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with a Doppler profile toward the low-frequency region. As before,
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In the case of a wide radiation spectrum, we multiply Eq. (3.43) by
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the continuing operation of the maser. The intensity of this com=
ponent falls since the Compton effect rapidly transfers the photons
which are produced into the drifting line. When the line has
shifted by an amount of order v, the possibility arises of forming
a new line close to the frequency v and the process is repeated.

It is assumed that the maser operates in a highly saturated regime
so that the radiation at frequency v, even after being reduced,
lies above the threshold: n(v) > ﬁH (the general case is treated
in [98]). The number of photons in the moving line increases

linearly with time until a shift by a distance of order v, is achieved:
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We now introduce special notation for the radiation flux density at
frequency v, for which the time of stimulated scattering on plasma
protons t‘c1 = V%A”MK'(O)n* is comparable with the time for the ex-
ponential growth of the emission s (obviously for an unsaturated
maser)
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Then during the time in which the line drifts,
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the drifting line increases to the limiting value
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The brightness temperature is related to the limiting value of the
occupation number by the relation T, ~ hvn.

P 2. Compute the pressure of the stimulated light in a plasma

in the case of a wide radiation spectrum [105]; cf. also [98].

This force can be computed from the quasilinear equation
(3.36) or from the loss of momentum of the electromagnetic waves.

§4.1. Formulation of the Problem.

Conservation Relations

In the first three parts of this monograph we have described
nonlinear interactions between waves and waves and between waves
and particles; all of these processes can be realized in a plasma
which, as a consequence of an instability, goes from a laminar
state to a turbulent state. The macroscopic consequences of this
change in the state of the plasma are represented by a change in
its transport properties (the transport coefficients) such as diffu-
sion, thermal conductivity, electrical resistance, etc. Under these
conditions one speaks of anomalous transport coefficients. The
basic problem of the theory then is to relate the values of these
anomalous transport coefficients to the underlying cause which
produces the original instability (in other words, with the source
of "free energy™ which drives the instability).

The anomalous electrical resistivity is the most important
example of a problem of this kind. In this chapter we shall show
how the methods of the theory of plasma turbulence developed in
Chapters 1-3 are applied to this problem.

The anomalous resistivity of a plasma usually arises when
the magnitude of the electrical current that flows in the plasma
exceeds some critical value. Sometimes this critical value, abhove
which the plasma resistivity changes abruptly, is extremely small.
The density of the flowing current is expressed in terms of the
so-called drift velocity V4. If the electron distribution function is
characterized by some velocity V  with respect to the ion distri-
bution function, and if this velocity exceeds the critical value, then
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an instability can arise. When this instability does arise, in addi- the electron drift velocity is smaller than the thermal velocity
ie olosins momentum by bing collisions electrons also lose { i 3 e ot Lol _ &3 *
momentum because of the-interactionwith-oscillations—and-waves i
of various kinds. It is convenient to start with a table of relevant | 0— l—ﬁ+ @ [ g 1@) /2 i_k“’d)l "
02 p2ot| oM (Izcs kes 1) (4.4)

instabilities which arise when a critical velocity is exceeded (cf.
Table 1). In this table we have listed all of the basic instabilities )
which bear on the problem of anomalous resistivity in a plasma. and the growth rate is
The simplest instability is the so-called Buneman instability Jam i o kVg kel
[106, 107]. In this case the original distribution functions for the ¥ 59 ]/ Py (a- k;) /(1 & Q‘_,' ) ; (4.5)
electrons and ions are two é-functions which are shifted with re- &

spect to each other by the mean velocity V4. The instability is
manifest in the excitation of longitudinal electrostatic plasma oscil-
lations with a growth rate of the order of the ion-plasma frequency.
The well-known dispersion equation for the Buneman instability is

The growth rate for the ion-acoustic instability (the imaginary part
of the frequency) is the ion-plasma frequency reduced hy a factor
equal to the ratio of the electron drift velocity to the electron ther-
mal velocity. In the limiting case Vq— V., the ion-acoustic in-
stability goes over into the Buneman instability.

(4.1) In the presence of a magnetic field a number of new instabil-
ities can appear. One of the instabilities which is also a conse-
quence of the imaginary part of the electron term (the electron

) pole) in the ion-cyclotron mode is called the Drummond —

Im o ~ kV, (m/M)'2 <L Q, (4.2) Rosenbluth instability [108]. This instability arises when
the current flows along the magnetic field, whereas the first two
instabilities that have been considered are not affected by a mag-
netic field if the field is reasonably small (w; <« wp). The Drum-
mond—Rosenbluth instability is usually not discussed in connection

1 — (Q}/0Y) — 0p/(0 — kV,)? = 0.

The growth rate is

when kV g << wp and reaches a maximum value

1\1/6
Imoe= (&) ¢ Q, (4.3) 2
Ant with anomalous resistivity because it is characterized by a small
O B growth rate and is evidently suppressed by simple quasilinear ef-
Anoien Casinnls o i fstabiiitey whtell avless i pnatios 12 fectsAsuch as. the formation ?f a plateau.

o fommenustie Lastabiliby. ThiE MEsaiy sopsive-yldn ' more }mpmtant role‘ is played by a class of instabilities
associated with electrostatic perturbations for which the wave vec-
tor along the magnetic field is much smaller than the transverse
component of the wave vector and for which the frequency is much

ki smaller than the electron gyrofrequenc i
Instability Threshold rfﬁénc Growth rate ovrofr 7 g}f q i e SUEmEet KoRnheidi
quency gyroirequency. This mode is reminiscent of the well-known Post—
- o ol i Rosenbluth mode which arises in the presence of a loss cone [109]:
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= VT {
T p— loy, oy Valvr, : In the approximation in which w > kv.; and kVy 3 k| Vres Eq. (4.6)
becomes the dispersion equation for the so-called modified
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Buneman instability [110]
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of momentum between the electrons and the waves. The well-

HE
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O O (0—k-Vg)i—kj vTe o = Ne*/mv (4.10)
The growth rate is contains v, the frequency of collisions of electrons with scattering
- — = . centers (ions, neutrals) in terms of the loss of momentum. If the
Y(K)=V 0,Q, LQp kry=1; ki=k(V4vy,). (4.8) ( ! ; ,) ; grs e
plasma electrons excite some kind of oscillation or wave as a

The approximation in (4.7) is valid if the drift velocity is much
greated than v.;. If this condition is not satisfied then we are
dealing with the so-called electron-acoustic instability

consequence of the instability, there will be an anomalous loss of
momentum (transfer by the oscillations, i.e., collective ion motion).
In order to find 1. we can use the conservation of momentum for
the system consisting of the electron and the wave. The

@, > W

Re (0—k- vd)Nk“( /1+k e Imo =% (©—kVy). (4.9)
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An instability of this kind arises when the current flows across the
magnetic field, The instability in (4.7) has a very small growth
rate and is important only at comparatively small currents, in
which case the stronger instabilities such as the Buneman instabil-
ity or the ion-acoustic instability are not excited.

