate large and small scales, we must require inequalities 

𝜆̅ ≫ 𝜆𝑎𝑣 ≫ 𝜆𝑐𝑜𝑟 , (3.1) 

𝜏̅ ≫ 𝜏𝑎𝑣 ≫ 𝜏𝑐𝑜𝑟 . (3.2) 

to be fulfilled.  

The effect of the averaging is to divide a field into two parts. Let 𝑭 be a irregular field. Its 

corresponding mean field, 𝑭̅, is defined as the expectation value of 𝑭  in an ensemble of many 

identical systems. 𝑭̃  is defined as the residual part of 𝑭 , i.e., 𝑭̃ = 𝑭 − 𝑭̅ . Then we have the 

following Reynolds relations: 

𝑭 = 𝑭̅ + 𝑭̃,    𝑭̅̅ = 𝑭̅,   𝑭̅̃ = 0,

𝑭 + 𝑮̅̅ ̅̅ ̅̅ ̅̅ = 𝑭̅ + 𝑮̅,    𝑭̅𝑮̅̅̅ ̅̅ = 𝑭̅𝑮̅,    𝑭̅𝑮̃̅̅ ̅̅ = 0
. (3.3) 

The mean-field equations are derived as follows. We start with basic resistive MHD equations: 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
, ∇ × 𝑯 = 𝒋, ∇ ⋅ 𝑩 = 0, (3.4) 

𝑩 = 𝜇𝑯,         𝒋 = 𝜎(𝑬 + 𝒖 × 𝑩). (3.5) 

By combining Eq. (3.4) and Eq. (3.5), we can get the induction equation 

𝜕𝑩

𝜕𝑡
= ∇ × (𝒖 × 𝑩) + 𝜂∇2𝑩 (3.6) 

Taking the average of Eq. (3.4) and Eq. (3.5), we obtain 

∇ × 𝑬̅ = −
𝜕𝑩̅

𝜕𝑡
, ∇ × 𝑯̅ = 𝒋,̅ ∇ ⋅ 𝑩̅ = 0, (3.7) 

𝑩̅ = 𝜇𝑯̅,         𝒋̅ = 𝜎(𝑬̅ + 𝒖̅ × 𝑩̅ + 𝒖̃ × 𝑩̃̅̅ ̅̅ ̅̅ ̅̅ ). (3.8) 

Compared with Eq. (3.5), one extra term appears in Eq. (3.8), i.e., 𝒖̃ × 𝑩̃̅̅ ̅̅ ̅̅ ̅̅ , which gives an additional 

electromotive force in Ohm’s law for the mean field. It is named as “turbulent electromotive force”, 

and in the remaining part of the paper we will use the notation  



𝕰 = 𝒖̃ × 𝑩̃̅̅ ̅̅ ̅̅ ̅̅ . (3.9) 

Clearly, to determine 𝑩̅, 𝑯̅, 𝑬̅, and 𝑱̅, we need to study the 𝕰 in detail.  

Recall Eq. (2.4) and our discussion in Sec. 2.1,  𝕰 is a functional of 𝑩̅, 𝒖̅, and 𝒖̃. It is the feature 

of turbulence that the correlation time and correlation length of quantities like 𝒖̃ and 𝑩̃ are very 

small. Therefore, to determine the value of 𝕰 at a specific space-time point, we just need to know 

𝑩̅, 𝒖̅, and 𝒖̃ in a small neighborhood of the point considered. As mentioned in Sec. 2.1, 𝕰 is a 

linear homogeneous functional of 𝑩̅. Since 𝑩̅ varies slowly in space and the neighborhood we are 

considering is quite small, it is reasonable to say that 𝕰 can be approximated by  𝑩̅ and 𝑩̅’s first 

order derivative. Moreover, we can further restrict our choices for the expression for 𝕰. We notice 

that 𝕰 is a vector, so the only vectors available to the construction of 𝕰 is: 𝑩̅, ∇ × 𝑩̅, 𝑩̅ × (∇ × 𝑩̅), 

