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The degree of knottedness of tangled vortex lines 

By H. K. MOFFATT 
Department of Applied Mathematics and Theoretical Physics, 

Silver Street, Cambridge 

(Received 17 May 1968) 

Let u(x) be the velocity field in a fluid of infinite extent due to a vorticity distri- 
bution w(x) which is zero except in two closed vortex filaments of strengths 
K,, K ~ .  It is f i s t  shown that the integral 

I =  u.wdV 

is equal to a K l K 2  where a is an integer representing the degree of linkage of the 
two filaments; a = 0 if they are unlinked, ? 1 if they are singly linked. The 
invariance of I for a continuous localized vorticity distribution is then established 
for barotropic inviscid flow under conservative body forces. The result is in- 
terpreted in terms of the conservation of linkages of vortex lines which move 
with the fluid. 

Some examples of steady flows for which I + 0 are briefly described; in par- 
ticular, attention is drawn to a family of spherical vortices with swirl (which is 
closely analogous to a known family of solutions of the equations of magneto- 
statics); the vortex lines of these flows are both knotted and linked. 

Two related magnetohydrodynamic invariants discovered by Woltjer 
(1958a, b)  are discussed in 0 5. 

s 

1. Introduction; discrete vortex fields 
Consider any flow u(x, t )  under conservative body forces, of an inviscid fluid 

whose density is either uniform or a function of pressure only. Under these 
conditions, the circulation round any circuit C moving with the fluid, 

c 

K = $ u.dl, 
C -~ 

is constant. 
In  the particular circumstance that the vorticity w = Q A u is zero except 

inside two closed vortex filaments C,, C2 of strengths K,, K~ each of which moves 
with the fluid, we may choose C to be one of these, say C,. If C, is unknotted, 
so that it can be spanned by a surface S, which does not intersect itself, 
then Stokes's theorem gives 

n n 

K ,  = u.dl = J  w.dS, 
S1 
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118 H .  K.  Moffatt 

and so, since the flux of vorticity across S, is simply that due to the filament C,, 
0 if C, and C, arenot linked, i +K, if C, and C, are singlylinked, K ,  = 

(figure 1)) the i referring to the two possible relative orientations of the two 
filaments. More generally, the filament C, may wind an integral number of times 

(3) 
round C, in which case 

where a,, ( = a,,) is an integer which may be positive or negative (the ‘ winding 
number’ of the curves C, and C,).? 

A simple vortex line that is knotted may be decomposed into two (or more) 
linked but unknotted vortex lines by the insertion of a pair (or pairs) of equal and 
opposite vorticity segments. For example, if the vorticity field is zero except in a 
vortex filament of strength K having the shape C in figure 2 (the trefoil knot), then 

K ,  = 

f c u . d l  = fC1 u . d l + f  u . d l  = 2 K .  
C2 

For a more complicated knot in a vortex filament C ,  
n 

where 01. is an integer representing the degree of knottedness of C, the ‘self- 
winding’ number of C. All knots will be supposed in what follows to be dealt with 
in this manner. 

If there are n unknotted filaments C,, C,, . . ., C,, then a simple generalization of 
the result (3) is 

K,  = f u . d l =  CaiiKi, (4) 
G j 

where aii is the winding number of Ci and Cj. 
The quantity K~ K,  (not summed) may be written in the form of an integral 

over the volume I$ occupied by the vortex filament Ci. Since dl  is parallel to o 
in the filmanet,  dl may be replaced by o d V  so that 

n n 

~ ( d 1 . u  = J u . o d V .  
Vi 

( 5 )  

If we sum over all the filaments, we obtain an invariant integral over the whole 
vorticity field: 

(6) I = Z K ~ K ~  = C a i j ~ i ~ i  = j  ~ . w d x  
i Li V 

t The term ‘winding number’ (anzahl der umschlingungen) arid the expression given 
below for it, equation ( l l ) ,  can be traced to a paper by Gauss (1833) which was concerned 
with the magnetic field produced by two or more electric current circuits. It is tho simplest 
(but by no means the only) topological invariant of two linked curves (see, for example, 
Crowcll 8: Fox 1964, and the references given therein). 

