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A simple model problem is solved in order to show that the time-scal¢
process of flux expulsion is :

’fe - leIJ &
where 1, is a time-scale characterising the flow (for example, the edd

with that of Weiss (1966) based on numerical experiments. By de

flux

associated with the

y turnover time, or

mposing the vector

inverse shear rate) and R,, is the magnetic Reynolds number. This est‘a-latc is in agreement

potential into a product of a rapidly varying part (in space) and a slo
shown how numerical work can be extended to much higher values d
achieved hitherto.

1. Introduction

y varying part, it is
f R,, than has been

upon a magnetic field in the plane of the motion, it is we

known that, if

When a steady two-dimensional motion u(x) with closed [:eamlines acts
I

R,, > 1, the field is eventually expelled from regions of clo

streamlines,

and is ultimately concentrated in layers of thickness 0(R,;?) at the

boundaries of these regions.

The process is described by the equation for the vyector potential

A(x,y,t)k of the magnetic field, viz

dA/dt+u-VA = nV24,

(1.1)
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During an initial phase, diffusion is negligible, and

A(x,1) = A(a,0), 1.2)

where x(a, 1) is the position at time ¢ of the fluid particle initially at a.
During this phase, the magnetic field is distorted into a t ght double spiral
within each eddy, and the magnetic energy increases gssentially like 2.
Obviously the field gradient increases during this process, and so after a
time, say #,, diffusion must become important. This is the stage at which
closed field loops form (Parker, 1966), and the process |of flux expulsion
commences. The magnetic energy within any eddy reachles a maximum at
t = tz, and then falls off, ultimately to a value of order Y (Gl

The computational study of Weiss (1966) suggested tfhat t, ~ R,1,,
and that in consequence, B%,.. ~ R,**. The purpose ¢f this note is to
provide a simple theoretical explanation for this scalin , and to explain
why the alternative scaling ¢, ~ R,?ty, B2, ~ R, suggested by Moffatt
(1978, §3.8) is in fact incorrect.

2. The action of uniform shearon a space-periodic
magnetic field

Flux expulsion from an eddy occurs essentially becaus¢, at t = 0, u-B
varies (and indeed changes sign) on each closed streafnline within the
eddy. A much simpler flow and field configuration, with a similar property,
is sketched in Figure 1. We suppose thatu = (ay, 0, 0), and that att = 0,
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FIGURE 1 Effect of uniform shear on a unidirectional space-periodic mfagnetic field.
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B (x,0) = (0, Bocos kox, 0).

Correspondingly,

A(x,y,0) = —k;' ByIm {eiko},
and the solution of (1.1) has the form

A(x, y,t) = =k BoIm {a(f) e’*®x},

where

a(0) =1, k(0) = (ky, 0,0).
It is easily shpwn that

k(t) = (ko,—(!lko, 0)7

(2.1)

2.2)

(2.3)

(2.4)

(2:5)

so that the wave-fronts of B are progressively tilted aL indicated in

Figure 1b, and that
da/dt = -nK’a,
so that
a(f) = exp {—/nk2 dt} = exp {-nkd(t+ Y2
The effect of the shear is represented in the term Y52
time-scale of decay of B is the usual diffusion time-scale Iy
a # 0, and more particularly if o« > k¢, then the time-scale
e = (Pnkd)® = 'R, 13,
where R,, = a/nkd.
3. The action of non-uniform shear on a space-periodic
magnetic field

Suppose now thatu = (u (y), 0, 0), so that

£)}. (2.6)
.Ifa =0, the

= (k)L If
of decay is

2.7)
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dA/at + u(y) 8A/dx = n V2 A.

Figure 2a,b shows the effect of such a velocity field
given initially by (2.1). Flux expulsion occurs from
lduldy| > nk ¢, the field topology changing through
The solution of (3.1) now has the form

A(x,y,t) = —kg' BoIm { a(y, {) k0.1
where

k(y’ t) o=, (kOr —kO (du/dy) L 0)
and
a(y, 1) ~ exp { -nkg (¢ + ¥4 (du/dy)? i*

This solution describes flux expulsion on the time-sca
a=|duldy| ..

b
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(3.1)

bn a magnetic field
e region in which
e diffusion process.