Finally, recent interest has been given to an instability as-
sociated with Bernstein modes [111]. This instability is charac-
terized by a relatively large growth rate and arises when the
current flows across the magnetic field. The dispersion relation
for this instability is rather complicated.

Up to the present time, primary attention has been given to
two kinds of instabilities; the Buneman instability and the ion-
acoustic instability. In his first paper Buneman proposed a heuris-
tic expression for the nonlinear stage of the instability. He pro-
posed that the effective collision frequency for the electrons should
be of the order of the imaginary part of the frequency as deter-
mind from the linear theory, that is to say, the order of the ion-
plasma frequency. This simple formulation, in which the ion-
plasma frequency appears in place of v, in Ohm's law, is called
the Buneman conductivity. It will be clear that this formulation
cannot give a very accurate description of experimental results;
it can only give the appropriate order of magnitude.

A rigorous formulation of the problem of determining the
conductivity o must be carried out taking account of the exchange

mean momentum loss of the electrons per unit time is

V! e”fllA/ V‘, ~ —F. (4.11)

If this momentum is transferred to a wave with energy density W,
then the change in the wave momentum is
k  dk

ot ok
| T 4.12)

where ¢ is the electron contribution in the imaginary part of the
frequency. Equating (4.11) and (4.12), we have

5 J ( ) 1 ii_k_
Vet MNV, 2 \ Yi Wk(.)k ey (4.13)
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Thus, the problem reduces to finding W ; the quantity yl"; is to be
understood in the quasilinear sense.

The validity of Eq. (4.13) can be demonstrated through the use
of the quasilinear diffusion equation for the electrons. For ex-
ample, with ion-acoustic oscillations,

()[p - s k '—I(Dkl 'T,b ((l)l\—*k V) k (Q_j[')('; - (4-15)
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Multiplying this equation by mv and integrating over velocity we
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proceeds at a rate

have

— Dy ] LAy (@.19)
Veff nlNVd _ Lk & M.I_‘—kl.' (4.16) dt .\ (2m)3
(2m)3 dwy 8n
Now let us divide Eq. (4.18) by Eq. (4.19):
since Wi = (doe/dw) (k*| @y |*/8x), and the validity of Eq. (4.13) is
demanstraise. ZT ~ f Vi Wi —~"‘0')k"") @k / f Vi Wi dk. (4.20)

The existence of an anomalous resistivity leads to the anoma-
lous generation of Joule heat in a plasma jz/q,”ﬂ . This kind of
plasma heating is frequently called turbulent heating since
the mechanism responsible for the anomalous resistivity of the

If we write

e k- & . o
Yyk Wi ( “Vd) Bk ~ Va Y\’k W, d*k
& 3
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absence of binary collisions the turbulent heating is different for
the electron and ion components of the plasma. TFurthermore, it
is not really valid to talk about increasing the "temperatures™ of
the electrons and ions if temperature is understood in the tradition-
al sense (a Maxwellian particle distribution). Under the plasma
conditions described here the term temperature is usually taken
to mean the mean random energies of the components.

As a rule the electron temperature increases more rapidly
in turbulent heating of a plasma. It is possible to establish a
simple criterion which relates the rate of electron heating to the
rate of ion heating. The derivation of this criterion is based on
the conservation of momentum and energy in the interaction of
electrons and ions with the waves. As we have seen, the electrons
in the plasma experience a frictional force

F=—v, NmV,. (4.17)

The work performed by this force goes into heating the plasma
electrons:

dé,. d’k e (k-Vyg)
— ~yymNVE = Wi —==.. 4,18
it Veir NV g (2n) k Wk o ( )

In the stationary saturated state, which is reached when the growth
of the instability is limited by nonlinear effects, the momentum of
the waves (along with their energy) is transferred to the ions.
Thus, in the saturated state the ions must absorb the oscillation
energy at a rate of order fy‘f(Wk d*k. As a result, the ion heating

A )

in Eq. (4.20), the ratio of the rate of electron heating to the rate of
ion heating is easily obtained from the following estimate [112]):

48 Jd&; ~ V Jolk. (4.21)

In the form in which it has been obtained here this relation is
independent of the nature of the instability, and is thus a universal
relation. For most instabilities this relation leads to a more rapid
heating of the electrons. Thus, in the ion-acoustic and Buneman
instabilities V; > w/k so that d&,/d&, > 1. The ratio d&.d&, is
especially large [of order (M/m)!/?] for the Buneman instability,

It is desirable to write Eq. (4.14) in a more useful form in
dealing with the ion-acoustic and Buneman instabilities. For this
purpose, in Eq. (4.14) we substitute the well-known value for the
maximum growth rate of the ion-acoustic instability (4.5). The
maximum growth rate obtains when k ~A 3, Making the substitu-
tion yﬁ ~wV, /vTe, we obtain the following relation:

Verf = (053 1V./N0Te. (4:.22)

Thus, a knowledge of the energy density of the waves W in the
saturated regime of the instability can be used to find vog. The

L quantity W in nonlinear plasma theory can be obtained by the usual

methods of weak plasma turbulence. However, this method
does not always apply. Even the simplest case of the Buneman
instability must be treated from the viewpoint of strong turbulence.
However, the available theories for strong turbulence can only
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hope to give estimates of orders of magnitude. Inthe case of the
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this term can be estimated as follows. Since the effect is asso-
i i mal motion of the ions, the operator A contains

example, using the following approach. The ratio of the ion energy
: «w |0 117 )

and electron energy is written in the form &,/&, ~ (.)/(gv(, . where

& ~ m(u*>/2, while the energy density of the waves W5 ¢;.

‘e ’

Since w/k ~ V m/M (v), using Eq. (4.14) we find v~ Q.

§4.2. Anomalous Resistivity Due to

the Ion-Acoustic Instability

-acoustic instability furnishes a convenient example

—gefiil:gia@tmmummad&mmmmumm;ﬂw—

imaginary part of the frequency is much smaller than the real parl:1
since the drift velocity can be much smaller than the n:lean tllerr?a
velocity of the electrons. The nonlinear theory of the ion-acoustic
instability and the anomalous resistivity have been treated by many

authors. We shall consider this question in some detail. Thf: en-
ergy density of a mode Wy, characterized by wave vectox: kdgl ows
exponentially at small amplitudes. Then, at large _amphtu es,d .
effects associated with nonlinear saturation co'me 1_nto play‘.an i

is possible for a steady or quasisteady state situation to arise. t
We can then neglect the left side and find the spectru.m Wy » -e.qui =
ing the linear growth rate to one of the effects assoc1a.ted with tb eli
nonlinear saturation. The nonlinear cffects can be written symboli-

cally in the following form:

*| Wi (4.23)
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0= {zm—dox (57
The quadratic effects (proportional to the square of tbe wave
amplitude) represent wave—wave interactions. R.csc.)nant %h.ree—
wave interactions are forbidden in the ion-acoustic llzls.tablllt}:' S0
that the only effect which can give a term o_f order W* is nf)nhnear
scattering of the wave on the ions [III]. This effect, as'somated
with the presence of a denominator like w —w' = (k —Kk') v, rep.—
resents Landau resonances for the nonlinear beats assocTated with
a given wave pair. These beat waves fall il"l resonance w1t.h the .
ions; one part of the energy is absorbed while another part goes to
the wave with the lower frequency. The quadratic. term actua11¥
represents a rather complicated integral expression (cf. §3.2) in
which the integral is taken over all wave vectors. The value of

a small numerical factor T V4 T, (since we are discussing ion-
acoustic waves, then by definition it is necessary that T; <« ik B
The next effect, the cubic effect, relates to the four-wave
interaction. The four-wave interaction has been solved and taking
account of it leads to a rather complicated nonlinear operator
which contains the energy density of the waves to the third power,
In the theory of weak turbulence this effect is weaker than nonlinear
ion scattering. Thus, the basic contribution, which is decisive, is
the balance between the linear growth and the first (quadratic)
nonli P Lelgd =
mately by Kadomtsev who has been able to convert a complicated
integral operator to differential form by assuming that the non-
linear interaction only causes a small frequency change (cf. § 3.2).
In solving the balance equation Kadomtsev has observed that in the
region of wave numbers much smaller than the Debye wave number
(wavelengths much larger than the Debye wavelength), there is a
simple dependence: The energy density is proportional to k™3 [II1].
When kA ~ 1 the integral operator, i.e., the collision term for the
waves, does not reduce to a simple form, But it is possible to in-
vestigate the opposite limit of large wave vectors, that is to say,
wavelengths shorter than the Debye radius (where the dispersion
relation for ion-acoustic waves is simple: w =~ Q). It turns out
that when kA ;> 1 the spectrum falls off rapidly (~k'13), [IA]. The
Kadomtsev spectrum has a logarithmic divergence: Thetotal wave
energy diverges at small wave numbers. But this logarithmic
divergence is not described because Eq. (4.14) for Vegr does not
contain the energy density but rather the momentum lost by the
electrons; that is to say, in Eq. (4.14) we deal with another inte-
gral (k and w are approximately proportional to each other for
long wavelengths). There is an additional factor, the imaginary
part of y,, a quantity which is proportional to the frequency; Li€ss
the quantity k appears again. Thus, now there is no divergence at
small values of k. On the contrary, the contribution to the integral
comes from the region of large kAp= 1. It is reasonable to make
the assumption that a cut-off must be introduced at wave vectors
of the order of the Debye radius (beyond this point the Kadomtsey
spectrum is not valid and sharp damping occurs). The calculation
of this integral leads to the following formula for the effective
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collision frequency [112]:
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The ion-acoustic wave spectrum is a nondecay spectrum;
hewever;-as-hasbeer pointed out by Tsytovich [114], in the region

}o-2 (4.24)

The factor 10~% arises in the calculations (cf. also [11-3]). Thus, if
it is possible to propagate a current in the plasma (this current
being considerably above the critical value) so that the elef:tron.s
lose momentum because of coherent emission of phf)nons, i.e., ion-
acoustic waves, ultimately a stationary spectrum will be estab.—
lished (more precisely, a quasistationary spectrum) and V'eff foll
be determined by Eq. (4.24). This relation has ‘?f deeper signifi-
cance than Eq. (4.22) for the Buneman conductivity because of the

of smratt wave numbers, where the dispersion relation is almost
linear, there is a small imaginary frequency component which
arises because of the nonlinear broadening of the line. It is then
possible that the three-wave resonance condition can be satisfied.
Tsytovich includes the three-wave resonance in the wave kinetic
equation as a nonlinear term which leads to saturation, that is to
say, as a decay process; the kinetic equation is then solved in this
form. In this case one obtains a spectrum which is like the
Kadomtsev spectrum, since the nonlinearity is quadratic; however,
the small parameter T 7 T which appears—inromtimens scattering

fact that it reflects the specific nonlinear saturation. of the instal_)ll—
ity. Nonetheless, it is only approximate in natur(.a since the s-tatilon-
ary Kadomtsev spectrum (3.25) is only an appro.xmmate c}esc.mptlon
of the steady-state ion-acoustic waves. A solution of this kind -
could only be rigorous in the absence of an angular fle;?enden‘cc.z in
the expression for the growth rate of the ion—.acoustlc }nstablhty.l
This approximation is sometimes called the isotropi c gr ?wt h
rate approximation. In the best case, the error mcqmed
through the use of this approximation leads to an undetermmed" .
numerical factor of the order of unity. IHowever, the danger exists
that the nonlinear steady-state solution obtained by Kadomtsev may
itself be unstable with respect to the formation of an elongatfad cone
of unstable modes in k-space. This would lead t.o the redgctxon of
the angle ®, whose square appears in the denominator of the ex-
pression for the effective collision frequency (4.24). At th.e ;.)res—
ent time this question has not yet been resolved, although 1.t 1s.
shown in [95] that solutions exist in which the angle ®; varies in

i me mean value.

tlmehibc(:):rtlcsl,zsion we note another feature: If a current f;lO?VS. ml.der
conditions corresponding to the anomalous Bu‘ne?n.lan r(.ESLSthLty in
a plasma in which the ions and electrons are 1n11.:1a11y 1sotherm.'jll
(in which case ion-acoustic waves cannot be oxmted)., sooner 01.
later these conditions will become favorable for the ion-acoustic
instability. This feature follows from the fact that the elect.ronls
are heated more rapidly than the ions by a factor of kV,/w in tl.e .
Buneman instability; ultimately, therefore, the plasma must e}':hLb1t
a difference between the electron and ion temperatures. In t%ns
sense, the ion-acoustic instability appears to be self'—sustammg)
because when V; > ¢, the electrons will always acquire more heat

than the ions.

on ions does not appear. It is obvious that a somewhat different
value will be obtained for the quantity W,. However, the Tsytovich
Spectrum can only obtain for sufficiently small wave numbers, in
which case the small nonlinearity can cause overlapping of the
resonances so that the three-wave interaction can be realized.
However, the basic contribution in the momentum loss (in contrast
with the wave energy) comes from the short wavelengths. At the
short wavelengths (frequencies of the order of the ion-plasma fre-
quency) the deviation from the linear dispersion relation becomes
very large and a very strong nonlinearity would be needed in order
to satisfy the three-wave resonance condition. Thus, the Tsytovich
model has a very limited range of applicability, the more so since
strong nonlinearities mean that it is necessary to treat the problem
from the point of view of strong turbulence.

Finally, we note that the formal application of perturbation
theory, as in § 3.1, for computing the electron distribution function
leads to a somewhat paradoxical result: The linear theory for the
excitation of ion-acoustic waves must be treated for a level of tur-
bulence which is much lower than that reached in the steady-state
turbulence [115]. The point here is that the basic contribution to
the nonlinear correction to the work in the field of the wave, as
computed by means of the distribution function Fie, e (v) (cf.
§3.1), gives particles with velocities that are not higher than the
wave phase velocity:

1 2
o—k-v--i0

jf3’Ez]m‘1d”v(v-E)( E-i>3ff,°)zJ(”-E =
0 ov

4Nom (wrk)?"