The posiiibility of linked and knotted vortex lines was conceived by Kelvin (1868, then 
Sir William Thomson) in his celebrated paper, on ‘Vortex Motion ’, in which the ‘ circula- 
tion theorem ’ was established. The simplest knots were subsequently catalogued by Tait 
(1898, pp. 273-347) in increasing order of complcxity. The development of knot theory 
as a recognizable branch of modern topology reccived considerable stimulus from these 
investigations. 
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The degree of knottedness of tangled vortex lines 119 

where V is the volume occupied by all the filaments, or equivalently (as far as 
the integral in (6) is concerned) the total volume occupied by the fluid. It should 
be noted that I is determined solely by the vorticity field; this dependence may 
be made explicit by writing 

(7) u = q(x)  +V$, 

where 

( a )  a12 = 0 ( h )  aIz = -1 (c) a12 = 2 

FIGVRE 1. The degree of linkage of two closed filaments C,, C,. The choice of sign in (b ) ,  
(c )  is determined by the relative orientation of the two filaments. &Lu C s&c2 A 

( 0 )  (b)  
FIGURE 2. Decomposition of a knotted vortex line. TO get from (a)  to (b) ,  two equal and 
opposite vorticity segments are inserted between the points A and B.  C ,  and C,  are 
evidently unknotted but linked. 

The potential contribution to u (which is certainly present if the fluid is enclosed 
by a rigid boundary) makes no contribution to I since 

Substitution of (8) in (6) then gives 

dVdV'.  R. [o(x) A o(x')] 
R3 

If this is re-expressed in terms of line integrals, we obtain an explicit expression 
for a,, (i + j ) in terms of the relative geometry of the circuits Ci and C,: 

where R = xi-xj, x ~ E C . ,  x ~ E C ~ .  
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120 H .  K .  Moflatt 

2. Continuous vorticity fields 
Consider now a continuous localized distribution of vorticity in an infinite 

expanse of inviscid fluid. In  general the vortex lines will not be closed; a single 
vortex line may cover a surface,? or it may even pass arbitrarily close to any 
point of a closed volume, if followed far enough. (The instantaneous vorticity 
field in a turbulent ‘blob ’ is likely to have this latter character in general.) The 
simple considerations of the preceding section are not therefore directly applic- 
able. However, it might be expected that the integral I defined in (6)’ might still 
be an invariant for a continuous vorticity blob, and that, if so, it may give a 
useful generalization of the concept of ‘degree of knottedness ’ t,o a continuous 
solenoidal vector field. 

Let us first obtain an equation for the local rate of change of the quantity 
u.  w/p.  Under the barotropic condition p = p(p), the equation of motion may 
be written 

where h = j” dplp and Q is the potential of any conservative body forces. Under 
the same conditions, the vorticity equation takes the well-known form 

(12) Du/Dt = -V(h+ Q), 

Hence 
D (-) u . w  = --.v(h+Q)+u.(;.v)u w 

z i p  P 

where q 2  = U.U. 

Now let S be any surface enclosing a volume V and moving with the fluid, and 
let 

(15) 

Since 

it follows that 

D 
Dt - (pdV) = 0) 

-=/ dI --(-)dP D u . w  
dt V D t  p 

= SP (0.  V) ( i q 2  - h - Q) dV from (14) 

P 

(n. w) ( i q 2  - h - Q) dS, 
= Js 

t For example, if the flow is steady, and the body forces have a potential bL, then 

w A U  = V H  where H = +qz+L2+ Idp/p,  

and the w-lines lie on the surfaces H = constant. 
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The degree of knottedness of tangled vortex lines 121 

= 0 and the divergence theorem. Hence the condition n. o = 0 on S using V . 
is sufficient to ensure that 

I = constant. 

If the fluid is of infinite extent, and S is taken to  be the surface ‘at infinity’, then 
the condition o = o ( R - ~ )  as R = 1x1 +co is likewise sufficient to ensure the 
invariance of I. 

If the vortex lines of the field o are all closed then there is a separate invariant 
I for each closed vortex filament in the field (the volume B in (15) being then the 
volume occupied by the filament). In  the limit as the cross-section of each filament 
is decreased to zero, we have a doubly infinite family of invariants. If the vortex 
lines cover surfaces, then there is an invariant I for each ‘vorticity layer’ in the 
neighbourhood of each surface, and as the thickness of the layers is decreased to 
zero, we have a singly infinite family of invariants. If the vortex lines of the field 
are ‘space-filling ’, then there is only one invariant I for each subdomain of V that 
is filled by a vortex line. 

