Leo	are 11b		<u>_</u>
Fla	x Expulsion / Honorenis	tion	
- th	e problem	1/3	
- 3 C	belance - 7 = 5 R	m	
- p	ysics is Sheer Dispersion	1/2 ~ (0 2	3
	ystematice: Thecomy		
	eddy telting: Kx = kx	-lay Vt	
	- decay lete - Thear		
) o' o o d' o o o + '	A was cons	
	pulsion - Hongenization		relation
9	94 + A - B A = - Bb +		
	dE = TdS - pdV $dH = TdS + Vdp$	∩ <u>D</u> <u>D</u> <u>D</u> = -	2 QN3-NXM
di	=0 = V + O H		
	9+ 9A = A×A×®	D.V =0	
	94 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5		

1			
do	= ~ 2m	W = PX	
1 1 4 111		M = DAX	Z
Sa.	7.00 = VDW		
		enchoy -de	roue.
→ p	B 600 £ 200	ons. benit	
1	1-93	@lobe)	
-D /0	ey Points. Somales	room	
		diespy hounding stre	
		How dead 2416	PAN LINE

N.B.	: Semilar stary		
94	+ 4.20 = ~ 200	Vort	
Ø.		Homoz	
-			•
9	C + Y. ZC = D D2C	Rea	sive
2		50	fer
		Homegen.	
RG	+ 4 4 5 = ~ 7 74		
a t	7 2 0 30 - 0 0 0		PV
1	S2 = 5 ² \$ -\$ -	en not	HM
	32 = 37 - 4 -	EN 1807	•••
24	+ 7. 4 4 = W D34	Flux Expulsion	
94		Expubsi	٠٠,

endory is thex expelsion Prendtl-Batchelor Theorem F.B. Phines and W.R. young JFM 122, 347 182 (poste J. Pedlocky "Ocean Circulation Theory Springer 196; esp. 3.8 Show (i.e. vorticity advertion) enclos W+ DOX5-DW = D. (YDW vortisity - uniform Chamogenization finito v = radically different final state no comment on how long

Streenline , Cm. streenline -1-Ñ-VW must 1cn

	L	
		2
-,		
_	but	F'= Sale v
	~	
		= Sdf. (29x3)
7		= [(Exv] (OPXE)
		=- Sde (040 ñ) = - (de (040 ñ)
_		
4	^	
-		$O = \sqrt{q_{ij}} N^{ij}$
	1	
ļ	4	Card.
	1	$\sigma\omega/\sigma\omega_{0}=0$ (C)
	!	Stolet
	but g	anhitrary = or or or =0 3110
-	<u> </u>	roitrey & no recretion from line to
-	7	roitray and unstien from line to
1		= w honogeniaco
		8
	es e	epect ow larger at bounding contract Co.
-2		w to within = ow held of
4	0	≥ jo vithing => DW held of boundary
-		
1		. 18 1 10 10 10 10 10 10 10 10 10 10 10 10 1

(a) Assumptions:	A CONTRACTOR OF THE PARTY OF TH
7 1359 1359 1359	
Achord bounding stronline	
(Viccous discription	
i.e. can envition:	
exact streamline moteriar visco	city 7
	5
- course - grained stramline, eddy	uncounty
> correspond to homogenization of	,
10tzl confroity	1
- D mean/ coarse gramed vorticity	
so time ocaler different	
	7
Transculation (4 + Rom (4 L+)]
Translation (4 > Roma (4 L+)	
7 diffusion	
	الم الم
-to establish regrestric circulation	1
7 diffusion	1
-to establish regrestric circulation	but 3
- do establish regentric circulation / tien - diffusor accross to homogenize =	slow]]
- do establish regentric circulation / tien - difficient accross to homogenize =	slow]]
Testfusion -to establish concentric circulation / then -diffusion accross to homogenite > Test D XXI = D XXI Tal (1/L) L2 VL	slow]]
Teliffusion -to establish concentric circulation / then -diffusion accross to homogenite > Te = 1 D XX = D XX Tal (1/L) L2 VL	slow]]

PHYSICAL REVIEW FLUIDS 2, 113701 (2017)

Vortex disruption by magnetohydrodynamic feedback

J. Mak,* S. D. Griffiths, and D. W. Hughes

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom (Received 10 September 2016; published 22 November 2017)

In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses—and thus the degree of disruption—that depends on the strength of the background magnetic field (measured by the parameter M, a ratio between the Alfvén speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number Rm). The resulting estimate suggests that significant disruption occurs when $M^2 \text{Rm} = O(1)$. To test our prediction, we analyze direct numerical simulations of vortices generated by the breakup of unstable shear flows with an initially weak background magnetic field. Using the Okubo-Weiss vortex coherence criterion, we introduce a vortex disruption measure, and show that it is consistent with our predicted scaling, for vortices generated by instabilities of both a shear layer and a jet.