(𝑩̅ ⋅ ∇)𝑩̅, etc. Since 𝕰 is linear in 𝑩̅, the only possible choice is 

𝕰 = 𝒖̃ × 𝑩̃̅̅ ̅̅ ̅̅ ̅̅ = 𝛼𝑩̅ − 𝛽∇ × 𝑩̅, (3.10) 

which is almost the same as Eq. (2.9). Substituting Eq. (2.9) into Eq. (3.8), in the case of 𝒖 = 0, 

the Ohm’s law is rewritten as 

𝑱̅ = 𝜎𝑇(𝑬̅ + 𝛼𝑩̅), (3.11) 

where 𝜎𝑇, the turbulent conductivity, is given by 

𝜎𝑇 =
𝜎

1 + 𝜇𝜎𝛽
. (3.12) 

To pin the value of 𝛼 and 𝛽 down, we need to utilize linearized Eq. (2.6) 

𝜕

𝜕𝑡
𝑩̃ − 𝜂∇2𝑩̃ = ∇ × (𝒗̃ × 𝑩̅). (3.13) 

Here we assume that magnitudes of turbulent quantities are small, which allows us to discard all 

the higher order terms. As we shall see in Sec. 3.2, this approximation is called “second order 

correlation approximation”. 

In addition to second order correlation approximation, we only focus on two limiting cases: 

i. High conductivity limit 

In this case, 𝜂 → 0, so we have a first-order partial differential equation 

𝜕

𝜕𝑡
𝑩̃ = ∇ × (𝒗̃ × 𝑩̅), ∇ ⋅ 𝑩̃ = 0 (3.14) 

Integrating Eq. (3.14) over time from 𝑡0 to 𝑡, we get 

𝑩̃(𝒙, 𝑡) = ∫ ∇ × (𝒖̃(𝒙, 𝑡′) × 𝑩̅(𝒙, 𝑡′))𝑑𝑡′
𝑡

−∞

(3.15) 



The initial condition 𝑩̃(𝒙, 𝑡0) are omitted due to fact that the turbulent system has a very short 

memory. Plugging Eq. (3.15) into Eq. (3.9), the turbulent electromotive force is 

𝕰(𝒙, 𝑡) = ∫ 𝒖̃(𝒙, 𝑡) × ∇ × (𝒖̃(𝒙, 𝑡 − 𝜏) × 𝑩̅(𝒙, 𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜏.
∞

0

(3.16) 

After long boring algebra, we can obtain 

𝛼 = −
1

3
∫ 𝒖̃(𝒙, 𝑡) ⋅ ∇ × 𝒖̃(𝒙, 𝑡 − 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜏

∞

0

= −
1

3
𝒖̃ × ∇ × 𝒖̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜏𝑐𝑜𝑟 , (3.17) 

𝛽 =
1

3
∫ 𝒖̃(𝒙, 𝑡) ⋅ 𝒖̃(𝒙, 𝑡 − 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜏

∞

0

=
1

3
𝑢̃2𝜏𝑐𝑜𝑟. (3.18) 

In Eq. (3.17), the correlation 𝒖̃ × ∇ × 𝒖̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is always defined as turbulence helicity ℎ. Once again, 

we can see 𝛼-effect is directly related to the lack of reflectional symmetry of turbulence. If a 

turbulence prefers left-handed screw, 𝛼 has a negative sign, otherwise 𝛼 is positive. 

ii. Low conductivity limit 

In this case, Eq. (3.13) is still a second-order partial differential equation, which is 

−𝜂∇2𝑩̃ = ∇ × (𝒗̃ × 𝑩̅). (3.19) 

Eq. (3.19) is a Poisson equation, we can get 𝑩̃ by using the Green’s function. So, the solution 

of Eq. (3.19) is 

𝑩̃(𝒙, 𝑡) =
1

4𝜋𝜂
∫

∇ × (𝒖̃(𝒙′, 𝑡) × 𝑩̅(𝒙′, 𝒕))

|𝒙′ − 𝒙|
𝑑𝒙′ . (3.20) 

Substituting Eq. (3.20) into Eq. (3.9), we get 

𝕰(𝒙, 𝑡) =
1

4𝜋𝜂
∫ 𝒖̃(𝒙, 𝑡) × [∇ × (𝒖̃(𝒙 + 𝝃, 𝑡) × 𝑩̅(𝒙 + 𝝃, 𝑡))]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑑𝜉

𝜉
. (3.21) 

And 

𝛼 = −
1

3𝜂
𝒂𝟏 ⋅ ∇ × 𝒂𝟏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (3.22) 

𝛽 =
1

3𝜂
(𝒂𝟏

2̅̅ ̅ − 𝜑2̅̅̅̅ ), (3.23) 

where 𝒖̃ = ∇ × 𝒂𝟏 − ∇𝜑. 