Thus, according to this estimate the nonlinear correction to the
growth rate becomes larger than the linear growth rate when
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W > mN,T,/M. The resolution of the paradox lies in the fact that

o of tha davalonment of the instability it is neces—
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sary to take accout of the nonltinear-broadening of theresonanee
velocities by an amount of order Av = (eE/mk)i/?'. The Doppler
broadening of the resonance due to this effect starts to play a role
when (eE/mk)1/2 > w/k, that is to say, when E?/4m > mNyT, /M.

In view of these considerations it is not difficult to estimate the
nonlinear correction to the growth rate [115]:

Sy/t &~ EY4nmN Av? = (E*/4aN,T)'/? < 1.

Thus, the conclusion regarding the importance of taking account

Y

0 u 7

Fig. 30. Maxwellian particle distribution in a plasma with a current.

of the nonlinear electron contribution in the growth rate is not 7
justified.
§4.3. Quasilinear Effects in Anomalous
Resistivity Due to the Ion-Acoustic 5
Instability

0

Although it is not yet completely reliable, indirect experimen-
tal evidence is available which shows that Eq. (4.24) has been veri-
fied in certain limiting cases. However, these experimental data
must still be treated with caution. The point here is that no one
of the four quantities which appear in this equation, Vg4, cg, Te, i,
has its usual physical significance because we are dealing with a
plasma in which true binary collisions are replaced by scattering
on fluctuations. Let us start with the electron temperature. If
binary collisions do not occur it is difficult to believe that the dis-
tribution function will be a Maxwellian. Even if it is not required
that the electron distribution function be a Maxwellian with some
mean thermal spread, it is necessary that the function f, have
a rather rapidly converging tail. Under these conditions one can
discuss the idea of a single temperature for the electrons. The
situation is more complicated for the ions because at the outset
it is obvious that the ion distribution function will be rather un-
usual if the ions only interact with the waves (without binary colli-
sions). Finally, there is the mean drift velocity. Usually the
particle distribution in a plasma in which a current flows is like
that shown in Fig. 30. Here, we have an ion distribution function
and an electron distribution function which is displaced with re-

R

Fig. 31. Example of a stable electron distribution in a plasma with
a current.

spect to the ion function under the assumption that the electron
distribution is displaced as a whole. However, in principle, it is
possible to have a situation (Fig. 31) in which the electron ciistri—
bution has its maximum at the same point as the ion distribution
but in which the electron distribution is distorted so as to becom’e
highly asymmetric (cf. Fig. 31).

At this point it is useful to discuss the possible form of the
distribution functions for the ions and electrons. It will be conve-
nient to use the two-dimensional pattern shown in Fig. 32. Along
the abcissa axis we have plotted the component of the particle
velocity in the direction of current flow; the transverse component
is plotted along the ordinate axis. Assume that initially we have
the usual Maxwellian distribution of electrons and ions. With a
Maxwellian distribution the curves corresponding to equal values
of the distribution function in this plane will be circles. The inter-
action between waves and particles is especially strong when the
Landau resonance is realized. A wave with phase velocity w/k
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sions are capable of producing something like a Maxwellian distri-
buttorr—This tsthe case in which the plasma resistivity is some-

f WK
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what higher than the classical value. We only discuss the most
extreme case, in which binary collisions do not play a role. In
this case the change in the ion distribution function is very impor-
tant. It has a strong effect on the ion imaginary part (the ion pole,
which is proportional to the number of resonance ions). As a rule,
this is a very small number and is very sensitive to the features
of the tail of the ion distribution. At the present time there is still
not available a self-consistent theory which is capable of describ-
ing the change in the ion distribution function at long times (with
the exception of the one-dimensional casewhich-is-disenssed

2 0. 0. 0. 9,9 ¢ @

> L 0.9 9.9.0-5. 9.0
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Diffusion cone

Fig. 32. Diffusion cone for ion-acoustic turbulence in a plasma with
a current.

interacts with particles located close to the line A (cf. Fig. 32).
These are the particles which take part in the resonance interac-
tion. If we consider waves with all possible directions and phase
velocities it is easy to show that all particles located in that part
of the plane (v,, v,) in which it is possible to draw a line \.avluch
corresponds to the Landau resonance condition will experience the
effect of the random field of the wave. However, the ion—acoust'ic':
spectrum does not contain waves with velocities belc?w some Crl.tl—
cal value (w/k ¢ Vo) In the quasilinear approximation the 'parf.;l-
cles noted above will not interact with waves. The interaction is
found to be much weaker, being associated with nonlinear effects

in the next approximation. The number of ions in the wave ini.:erac—
tion region is rather small since only a small fraction of the 10{13
experience a strong effect from the wave. In the zeroth approxi-
mation the distribution function in the primary region is ther} essen-
tially undeformed. On the other hand, a strong deformatio.n.ls
produced in the resonance region. In the language of qu.asmnear .
theory, this deformation is nothing more than the difqulO{l of parti-
cles in velocity space. There is a large number of experiments
which have been carried out in the intermediate regime in which
this diffusion process is relatively slow and binary particle colli-

below). It is possible, however, to make certain estimates which
make use of the two-temperature approximation, that is to say, the
division of the ions into two groups: cold ions, for which essentially
nothing happens, and hot ions in the tail of the distribution function
which are characterized by a high temperature.

The situation for the electrons is as follows: The region of
forbidden velocities, within which there is no resonance hetween
particles and waves, is relatively small because the acoustic veloc-
ity is (M/m)i/2 times smaller than the mean thermal velocity of
the electrons. In principle, it is possible to neglect effects which
occur within this small group. However, the situation is more
complicated. It is very difficult to think of a situation in which the
current flowing in this direction can excite a wave which is almost
perpendicular to the current. Actually, it is well known from the
theory of the ion-acoustic instability that a wave with a large wave-
vector component perpendicular to the direction of current flow
has a small imaginary part; in practice, waves of this kind can be
regarded as stable. Thus, we conclude that there is formed a
small cone in velocity space in which there are no waves that can
resonate with the electrons. These electrons are freely accel-
erated by the electric field which produces the current flow in the
plasma. The contribution of these electrons can have a strong
reduction effect on the plasma resistance. It is then of interest to
ask what fraction of the electrons fall in this loss cone and are
freely accelerated. The problem can be considered in two limiting
cases. It is first useful to isolate the simpler case, in which there
is a weak magnetic field I, in the plane perpendicular to V4. This
magnetic field causes a slow gyration of the electrons (slow as
compared with the frequency of the plasma oscillations)., However,
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it can be regarded as fast on the time scale in which electrons !

move (nto U =
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of heat to an external sink, one expects some kind of self-similar