The quantity u . w admits a simple, essentially kinematical, interpretation. 
The fluid particles in any small volume element dV undergo at  any instant a 
superposition of three motions : the (uniform) velocity uo of any representative 
point 0 of the element, an irrotational uniform strain Vg5 relative to I ,  and a rigid 
body rotation 2 0 ,  where oo is the vorticity at 0. The streamlines of the flow 
u - V$ passing near 0 are (locally) helices about the streamline through 0, and 
the contribution 

u . o d V  M u o . o o d V  

to I from d V is positive or negative according as the screw of these helices is right- 
handed or left-handed. The term helicity is used in particle physics for the scalar 
product of the momentum and spin of a particle, and it would seem to be a 
natural candidate in the present context to describe the quantity u . o d V ;  the 
quantity u . o may then be described as the helicity per unit volume of the flow. 
Equation (17) then expresses the result that the total helicity within any closed 
vortex surface (on which o . n = 0) is constant. 

3. The effect of the presence of solid boundaries 
An inviscid flow in the presence of a solid boundary 8, need not satisfy the 

condition n . o = 0 on 8, since n A u may vary from one point to another on the 
boundary. It would therefore appear that the value of I may then change accord- 
ing to (171, and this is at first sight surprising in view of the interpretation given 
above of the invariance of I in terms of the conservation of linkages of vortex 
lines; vortex lines are still frozen in the fluid when rigid boundaries are present, 
so these should not affect the invariance of I. 

The explanation lies in the fact that, if n. o + 0 on S, and if 8, is at rest, then 
there exists a vortex sheet on S, and the vortex lines of the fluid interior must be 
imagined to be continued and completed within this sheet. (If 8, is rotating, 
there is the further complication that the vortex lines actually continue into the 
solid.) We should therefore expect invariance of the quantity I defined in (15) 
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122 H .  K .  Moffatt 

only if it  is supplemented by a finite contribution from the vortex sheet on the 
surface, and possibly a contribution from the interior of the solid surroundings. 

The surface contribution depends on the structure of the vortex sheet on #b. 

The thickness of the vortex sheet (or boundary layer) is controlled by viscous 
forces, and it is physically unrealistic to ignore these in any treatment of the 
surface layer. Suppose, for simplicity, that X b  is at  rest, and that the fluid has a 
small kinematic viscosity v. Then u = 0 on X,, so that w . n = 0 on 8,. However, 
we must now include viscous terms vV2u and P - ~ V V ~ C O  on the right-hand sides of 
(12) and (13), and this leads to 

dl &= -2v Jv". (V h w ) d V ,  

where I is still defined as in (15) (so that it now includes a 'surface contribution' 
distributed through the boundary layer) and V is the total volume occupied by 
the fluid. 

Let L be the scale of variation of u in the tangential directions (on f i b ) ,  and let 
qo be the scale of IuI just outside the boundary layer. Then the thickness of the 
layer is (in general) s = O(v+Lt/qg), 
and the normal and tangential components of vorticity in the layer have orders 
of magnitude 

Hence 1 V W . v  Awl = o(Vw:/s) = o(0,q2/sI, (21) 

and so the contribution to  d I / d t  from unit area of the boundary layer is, from 
(18)) of order w,,q$ and this is independent of v in the limit v -+ 0. The structure of 
the boundary layer is therefore of critical importance as v --f 0 in determining not 
only the valuc of I ,  but also its rate of change dIldt.7 

4. A simple consequence of the invariance of I in an incompressible 
fluid 

Henceforth we restrict attention to vorticity blobs in an inviscid incom- 
pressible fluid with w . n = 0 on all solid boundaries. The integrals 

satisfy the Schwarz inequality 
I z  < E n ,  or R > P / E ,  

This may be contrasted (in the incompressible case) with the behaviour of the energy 

T = i p  u2dV = p u . ( x A w ) d V ,  s s  
for a localized vorticity blob, which satisfies 

when S, is stationary. As v + 0, dT/d t  = O(v4) and T -F constant, independent of the 
boundary-layer structure. 
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The degree of knottedness of tangled vortex lines 123 

and since both I and E are invariants, !2 has a fixed lower bound, which is 
evidently attained only if o = au where a is constant. 