3.2. Closure of the Mean-Field Dynamo Theory 

We can define the two-point-two-time correlation tensor of the velocity field as 

𝑄𝑖𝑘(𝒙, 𝝃, 𝑡, 𝜏) = 𝑢̃𝑖(𝒙, 𝑡)𝑢̃𝑗(𝒙 + 𝝃, 𝑡 + 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (3.24) 



the mixed two-point-two-time correlation tensor of the velocity field and the magnetic field as 

𝑃𝑖𝑘(𝒙, 𝝃, 𝑡, 𝜏) = 𝑢̃𝑖(𝒙, 𝑡)𝐵̃𝑘(𝒙 + 𝝃, 𝑡 + 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (3.25) 

and the two-point-two-time correlation tensor of the magnetic field as 

𝐵𝑖𝑘 = 𝐵̃𝑖(𝒙, 𝑡)𝐵̃𝑘(𝒙 + 𝝃, 𝑡 + 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. (3.26) 

In this light, we can define correlation-tensor of higher rank, i.e., 

𝑄𝑖𝑗𝑘(𝒙, 𝝃, 𝜼, 𝑡, 𝜏, 𝜎) = 𝑢̃𝑖(𝒙, 𝑡)𝑢̃𝑗(𝒙 + 𝝃, 𝑡 + 𝜏)𝑢̃𝑘(𝒙 + 𝝃 + 𝜼, 𝑡 + 𝜏 + 𝜎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (3.27) 

𝑃𝑖𝑗𝑘(𝒙, 𝝃, 𝜼, 𝑡, 𝜏, 𝜎) = 𝑢̃𝑖(𝒙, 𝑡)𝑢̃𝑗(𝒙 + 𝝃, 𝑡 + 𝜏)𝐵̃𝑘(𝒙 + 𝝃 + 𝜼, 𝑡 + 𝜏 + 𝜎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (3.28) 

𝑄𝑖𝑗𝑘𝑙(𝒙, 𝝃, 𝜼, 𝜻, 𝑡, 𝜏, 𝜎, 𝜌)

= 𝑢̃𝑖(𝒙, 𝑡)𝑢̃𝑗(𝒙 + 𝝃, 𝑡 + 𝜏)𝑢̃𝑘(𝒙 + 𝝃 + 𝜼, 𝑡 + 𝜏 + 𝜎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑢̃𝑘(𝒙 + 𝝃 + 𝜼 + 𝜻, 𝑡 + 𝜏 + 𝜎 + 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

, (3.29) 

𝑃𝑖𝑗𝑘𝑙(𝒙, 𝝃, 𝜼, 𝜻, 𝑡, 𝜏, 𝜎, 𝜌)

= 𝑢̃𝑖(𝒙, 𝑡)𝑢̃𝑗(𝒙 + 𝝃, 𝑡 + 𝜏)𝑢̃𝑘(𝒙 + 𝝃 + 𝜼, 𝑡 + 𝜏 + 𝜎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐵̃𝑘(𝒙 + 𝝃 + 𝜼 + 𝜻, 𝑡 + 𝜏 + 𝜎 + 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
. (3.30) 

And 

𝑝𝑖𝑗(𝒙, 𝑡) = 𝑃𝑖𝑗(𝒙, 0, 𝑡, 0), 𝑝𝑖𝑗𝑘(𝒙, 𝝃, 𝑡, 𝜏) = 𝑃𝑖𝑗𝑘(𝒙, 𝝃, 0, 𝑡, 𝜏, 0),

𝑝𝑖𝑗𝑘𝑙(𝒙, 𝝃, 𝜼, 𝑡, 𝜏, 𝜎) = 𝑃𝑖𝑗𝑘𝑙(𝒙, 𝝃, 𝜼, 0, 𝑡, 𝜏, 𝜎, 0).
(3.31) 

To make equations more compact, we introduce the operators 

𝐷𝑗𝑛 = (
𝜕

𝜕𝑡
− 𝜂Δ) 𝛿𝑗𝑛 − 𝜖𝑗𝑘𝑙𝜖𝑙𝑚𝑛

𝜕

𝜕𝑥𝑘
𝑢̅𝑚, (3.32) 

𝐷𝑗𝑚𝑛 = 𝜖𝑗𝑘𝑙𝜖𝑙𝑚𝑛

𝜕

𝜕𝑥𝑘
. (3.33) 

N.B., when we apply 𝐷𝑗𝑛 or 𝐷𝑗𝑚𝑛 to any correlation, the differentiation is to be carried out with 

respect to the last set of space or time coordinates. 