PDUTTO t O G DC r

[anl S - 3.3 3 -
The-situation should be much simpler in the case of a weak

2 i ~eater than the initial thermal en-

trons in one Larmor orbit will interact with the waves. No addi=
tional difficulty arises in this problem for the electrons. Although A
f, does not reduce to a Maxwellian distribution, it is still possible ;
to speak of a mean electron temperature. Furthermore, under the
rather general assumption that the phase velocity of the oscilla-
tions is much smaller than the mean thermal velocity of the elec-
trons, without making any assumption as to the spectrum it is
possible to obtain a simple formula for the electron distribution
function. Assuming there is some time during which the electron

ergy we find that there is a universal distribution given by

fo~ exp (—av®) (cf. §2.3). In certain experiments distributions
similar to this distribution have been observed. With a distribu-
tion of this kind one can talk of a mean temperature, and all of the '
calculations for the electrons go through in almost the same way !
as for a Maxwellian distribution when account is taken of small
changes in the numerical cocfficients. Thus, we shall assume
that if there is a weak transverse magnetic field all of the
results for the effective number of collisions can be carried over
even for long times, in which case there might be a substantial dis-
tortion of the electron distribution which represents a deviation
from a Maxwellian distribution. It is precisely this kind of situa-
tion which obtains in experiments on collisionless shock waves

that propagate across a magnetic field. The current flows across
the magnetic field in this kind of a shock wave.

However, there are still certain difficulties associated with
the ion distribution. The point here is that ion mixing does not
occur in the magnetic field, so that the ion distribution may ac-
quire an unusual form which, ultimately, will be very different
from a Maxwellian distribution. One expects that the bulk of the
ions will be cold and that some fraction of the ions (starting from
a velocity of the order of the acoustic velocity) will be heated.
Without the use of numerical methods it will evidently not be possi-
ble in the near future to find the form of this complicated ion dis-
tribution. On the other hand, certain conclusions can be drawn
from the following considerations. If there is no interaction with
the walls during the process in which the current flows and if the
electron and ion energies increase, thatisto say, if there is no loss

nonlinearity, in which it is possible to rely on the quasilinear ap-
;')roximation. In this approximation, saturation of the instability
is reached as a consequence of the quasilinear deformation of the
ion distribution function: as a result, even in a nonisothermal plas-
ma there will be a group of ions with large velocities. These ions
which absorb the ion-acoustic waves in resonant fashion, then ’
balance the excitation of the waves by electrons. ’

Let us consider the nonlinear saturation process in this case.

Assume that the equation for the spect i

given by the symbolic form [compare with Eq. (4.23)]
dWi/dt = 2ygWy — 29iW, — A (WIN T )Wy — B (W/NoTo)*W.  (4.25)

The wave growth when Vy4 > V, leads to an increase in the resis—
tance, that is to say, a friction force arises which acts on the elec-
trons. If it is assumed that the electric field which drives the cur-
rent is not too large, then as a consequence of the reaction on the
electrons due to the increasing resistance, the velocity V, will
continue to be reduced as long as the instability thresholg is not
reached. This means that the nonlinear terms in Eq. (4.25) will
pl?.y a small role and that the saturation of the waves is deter-
mined by the condition Y ® Yy for all originally unstable waves.

In other words the following condition must be satisfied for all orig-
inally unstable waves:

Ve = V% — i & ldfo/dv - (m/M)(dfildv)) = 0. (4.26)

In this form, Eq. (4.25) does not contain the amplitudes of the
steady-state waves W, so that it cannot be used to compute p
directly. However, the effective collision frequency for this esfgltu—
ration regime of the instability (this is sometimes called the
"threshold" or quasilinear regime) can be found from
Ohm's law by substituting the expression found for j = eNV,; #eNV
Writing j = eNV, = ¢ E, we have ’

c*

Vert = eE/mV . (4.27)

Now, using Eq. (4.14) which relates Vegr to the wave energy, we can
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P ; We now consider the momentum of the resonance ions. The mo-
' _ . . mentum lost hy the electrons-in-seattering—is tramnsfe
W/N T, =~ (eElp/NoTe)(@re/V ). (4.28) : lons, Po - VmVove: Since 0T e fz)n distrib o ftnoti
' ; : : 7 istr i i
can be written in the form fi (1‘1’1 1‘})er——f0,~ (v) + f; (ilﬂitl?gffuglgtg)m
whe‘re the anisotropic part /f; ~ le/(T,;/M1/2] fo,-l < fo Thl‘.lS {;l]’~
= || My, d| ~ NoXMc,. I'inally we have - R

As E increases the quantity W also increases, and at sufficiently
large fields E, it is no longer possible to neglect the nonlinear terms
in Eq. (4.25). At this point the apparently simple formula for the
threshold (quasilinear) regime becomes complicated. At first

sight it might appear that in finding V, ~ V_ it is sufficient to use
the linear expression for the imaginary part of the frequency (4.26).
However, yki is very sensitive to the form of the ion distribution | Thus, the mean random energy of these hot ions is approxi
for large ion velocities, that is to say, it is sensitive to the tail of the same as the random energy of the bulk of the elezfscfri(;m%gly

Ve cg MIm)'4, T\,=T, X=x~ (m/M)i/, (4.32)

- ; s SRS i & orde Ttv: wi
crease their energy and rapidly change (in quas@mear fashion) the ' knowing the exact solution, these factors can ozlo bl;n:.it}t, Wlt%lout
form of the distribution function. As a result, Yi changes rapidly, by comparison with experimental data The onlyyexce;iirn}mfld

g ; o n is the

as does V... idealized case of the one-dimensional spectrum, which allo
If the thermal energy absorbed by the plasma particles is not exact analytic solution. This solution is of grea’t interest f oy
d rom a

procedural point of view, and we shall consider it in some detail
Pet us assume that there are waves which only propagate ir;

the fhrection of the current (|| X). The ion distribution function for

the ions which interact with these waves is also one-dimensional

transferred to an external sink, one expects that ultimately a uni-
versal self-similar ion distribution function will be established.
The assumption that such a self-similar solution (corresponding
to the quasilinear regime) actually exists is verified in [116]. The

self-similar variables in which the equations of weak turbulence ; However, because of the magnetic field the electron distributj
assume a simple form are found in this work; however, these equa- f will be axially symmetric in the plane v_, v_ around the Oiutlgn
tions still cannot be used to solve the general case. Nonetheless " The interaction of the electrons with thexwaves in this pxl')obile =
we can proceed as follows. When the current flows across the corresponds to the case that has been treated in § 2.3 The efel
magnetic field and the wave spectrum is three-dimensional, the ‘ tron distribution function is of the form fe ~exp (_C;V's) with thz—
ion distribution can be divided into cold ions and hot ions. In this i origin taken at the point V;, 0. However, not all of thé electrons
two-group approximation we can find the quantities which charac- ! interact with the waves. This point canbe made clear from consid-
terize the current flow. The group of ions which are in resonance eration of Fig. 33. For example, if only the usual ion-acousti
with the ion-acoustic waves and are then accelerated is relatively ' e
small. We denote the fractional concentration of these hot ions
by X. The effective temperature of these resonance ions will be 4y
called Ty;. Then from Eq. (4.21) we have
T/ Thi = XValeg. (4.29)
Estimating the ion damping coefficient as y; = (0%/F’) (Xe,/(T),;/M?/?) - Fig. 33. Interaction of one-dimen- Y U 1'
and comparing it with the electron coefficient (4.5), we have i sional waves with electrons in a o *
i magnetic field.
X = (m/M)V3 (T i/ T )4, (4.30) i
Vi =~ cs (MIm)V4 (T J[T:)54. (4.31)