X 3.2)
(3.3)
Jo (3.4)

e (2.7) where now

4. Flux expulsion from a single eddy with circular streamlines

Suppose now that

u = (0,s50(s), 0)
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FIGURE 2 Effect of non-uniform shear on the same initial field as
ohmic diffusion in the region of maximum
troof order R, |du/dy | max'.
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in Figure 1. Accelerated

shear leads to apparent ﬂy expulsion in a time
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in cylindrical polar coordinates (s, 8, z), and that
A(s,8,0) = Byssin,
corresponding to a uniform field B, parallel to 6 = 0. Then
A(s,6,1) = BoIm {f(s, 1) e} ,
where
offat + iw(s)f = (8%6s® + s~'o/as—572) Fs
with f(s, 0) = 5.

The results of §§2 and 3 now suggest the best way to pro
the solution of (4.4) is

ISION
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(4.2)

(4.3)

(4.4)

ceed. If n =0,

f(s,t) = f(s,0) 7ot = ggnicrt 4.5)
The function e~ is a rapidly varying function of s, when ¢ i large. When
Mn#0,let
f(s,0) = evvig(s,1), gis, 0) =5, (4.6)
so that
of/as = (~itw'g + ag/as) et 4.7)
flos® = (-Pw'g-ite'g—~ 2itw'aglds + d%glos?) et . (4.8)

Substitution in (4.4), and retaining only the term on th
increases like 22, we have

oglot = -m(w?Pg+...),
giving
8(s, ) ~ s e~ omu’
which again describes flux expulsion on the time-scale

tfe — Rm1/3 (S ml)—l,

e right which

4.9)

(4.10)

(4.11)
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in agreement with the results of Weiss (1966).

The asymptotic symbol ~ in (4.10) needs interprefation in terms of a

double limiting process

lsw’t|>1 and |qPw’| <1,
the latter arising from back-substitution of the solutio
see at what stage the term 6°g/ds” becomes compara
solution (4.10) is thus valid for

1<wgt <R,}?,

where wy is a typical value of | sw'’ [, and it is supposed tH

(4.10) in (4.8) to
e with 2w'?g. The

(4.13)

at |w'/se"| = O (1),

The flux expulsion time 7, = wg? R, is within the range (4.13), so that the

description given by (4.10) is self-consistent.

The important point to note is that, for ¢ in the
function g(s, ) defined by (4.6) is slowly varying as a fur
f(s, t) is rapidly varying. Computer experiments b

range (4.13), the
ction of s, whereas
ed on the exact

equation for g(s, £) have in fact been carried out for valyes of R,,, up to 10°
(Kamkar, 1981), and the R,.}” behaviour for I (defindd as the value of ¢

for which the field perturbation energy is maximal) persi
these high values. Computer experiments based on the
for R,,= 10° due to inadequate radial resolution of th
structure.

5. Discussion

ts, as expected, to
equation for f fail
e developing field

It remains to explain why the argument given by Mo
though appealing in its simplicity, is in fact incorre
involved simple evaluation of the diffusion term nV24 i
of the Lagrangian solution (1.2), and the assertion

att (1978, §3.8),
. This argument
(1.1) on the basis
hat, when nV24

becomes of the same order as either term on the left of (1.1), neglect of

diffusion is no longer valid. It is this argument that lea

e ~ R,"1y referred to in the introduction. The rea
becomes significant at an earlier stage (~ R,;"*ty) is that,
term in (1.1) leads to periodic variation of A at any fixed
of order ) the diffusion term MV?A is cumulative in its
therefore be estimated by an integration from zero to ¢,
an evaluation at time r; it is this integration which lea

s to the estimate

ffect, which must
ther than simply
to the crucial £

term in (2.6). It is rather interesting that the normpl procedure for

neglecting a ‘small’ term in an equation, viz “neglect it,

Ive the equation,
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then evaluate the neglected term to see whether it was indeed negligible”

is here unreliable and gives a misleading result!
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