Now the average of Eq. (3.6) can be written as 

𝐷𝑗𝑛𝐵̅𝑛 = 𝐷𝑗𝑚𝑛𝑝𝑚𝑛. (3.34) 

If we multiply Eq. (3.34) by 𝑢̃𝑚(𝒙, 𝑡), and take the average again, we get 

𝐷𝑗𝑛𝑃𝑚𝑛 = 𝐷𝑗𝑛𝑝(𝑄𝑚𝑛𝐵̅𝑝) + 𝐷𝑗𝑛𝑝𝑝𝑚𝑛𝑝. (3.35) 

From Eq. (3.34) and Eq. (3.35) we can see, each correlation tensor is always coupled with higher 

rank correlations, which means these correlations constitute a hierarchy of equations. Therefore, 

we have to figure out a way to truncate this hierarchy.  

If we only keep the turbulent velocity 𝑢̃ up to the second order, Eq. (3.35) becomes 



𝐷𝑗𝑛𝑃𝑚𝑛 = 𝐷𝑗𝑛𝑝(𝑄𝑚𝑛𝐵̅𝑝). (3.36) 

In this way, the mean-field equations are closed. This approximation is called “second order 

correlation approximation”. Omitting 𝑝𝑚𝑛𝑝  in Eq. (3.35) is equivalent to omitting the term 

𝒖̃ × 𝑩̃ − 𝒖̃ × 𝑩̃̅̅ ̅̅ ̅̅ ̅̅  in Eq. (3.13). Because if we multiply this term by 𝒖̃  and take the 

average,  𝒖̃ × 𝒖̃ × 𝑩̃̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 vanishes and  𝒖̃ × 𝒖̃ × 𝑩̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is just 𝑝𝑚𝑛𝑝. 

3.3. Illustration of the 𝜶-effect 

To help reader understand 𝛼-effect better, we can use Fig. 6 to illustrate how 𝛼-effect work. In 

the high-conductivity limit, flux ropes are frozen into the fluid elements. So, if a flux rope meets 

a right-handed vortex, as shown in Fig. 6., it will be twisted. According to the Ampere’s law, this 

field can produce a current anti-parallel to the unperturbed magnetic field. In contrast, if a flux 

rope meets a left-handed vortex, a current parallel to the unperturbed magnetic field will be 

produced. In order for the effect to be macroscopic, turbulence must have a preference in 

“chirality”, i.e., a non-vanishing turbulence helicity. 

4. Dynamical Dynamo Theory: 𝜶-Quenching 

The dynamos appearing in Sec. 2 all grow exponentially, which is not physical. The resultant 

magnetic field must react to the velocity field so that the system can reach equilibrium. To describe 

this process, we need to construct a dynamical dynamo theory, which is less developed compared 

with the kinematic dynamo theory. In this section I will simply introduce how the magnetic field 

can react to the velocity field through 𝛼-quenching [14,15]. 

The linearized equation of motion for conducting fluid is 

𝜕

𝜕𝑡
𝒖̃ = 𝑩𝟎 ⋅ ∇𝒃̃ + 𝒃̃ ⋅ ∇𝑩𝟎 − ∇𝑝̃𝑡𝑜𝑡, (4.1) 

Fig. 6 When a Flux Rope meets a Right-handed Vortex, an Anti-parallel Current Is Produced. [13] 



where the fluid is incompressible, i.e., ∇ ⋅ 𝒗 = 0. We can further assume 𝑩𝟎 is constant, so Eq. 

(4.1) can be rewritten as 

𝜕

𝜕𝑡
𝒖̃ = 𝑩𝟎 ⋅ ∇𝒃̃. (4.2) 

N.B. ∇𝑝̃𝑡𝑜𝑡 vanishes as we are considering incompressible fluid. Then we have 

𝜕

𝜕𝑡
(𝒖̃ × 𝒃̃) = −𝒃̃ × (𝑩𝟎 ⋅ ∇)𝒃̃ + 𝒖̃ × (𝑩𝟎 ⋅ ∇)𝒖̃. (4.3) 