To understand the physical significance of this result, consider the following 
situation. Suppose that a vortex ring propagates along an axisymmetric duct of 
decreasing cross-section, the axes of symmetry of the duct and of the ring 
coinciding. Evidently, the value of Q for this vorticity field may become ar- 
bitrarily small if the radius of the duct becomes sufficiently small; but since 
u . o = 0 for this flow, I = 0 and there is no contradiction with (23). Suppose now 
instead that a blob? of vorticity for which I + 0 is so disposed as to propagate 
into a similar contraction; is it then physically conceivable that the value of a 
for the blob can be made to decrease without limit by choosing a contraction of 
suitable geometry? The answer is negative, consistently with (23), for the 
following reason. Since I + 0, there must exist knots or links in the vortex lines 
of the blob. No single Cartesian component of the vorticity field can then be 
identically zero (since curves confined to a plane cannot be knotted or linked). 
Since the volume of the blob is constant, any decrease in the components of 
vorticity perpendicular to the axis of the duct is then necessarily accompanied by 
an increase (through stretching) of the vorticity component parallel to the axis, 
and it is therefore evident that cannot decrease indefinitely. 

5. Relation with the magnetohydrodynamic invariants of Woltjer 
(1958a, b) 

Let B = V A A and E = - aA/at - V$ be the magnetic field and electric field 
in a perfectly conducting fluid; then, since E + u A B = 0, 

Hence 
”(”.”) = -.V(A.u+$), B 
Dt P P 

which may be compared with (14). It follows that 

A.BdV = const. (27) s 
provided B . n = 0 on the surface S of V .  This result was proved (under slightly 
more restrictive conditions) by Woltjer (1958~) .  The interpretation of the 
invariant in terms of conservation of knottedness of magnetic lines of force 
(which are frozen in the fluid) is immediate. Note that the value of 

j V A . B d V  

t The term ‘blob’ of vorticity will be used to indicate a vorticity distribution w(x) that 
is entirely confhed within some closed surface S of finite extent, i.e. w 0 outside S. 
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124 H .  K. MoJatt 

is independent of the choice of gauge of A; it is determined uniquely by the field 
B and the volume 7. 

The equation of motion is now 

p(Du/Dt) = - V p  + j A B, (28) 

where j = V A B. From (28) and the induction equation in the form 

o t p  (B) = B . V U ,  p 

we may deduce (as for the case of vorticity) that 

Hence l v u . B d V  = const. 

provided again that B . n  = 0 on 8 (cf. Woltjer 1958b). 
It is evident, from ( 7 )  and (S), and similar formulae for A in terms of B, that 

The integrals are determined by the fields w and B (and of course by the volume 
of integration V ) ;  in order to  emphasize this fact, it may be useful to introduce 
the notation 

P{w,B} = u.BdV = B{B,w). (33) 
S Y  

Then also, IvA.BdV = B{B,B} = I{B) say. (34) 

If B = 0 except in flux filament C;, CL, . . . , Ch with strengths (Dl, . . ., OnL, then 

B{co,B}= C @ i  u.dl= CcDiK;, (35) 
i L: i 

where K ;  is the flux of vorticity through C;. This quantity is constant, because, 
although Kelvin's theorem does not now hold for an arbitrary curve (the Lorentz 
force j A B being, in general, rotational) it  does hold if C is a closed B-line; for 
then 

(Shercliff 1965, problem 4-7). Hence again the integral P{w, B} may be interpreted 
as a measure of the degree of mutual knottedness of the two fields w and B;  this 
remains constant even though the vortex lines are no longer frozen in the fluid. 
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The degree of knottedness of tangled vortex lines 125 

6 .  Some examples of flows for which I 4 0 
The only situations considered so far which definitely give a non-zero value 

for I are those of $ 1  in which discrete vortex filaments are linked or knotted. 
Such a configuration may seem physically artificial and unlikely and one might 
be tempted to conclude that flows with continuous vorticity and with I =+ 0 are 
unlikely to occur naturally. Such a conclusion would not however be justified. 
The influence of viscosity near solid boundaries in causing changes in I has al- 
ready been mentioned. A blob of vorticity may be generated by the sudden 
acceleration of part of a solid boundary surrounding a fluid. If, say, a right- 
handed impulsive wrench? is applied to an immersed body, then it is more 
than likely that some of the helicity imparted to the body will be transferred to 
the fluid via the vorticity shed from the boundary during the initial stages of the 
motion. The vortex lines then become linked during the shedding process and 
remain linked thereafter. The spiral trailing vortex system behind an advancing 
propeller provides perhaps the best example. Any advancing rotating body must 
likewise leave a helical vorticity distribution in its wake. 