D T D —
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waves are exc..ed in the plasma the phase velocity cannot he larger
than w/k_, ... Since the spectrum is one-dimensional, for drift
velocities V4 > w/Kky,. Some of the electrons within the circle

(cf. Fig. 32) will not interact with the waves. Hence
in this region remain cold and the corresponding value of the dis
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first moment of the ion kinetic equation. And since Py o (I XMV,
then F, = (1 — Xl.)MdVd/dt. The work of the frictional force goes
into electron heating: dT./dt ~ VyFp. It then follows that

2 (1 — . 2 ; :

i i H o : / r s Jx2d .3
ion-damping rate find-theretation(m/M) (1 —X)/ V¢~ Va7V)s

wuro.
aeEhprasTatC—we T

tribution function will become larger and larger as compared with
the value of f, in the resonance region. This process will continue
as long as the dispersion relation for the ion-acoustic waves does
not change so much that waves with phase velocities in the range
from the initial value w/k . to V, donotappear. Inthiscase the
circle (cf. Fig. 33) is elongated and the electrons in the circle can
be described by a distribution in the form of a & ~function
fe~ X 0(vy—Vy)6(v,). The relative fraction of these nonresonant
electrons X, will be determined below.

whence follows immediately that 1—X;a (m/M)i/5 Vq/Vpe ~(m/M)%/5,
As might be expected, this result is verified by the exact solution
(cf. Problem 1 at the end of this section).

In this analysis we have not taken account of oblique waves,
which propagate at an angle with respectto the direction of current flow.
It is not difficult to show that the existence of a sharp maximum in
the electron distribution function at the point vy =V, leads to an
ion-acoustic instability with wave vector k directed almost perpen-
dicularly to the current. The kernel of the electron distribution

Brterms-of-thedimenstontess variables u,=v,/V,, the quasi-
linear kinetic equation for the ions can be used to write the distri-
bution function (v, t) = (N/V;)g;(u) in the form

—(d/du)urg; = (m/M)? (d/du,)D (u)(dg;/du,), (4.33)
where

D (v2) =2 § W6 (04 — ko dk/(2n).

m?

As in the preceding problem, it is expected that the bulk of
the ions will not interact with the waves. The relative fraction of
resonant ions described by Eq. (4.33) is (1 — X;). The condition
Yi* Y. = 0 in the range of phase velocities between 0 and
Vv, 0< u_< I) now assumes the form

dg;/du, = (M/m)(dh /duy,), (4.34)

where he(u,) is the electron distribution (of the form exp [~aV}])
in the self-similar variables, integrated over Vy. The system of
equations in (4.33) and (4.34) can be solved (cf. Problem1 atthe
end of this section).

It is interesting to note that the ratio of the directed electron
velocity V; to the electron thermal velocity, and the number of
resonant ions Vs Can be estimated from simple considerations
based on the conservation relations. Scattering of electrons on
waves is associated with an electron-ion frictional force Ty which
transfers momentum from the electrons to the ions. The momen-
tum of the ions is denoted by P, and we have dP, /dt = Fy, . This
relation is equivalent to the result obtained by computing the

function becomes smeared out in this case, and the situation is very
similar to that described in the preceding paragraphs [cf. Egs.
(4.29) and (4.32)].

As we have already noted, the quasilinear approximation can
be applied for weak nonlinearities. This approximation is valid if
the electric field is small so that the frictional force due to co-
herent emission of ion-acoustic waves retards the electrons and
prevents them from acquiring a mean velocity greater than the crit-
ical velocity needed for the instability. In other words, at all
times the plasma is essentially at the threshold of the instability.
In this case the nonlinear regime described in § 4.2 must corre-
spond to the case of large electric fields. The quantity I ., that
is to say, the limiting value which separates the two regimes being
considered, can be found as follows. Let V, be the electron drift
velocity which corresponds to the instability threshold Vit Ve =0).
The case of large electric fields (4.24) is realized if V4, as com-
puted from the relation Vy= eE/mueff, exceeds V, (V > V.). Using
Eq. (4.24) for v g, we have .

E > 1072 (mM?3)1/4Q ¢ le. (4.35)

The functional dependence j = j(E) can be represented qualitatively
by a curve like that shown in Fig. 34, Here, there is a classical
region which obtains at low electric fields, in which the plasma is
far from the unstable regime; at moderate electric fields j = eNV,
(quasilinear regime); j ~ E1/3 in the nonlinear regime, in which
case Vg is determined from Eq. (4.24).
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electron distribution function as projected along the parallel veloc-
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ity is-thenfound-tobe highly clongated in the direction of current

flow,andthe ratio of mean electron drift velocity to mean electron
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Fig. 34. Ohm's law with ion-acoustic turbulence.

thermal velocity can be equal to unity [117]. It is difficult to pre-
dict the exact numerical value. So far data obtained from labora—
tory experiments have not been very useful. The point is that most
experiments in which anomalous resistivity is investigated are
carried out in discharges with so-called open ends, that is to
say, discharges in which the electrons in the plasma can move free—
ly and be lost along the lines of force of the magnetic field. Under
these conditions it is impossible to obtain an extended self-similar

regime since heat is lost continuonsly S Beniaa e e e

All of the discussion in this section refers to the case in which
the current flow is perpendicular, or almost perpendicular, to the
magnetic field. Now let us consider the situation in which the mag-
netic field is directed in the direction of current flow or in
which there is no magnetic field. In this case the mechanism
which mixes the electrons no longer operates and the problem of
determining the electron distribution function becomes more com-
plicated. The question arises as how to proceed in this case, We
shall assume here that after some time a self-similar distribution
is established [117]. The electron distribution function assumes
some universal form: Further heating of the electrons occurs and
increases their mean velocity, but the form of the function remains
the same. In practice, however, it appears that these sclf-similar
variables cannot be used: It is evidently not possible to introduce
a two-temperature electron distribution because there are no two
clearly defined groups of electrons, as in the ion case. On the
contrary, there is a smooth transition from the slow electrons to
the fast electrons; in the course of time, as is shown by a qualita-
tive analysis of the equations in the self-similar variables, a signifi-
cant fraction of the electrons fall into the velocity region in which
there are essentially no waves. This effect is reminiscent of elec-
tron runaway in a gas with Lorenz collisions, in which the collision
frequency falls off with velocity as v™3. The interaction of electrons
with ion-acoustic waves exhibits precisely the same properties [63].