In Eq. (4.3), induction equation is used to deal with 𝜕𝑡𝒃̃. Then integrating Eq. (4.3) over 𝑡 and 

taking the ensemble average, we get 

𝕰 = − ∫ 𝒃̃ × (𝑩𝟎 ⋅ ∇)𝒃̃ 𝑑𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ ∫ 𝒖̃ × (𝑩𝟎 ⋅ ∇)𝒖̃𝑑𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

. (4.4) 

In isotropic cases, Eq. (4.4) reduces to 

𝕰 = −
1

3
𝜏𝑐𝑜𝑟 (𝒖̃ ⋅ ∇ × 𝒖̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝒃̃ ⋅ ∇ × 𝒃̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 𝑩𝟎. (4.5) 

Therefore, in this condition 

𝛼 = −
1

3
𝜏𝑐𝑜𝑟 (𝒖̃ ⋅ ∇ × 𝒖̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝒃̃ ⋅ ∇ × 𝒃̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) = 𝛼𝑢 + 𝛼𝑏 . (4.6) 

Compare Eq. (4.6) with Eq. (3.17), there is an extra term, which indicates 𝛼-effect can be reduced 

by correlation 𝒃̃ ⋅ ∇ × 𝒃̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.  

For resistive MHD, the vector potential 𝒂̃ is governed by 

𝜕

𝜕𝑡
𝒂̃ = 𝒖̃ × 𝑩𝟎 + 𝒖̃ × 𝒃̃ − 𝒖̃ × 𝒃̃̅̅ ̅̅ ̅̅ ̅ − 𝜂∇ × 𝒃̃. (4.7) 

Multiplying Eq. (4.7) by 𝒃̃, and taking the statistical average, in Coulomb gauge, we get 

𝜕

𝜕𝑡
𝒂̃ ⋅ 𝒃̃̅̅ ̅̅ ̅̅ = 2(𝒖̃ × 𝑩𝟎) ⋅ 𝒃̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 2𝜂𝑘𝑓

2𝒂̃ ⋅ 𝒃̃̅̅ ̅̅ ̅̅ , (4.8) 

where 𝒂̃ ⋅ 𝒃̃̅̅ ̅̅ ̅̅  is magnetic helicity, and 𝑘𝑓
2 is the characteristic wave vector of 𝒂̃. If the system starts 

with a state at which 𝛼𝑏 = 0, 𝛼0 = 𝛼𝑢 > 0, as ∇ × 𝒃̃ ⋅ 𝒃̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 𝑘𝑓
2𝒂̃ ⋅ 𝒃̃̅̅ ̅̅ ̅̅ , clearly a negative 𝛼𝑏 will be 

generated, which effectively reduce the 𝛼-effect. 

In stationary state, Eq. (4.8) gives us 

−𝑩𝟎 ⋅ 𝒖̃ × 𝒃̃̅̅ ̅̅ ̅̅ ̅ = 𝜂 𝒃̃ ⋅ ∇ × 𝒃̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. (4.9) 

Plugging Eq. (3.10) into Eq. (4.9), we get 

𝒃̃ ⋅ ∇ × 𝒃̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −
𝛼

𝜂
𝐵0

2 +
𝛽

𝜂
𝑩𝟎 ⋅ ∇ × 𝑩𝟎. (4.10) 



Since 𝒃̃ ⋅ ∇ × 𝒃̃̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∝ 𝛼 − 𝛼0, we conclude that 

𝛼 =
(𝛼0 + 𝛽0𝑹 ⋅ ∇ × 𝑹)

1 + 𝑅2
, (4.11) 

where 𝑹 is just the large-scale magnetic field 𝑩𝟎 renormalized by a factor (𝜌𝑉2/𝑅𝑚)1/2. 

5. Conclusions 

In this paper, I first review the development of dynamo theory, which originates from people’s 

interest in the solar magnetic field. One of greatest breakthrough in this area mean-field dynamo 

theory. In Sec. 2, I formulate the kinematic dynamo theory in a way similar to Braginskii’s idea, 

i.e., dividing the fields into an axisymmetric part and a asymmetric part. Then I introduce two 

ordinary classifications of dynamo theories, and necessary conditions for the construction of 

dynamos. In Sec. 3, the derivations and closure of the mean-field dynamo theory are shown in 

great detail. The relation between the 𝛼-effect and the turbulence helicity is also discussed. A 

nontrivial 𝛼-effect requires a non-vanishing turbulence helicity. In Sec. 4, a simple 𝛼-qunching 

mechanism is derived by including the momentum equation of conducting fluids. 
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