Some examples of flows with particular symmetries will help to clarify the 
character of the linkages that are likely to occur in situations of practical 
interest. 

(a) Two-dimensional incompressible $ow 
For a velocity field of the form 

where $ = $(x, y, t ) ,  w = w(x, y, t ) ,  we have 

u . w  = V$.VW-WV2@. (37) 

Provided the flow is localized in the (x, y)-plane, ( I  w I = O ( r 3 )  as r2 = x2 + y2 -+ co 
is certainly a sufficient restriction), we may take V to be the volume between any 
two planes z = const. at  unit distance apart, (the contribution to the surface 
integral (17) from these two planes then cancelling), and the invariant I de- 
generates to an integral over the (x, y)-plane, 

I =/j-(V$.Vw-wV~$)dxdy = - 2  /I wV2$rdxdy. (38) 

The conditions for steady flow are 

w = C($Cr), PIP+ 642 = a($)> (39) 

and 
dH dC V2$ = --C- = f($) say. 
dllr 

In  this case, 

t 1.0. an impulsive force F and couple G with F.G > 0. 
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axial motion confined to the vortex: 
The simplest explicit example is perhaps that of the rectilinear vortex with m 

where r = (x2 + y2)*. In  this case, I = 2w, Q, (43) 

where Q = //.I(., y)dxdy. (44) 

(It is assumed that Q is finite; the manner in which the vortex lines are closed at 
r = 00 is then immaterial.) Thus I 5 0 according as wo and Q have the same or 
opposite signs, that is, according as the sense of the net screw of the vortex is 
right-handed or left-handed. 

The vortex lines of steady flows of this type are helices which spiral round on the 
cylindrical surfaces H = const., or equivalently $ = const. There must exist at 
least one point (xo, yo)  at which V$ = 0, and the line x = xo, y = yo is itself a 
vortex line, lying on a degenerate member of the family of surfaces q9 = const. 
This line may be termed a 'vortex axis'; all vortex lines in the neighbourhood of 
a vortex axis spiral round it. 

( b )  Axisymmetric incompressible flow 
Suppose now that, relative to cylindrical polar co-ordinates (x, r ,  qb), the velocity 
has components 

where 

Then 

where 

@ = $(z, r ,  t ) ,  w = w(x, r ,  t ) .  
u . o = r-2 [V$. V(rw) - rwD2$], 

and for an axisymmetric blob of vorticity, 

I = 2njj[LV$.V(~w)-wD2$ dxdr. 
r 1 

(46) 

(47) 

Provided wlV$l is everywhere finite, and o ( R - ~ )  as R = (r2 + x2)i -+ 00, this may 
be transformed by means of the divergence theorem to 

I = - 4n//wD2$dxdr. (49) 

Hence the integrated product of the swirl w and the azimuth.al vorticity - r-lD2@ 
is invariant in any axisymmetric unsteady inviscid flow. The result may be 
regarded as a particular consequence of the fact that for any material toroidal 
filament, wr and r-lw@ = r 2 D 2 $  are invariant; integration of the product 
r-1wD2$ over the volume of fluid, with d V = 2nrdxdr then gives the integral (49). 

The conditions for steady flow in this case (Batchelor 1967, 37.5) are 

rw = C(q9), PIP+ ik12 = H($),  (50)  
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and 

An interesting family of solutions, each of which represents a blob of vorticity 
confined to the sphere R < a ,  exists when C($) and H(@)  have the simple forms 

H = H,+h$, C = &a$, ( 5 2 )  

DZ$ = hr2-a2$, ( 5 3 )  

where H,, h and a are constants. In  this case, (51) becomes 

and this admits the solution in spherical polars (R, 8, $), 

$ = R2 sin2 0 1; + A  (i) "J,(aR)],  (54) 

where A is a constant. There are other solutions of (53) with more complicated 
dependence on 8, but the interest of solutions of the form (54) is that they can be 
matched, by suitable choice of the constants A, a and A to an irrotational stream, 
represented by 

for R > a. We have to satisfy 

$ = 8 U(R2 - (a3/B)} sin2 19, (55 )  

$ = O ,  a-  a' - 3~as inz0 ,  on R = a. 