The question of the ultimate form that is assumed by Ohm's
law in such a plasma remains open at the present time. One of
the points of view that is presently held is the following: A signif-

icant fraction of the electrons fall into the runaway regime; the

particle mean free path for high-velocity particles is large, the
fast particles are lost rapidly from the system. For this reason
a continuous truncation of the tail of the electron distribution func-
tion occurs. The problem is extremely complicated and is very
sensitive to the boundary conditions, and for this reason loses
much of its general application. It can be shown that the ratio
Vd/vTewill remain much smaller than unity in this case. In prin-
ciple it is not possible to exclude a number of other mechanisms
which terminate the runaway of electrons and thus lead to a ratio
\Y% d/ Vre << 1. The combined effect of ion-acoustic and cyclotron
instabilities on the electrons is discussed in [118]. Along the same
lines, in [119] the authors have introduced the notion of the ex-
tended existence of so-called macro particles [120]. However,
these ideas are essentially of phenomenological nature.

There do exist, however, certain idealized limiting cases in
which the weak turbulence equations can be solved almost exactly
in treating anomalous resistivity. These are one-dimensional
cases. Just as there is a class of one-dimensional models amen-
able to solution in statistical thermodynamics, in the theory of
weak turbulence the one-dimensional models are found to be very
much simpler. In certain cases the one-dimensional models can
have actual physical meaning. For example, if the magnetic field
is so large that the electron gyrofrequency is much greater than
the plasma frequency, electron motion across the lines of force of
the magnetic field is essentially forbidden and one deals with what
is essentially a one-dimensional motion. In these cases the one-
dimensional theory can give an adequate description of the actual
situation. Self-similar equations in the one-dimensional formula-
tion for the quasilinear regime have been solved exactly [117].
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Fig. 34. Ohm's law with ion-acoustic turbulence.

ftow, andthe ratio of mean electron drift velocity to mean electron
thermal velocity can be equal to unity [117]. It is difficult to pre-
dict the exact numerical value. So far data obtained from labora-
tory experiments have not been very useful. The point is that most
experiments in which anomalous resistivity is investigated are
carried out in discharges with so-called open ends , that is to
say, dischargesin which the electrons in the plasma can move free-
ly and be lost along the lines of force of the magnetic field. Under
these conditions it is impossible to obtain an extended self-similar
regime since heat is lost continuously. Furthermore, singe-the

All of the discussion in this section refers to the case in which
the current flow is perpendicular, or almost perpendicular, to the
magnetic field. Now let us consider the situation in which the mag-
netic field is directed in the direction of current flow or in
which there is no magnetic field. In this case the mechanism
which mixes the electrons no longer operates and the problem of
determining the electron distribution function hecomes more com-
plicated. The question arises as how to proceed in this case. We
shall assume here that after some time a self-similar distribution
is established [117]. The electron distribution function assumes
some universal form: Iurther heating ofthe electrons occurs and
increases their mean velocity, but the form of the function remains
the same. In practice, however, it appears that these self-similar
variables cannot be used: It is evidently not possible to introduce
a two-temperature electron distribution because there are no two
clearly defined groups of electrons, as in the ion case. On the
contrary, there is a smooth transition from the slow electrons to
the fast electrons; in the course of time, as is shown by a qualita-
tive analysis of the equations in the self-similar variables, a signifi-
cant fraction of the electrons fall into the velocity region in which
there are essentially no waves. This effect is reminiscent of elec-
tron runaway in a gas with Lorenz collisions, in which the collision
frequency falls off with velocity as v~3. The interaction of electrons
with ion-acoustic waves exhibits precisely the same properties [63].

The question of the ultimate form that is assumed by Ohm's
law in such a plasma remains open at the present time. One of
the points of view that is presently held is the following: A signif-
icant fraction of the electrons fall into the runaway regime; the

particle mean free path for high-velocity particles is large, the
fast particles are lost rapidly from the system. For this reason
a continuous truncation of the tail of the electron distribution func-
tion occurs. The problem is extremely complicated and is very
sensitive to the boundary conditions, and for this reason loses
much of its general application. It can be shown that the ratio
Vd/vT o Will remain much smaller than unity in this case. In prin-
ciple it is not possible to exclude a number of other mechanisms
which terminate the runaway of electrons and thus lead to a ratio
Vd/vTG << 1. The combined effect of ion-acoustic and cyclotron
instabilities on the electrons is discussed in [118]. Along the same
lines, in [119] the authors have introduced the notion of the ex-
tended existence of so-called macroparticles [120]. However,
these ideas are essentially of phenomenological nature.

There do exist, however, certain idealized limiting cases in
which the weak turbulence equations can be solved almost exactly
in treating anomalous resistivity. These are one-dimensional
cases. Just as there is a class of one-dimensional models amen-
able to solution in statistical thermodynamics, in the theory of
weak turbulence the one-dimensional models are found to be very
much simpler. In certain cases the one-dimensional models can
have actual physical meaning. For example, if the magnetic field
is so large that the electron gyrofrequency is much greater than
the plasma frequency, electron motion across the lines of force of
the magnetic field is essentially forbidden and one deals with what
is essentially a one-dimensional motion. In these cases the onc-
dimensional theory can give an adequate description of the actual
situation. Self-similar equations in the one-dimensional formula-
tion for the quasilinear regime have been solved exactly [117].
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Let us consider a constant uniform electric field parallel to
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u = 0 for the ions. Denoting the fraction of freely accelerating

—partietes by Xgand X7, from the normmatization condition we find

val the mean=square velocity of the ptasma can become so targe
that the plasma "forgets™ its original state; in this case the further
evolution of the system is of a universal nature, being independent
of the initial conditions. Formally, this regime corresponds to the
transition to the case in which quasilinear equations with self-
similar variables can be used. It follows from simple dimensional
arguments that the particle velocities must be measured in units
of eEt/m and the wave vectors must be measured in units of
mw_/ekt,

The electron and ion distribution functions f,,'i and the spectral

that X+ C=1, X;+2Culnp = 1. Knowing the functions ge and
g; we can then easily write the dispersion relation

e(g, ©) =1—(1—C)(o — q)?— pe?* + Clog — Cl(e — g)q.