DOI: 10.1103/PhysRevFluids.2.113701

I. INTRODUCTION

The interaction of vortices with a magnetic field is a fundamental process in astrophysical magnetohydrodynamics (MHD). Such vortices could be generated, for example, by convection [1,2] or by the breakup of unstable shear flows [3–6]. In the absence of magnetic fields, vortices can be coherent, long-lived structures, particularly in two-dimensional or quasi-two-dimensional systems [e.g., [7]]. However, in the presence of a background magnetic field, various studies have shown how vortices can be disrupted, by which we mean either a reduction in strength or spatial coherence, or completely destroyed [8–16]. Here we show explicitly how this disruption depends on both the field strength and on the magnetic Reynolds number Rm.

Astrophysical fluid flows are invariably characterized by extremely high values of Rm. Perhaps the most important consequence of this is that weak large-scale fields can be stretched by the flow to generate strong small-scale fields, with the amplification being some positive power of Rm [17]. Once the small-scale fields are dynamically significant, the resulting evolution is essentially magnetohydrodynamic—rather than hydrodynamic—leading to dramatically different characteristics, despite the large-scale magnetic field being very weak. Such behavior has been identified in the suppression of turbulent transport [18–24], in the suppression of jets in β -plane turbulence [25], and in the inhibition of large-scale vortex formation in rapidly rotating convection [26].

The vortex disruption investigated here, which builds on Ref. [27], and can be contrasted with Ref. [28], depends on just such high Rm dynamics. Given that many astrophysical flows are rotating and stratified, such that the vortices are essentially two-dimensional, it is natural to investigate vortex disruption in the context of two-dimensional MHD. To quantify when a weak large-scale field can become dynamically significant, we first construct a scaling argument for a quite general setting with a single vortex. We first estimate the amplification of the large-scale field due to stretching

^{*}Current address: Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road Oxford, OX1 3PU; julian.c.l.mak@googlemail.com

VORTEX DISRUPTION BY MAGNETOHYDRODYNAMIC FEEDBACK

t = 100

t = 150

t = 50

(a)

FIG. 1. Snapshots of (a) vorticity and (b) magnetic field lines for the shear layer at different field strengths (for Rm = Re = 500), shown for the central half of the channel $(-L_y/2 \le y \le L_y/2)$.

observe the formation of regions of positive vorticity. The magnetic field is no longer confined to kinematic boundary layers, and the resulting stresses are strong enough to modify the resulting evolution to a certain extent. That said, the vortex is only mildly disrupted and maintains its integrity; there is only a slight decrease of vortex size by the end of the simulation at t = 150. For M = 0.05, the evolution is radically different to the other two cases, with a significant disruption of the vortex and an unconfined magnetic field. By the end of the simulation, only small remnants of the parent vortex persist; vorticity filaments and a complex magnetic field are now the dominant features in the domain.

Vortex disruption also has a signature in the time evolution of the kinetic and magnetic energies. Shown in Fig. 2 are time series for the three control runs of the mean kinetic energy \overline{E}_k and mean magnetic energy \overline{E}_m (defined as the energy content in the $k_x=0$ Fourier mode), along with the perturbation energies E'_k and E'_m (defined as the energy content in the remaining Fourier modes). The evolution is similar up to $t\approx 60$ (cf. Fig. 1), at which time the field amplification is close to being arrested by diffusion; the scalings (2) and (3) then apply for the small-scale field, implying $E'_m \sim b^2 l L_v$ and $\overline{E}_m \sim B_0^2 L_0^2$, so that $E'_m/\overline{E}_m \sim Rm^{1/3} \approx 8$ here, consistent with Fig. 2. However, for $t \gtrsim 80$, vortex disruption (if it occurs) changes the evolution of the energy. For the undisrupted case (M=0.01), the evolution becomes one of complete flux expulsion (see Fig. 1), with E'_m decreasing to less than \overline{E}_m . (This is different to the well-known theory of Ref. [29], in which $E'_m \sim Rm^{1/2}\overline{E}_m$ in the flux-expelled state, but that kinematic single-vortex theory may not apply to this dynamic regime with a periodic array of vortices and remote boundaries.) For the strongly disrupted case (M=0.05), we enter a different regime, with E'_m staying close to \overline{E}_m throughout the evolution. This regime with persistent small spatial scales results in stronger dissipation: whereas the total dissipation is small and comparable with that of the hydrodynamic case for M=0.01 and 0.03, it is about three times higher when M=0.05. Further, even though $\overline{E}_m \ll \overline{E}_k$ throughout the

23, Dakin Feedback criterium for may netic Flex transport in 20 have back 4 counter coefbach. Contract: WS Stretching etside Kinemation