These ensure that the surface R = a is a stream-surface, and that the velocity is 
continuous across it; continuity of pressure, given by (50), can then also be satis- 
fied. These conditions give respectively 

and a doubly infinite family of solutions is obtained by varying the parameters 
A and aa. U is the speed at which the vortex propagates relative to the fluid at  
infinity. 

Two possibilities deserve particular comment. If J4(aa) = 0, then h = 0, and 
(52) and (53) together imply that w = & au; the resulting velocity field is then 
exactly analogous to the ' force-free ' magnetic field obtained (among others) 
by Chandrasekhart (1956). Secondly, if J ~ ( a a )  = 0, then U = 0, and so the fluid 
is a t  rest outside the sphere R = a ;  this is exactly analogous to the magneto- 
static solution proposed by Prendergast (1957) as a model for the equilibrium 
structure of a magnetic star (and described by Roberts 1967, 54.7). 

The total helicity of the vortex described by (52), (54) is given by (49), i.e. 

t The governing equations in the magnetostatic problem are j A B = Vp,  j = V A B, 
V . B = 0, and the analogy with the situation under consideration here is that between 
the variables 

u o B ,  w c t j ,  H t r p .  
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After straightforward manipulation, this reduces to 

I = f y7ra2A2f(CCa), 

f(2) = ~ z ~ ( z ( J * ( z ) ) 2 - z J ~ ( 2 ) J ~ ( x )  - 2J3(%)4(2)]* where 

The function f (2) has the asymptotic behaviour 

77.26 
as z+O, 

z-+co. 

Stream 

0 
(U) ( h )  

FIGURE 3. Stream-surfaces, streamlines and vortex lines for the spherical vortices de- 
scribed by (54), ( 5 2 ) .  In  ( b )  the vortex is viewed from the direction of the stream at infinity. 

FIGURE 4. One of the knotted vortex lines of the spherical vortex represented by the 
stream function (54) and the circulation (52) .  

The choice of sign in (58) corresponds to the choice in (52); both ‘right-handed’ 
and ‘left-handed’ vortices are possible. 

The surfaces $ = constant for R < a consist in all cases of a family of nested 
tori, the sphere R = a itself being the limiting outer member of the family. The 
innermost member of each family of tori degenerates into a circle which is both 
a streamline and a vortex line: it is located on the plane 6’ = -;IT at a point where 
a@/aR = 0, i.e. $ = em,,, say, (at least one such point exists). The surfaces 
$ = const. are sketched in figure 3 (a)  for the simplest case in which there is only 
one such ‘vortex axis’ within the sphere. The streamlines and the vortex lines 
lie on these surfaces, as indicated in figure 3 ( b ) ,  which is a view of the eddy from 
along its axis of symmetry, 

If any one vortex line is followed in the direction of increasing @ the value of z 
on that line varies periodically; the pitch p of the vortex line may conveniently 
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be defined as twice the increase in 4)  between successive zeros of z. This quantity 
clearly increases continuously from zero to infinity as @ increases from zero 
(on R = a)  to @max (on the vortex axis). If p = 2.rrm/n where m and n are integers 
prime to each other, then the vortex line will close on itself after traversing the 
smaller circumference of the torus n times and the larger circumference rn times. 
Such vortex lines are self-knotted if m > 2, n > 3; the corresponding knot is 
known as the torus knot of type m, n. For example, if m =I2 and n = 3, so that 
p = +7r, the vortex line is in the form of the trefoil knot, as indicated in figure 4. 
It is interesting that every torus knot is represented once and only once among all 
the vortex lines of each member of the family of flows represented by the stream 
function (54)) together with the circulation (52). 

It is a pleasure to acknowledge the stimulus of several discussions with 
Professor G. K. Batchelor on the topic of this paper. It was he in particular who 
recognized the physical significance of Woltjer's second invariant, equation (31). 
I am also indebted to  Dr K. J. Whiteman who drew my attention to  the family 
of torus knots referred to in the last paragraph. 
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