The function € (q, w) must satisfy the following requirements: All
waves must be stable; all waves must have phase velocities in the
range (0, 1). From these conditions it is possible to determine
the constant C uniquely (which is found to be equal to 2#1/2) and,
thus, the distribution function Coyia

density of the electrostatic wave energy W are then of the form
fe=mNg, (W/eEt; fi=mNg; (w)/eEt, W(k, {) = moy*U(q); | (4.36)
u = mvleEt;, q = keEt/mo,,. |

Substituting these functions in the quasilinear equations written in
the reference system that moves with the freely accelerating ions,

we have

(—d/du)(u = 1’ — wg. = (d/du)D (u)(dg./du), (4.37)

—(didu)ug; = n* (d /du)D (u)(dgi/du), (4.38)

where D(u) is the quasilinear diffusion coefficient and yu = m/M.
Taken together with the marginal stability criterion

(d/du)(g. - ng) = 0, (4.39)

Eqgs. (4.37) and (4.38) form a closed system with the following solu-
tion:
ge=Cul(u+p?, gi=Cp (1 —w)/(u+n?, D=u® (1 —u)/p?
for Uiz i 1
O =0y =1 =10 for 120, 0> 1,

(4.40)

where C is an arbitrary positive constant. The functions g (1) and
g;(u) must be supplemented by a certain number of freely accel-
erating electrons and ions which, in the self-similar solution,
correspond to 6-functions at the point u = 1 for the electrons and

WP —

Thus, ultimately one finds that a universal self-similar elec-
tron distribution is formed. In this case there is a plateau region
from V = 0 extending up to the velocity of free acceleration char-
acteristic of the bulk of the electrons.

Numerical experiments in the one-dimensional case give dis-
tribution functions of approximately the same form [121]. However,
there is some difference between the distribution functions in the
numerical experiments and the self-similar experiments. Inpartic-
ular, in the self-similar analysis the number of electrons in the
plateau region is proportional to N, (m/M)i/?'. On the other hand,
in the numerical experiments a significant fraction of electrons
is found in the plateau region. This difference stems from the
fact that the quasilinear theory ignores nonlinear effects.

PROBLEM

P> 1. Find the exact solution for the quasilinear equations (4.33)
and (4.34) for the problem of an anomalous resistance with
respect to a current which flows across H in the one-dimen-
sional problem [117].

The electron distribution function Jolvy,t) = (N/v)ge (u,) can
be expressed in terms of the quasilinear diffusion coefficient ge =
s . I
Cyexp (—ui/SD), where D = a~1 [ D (uy) (uy — 1)? du, whilethe constant
0 oo
C; is found from the normalization condition 2z _]' U, Godu, =1
6 L

2/5

Cy=17al' (7/5) [5D]
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From the condit,... v =0 in the phase velocity range (0, 1) we have

dg; M dg. oM vduy g,
T anieT e~ T T oy A
duy m o duy m
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analogous to the case of propagation of the current along i: (cf,
Eqgs. (4.36-4.40)], we find the number of particles in the electron
root X, ~ 8.2(m/M)4/5,

$4.4, Anemalous Resistivity Caused

e

M — 4, 51'(9/5)
— — (O ¥ ==
(=) (5D) ol (7/3)

(in computing dg./du, we have taken account of the fact that the
electron thermal velocity is much greater than the electron drift
velocity which, in the variables used here, is equal to unity). We
then find the ion distribution function

Bi=(Mim) (I —uy)* (5D) /%[5 (9/5) |/[4a 1 (7/3)]

—_—

by Other Instabilities

Let us now return to the Table 1 in §4.1 and consider other in-
stabilities. The Drummond—Rosenbluth instability leads to a rela-
tively small imaginary frequency component; furthermore, from
the point of view of the quasilinear approximation, this is a one-
dimensional instability, Hence, an electron plateau arises which is
similar to the plateau that arises in the one-dimensional ion-
acoustic model (4,3); this plateau causes rapid rati

and, fr i i fet = . NoOw,
using the relation

ﬁi:j ul g, ""L/J uy g, duy =(5D)*/° 1 (975)/21 (7/5)
0

we can find the mean-square electron velocity (ﬁ'i)i/z, which is found
to be 0.38(M/m)2/5. Thus, the ratio of the directed electron veloc-
ity to the thermal velocity is 2.65(m/M)?/5 in this model.

As before, the number of ions that interact with the waves is
small,

I
l—X;= s 8i () diy = (m; M) /5
0

10T (9.5)
3(81)%/51(7/5)

= 0.95 (m/M)!/5,

and in determining X, we make use of the dispersion relation

+4- o0
& ((u.), {7) =]— J‘— S d”'L 5 dgp —_— —i(‘E _%—”lgi (0—) — i\’—l =
= Uy du,, —q)* Mawyg Maw*
— oo
or
1 8.2 "1)4/5 X, * m ; 2.86 , m \6/5
q* (M ) o (0—gq)2 Mw? oq ( M

From the requirements on stability and the existence of waves
with all phase velocities in the range (0, 1), which is completely

stability. The current can increase further, but in a small region
of velocity space, the electron distribution will have a plateau and
the plasma will not be unstable.

The instabilities with the lowest excitations threshold are the
electrostatic instabilities with k|| <« k, in a plasma in which the
current flows across the magnetic field. When w 3 N Yy >k”vTe/k
these oscillations are described by (4.6). The nonlinear saturation
of this kind of instability is not amenable to analysis within the
theory of weak turbulence. For example, we may consider the case
of the modified Buneman instability [cf. Eq. (4.7)]. The tispersion
relation in (4.7) differs from the usual Buneman equation only in
that Q, is replaced by Qp/(1+ wé Sk )1/2 gnd wp by wpk | /k(1 + wi,/w%)l/?,
It is possible to estimate the wave amplitude in the saturation re-
gime, as is frequently done in the theory of strong turbulence. We
compare the linear term 9v/dt and the nonlinear term (v +V)v in
the electron equation:

oviot 4 (v-V)v = e{E -+ (1/o)lv x HI}.

In the nonlinear stage these terms compete, and this competition

leads to a quasistationary regime in which the instability is satu-

rated. Equating these terms (by order of magnitude) we find

RV 4 ~ (ke/Hg) X g, It is then possible to obtain the following esti-
q

mate for the energy density of the waves:

INe® | Dy 22T, &~ mNV3, kry, =~ 1. (4.41)
k
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(

Now, using Eq. ,..14) we have [I]

Veff = ouValvr,. (4.42)
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stability is not very sensitive to the temperature ratio. L. contrast
with the ion-acoustic instability, this instability does not require
that the electron temperature be much higher than the ion tempera-

t is useful to estimate the ratio of ele
in this instability making use of Eq. (4.21):

T/T: ~ Vlop;, (4.43)

This instability, as a rule, is a slower instability than the ion-
acoustic instability (for T, > T,); however, it can occur in a plas-
ma with a high ion temperature (T; ~ T,) in which the ion-acoustic
instability cannot be excited. When the ratio TB/T]. is reduced he-
low some critical value we can no longer neglect the ion thermal

inearity (Small effec-
tive collision frequency) which arises in the development of this
instability is sufficient to completely suppress it. The electron
inertia is important in these waves. This means that electron
collisions can make a large contribution to the imaginary part. It
will be evident that the quantity v,¢ is subtracted from the growth
rate. It would appear at first sight that one could find Rer by equat-
ing these two quantities. However, collisions give a still larger
contribution. To understand this it should be recalled that the
oscillating part of the distribution functij i

AN IS IImiting case one

is dealing with a so-called electron acoustic m ode |[cf.
Egs. (4.6) and (4.9)]. It is possible to estimate W by again carry-
ing out a procedure similar to that used in strong turbulence.

When w_ » Wips the Bernstein modes can be unstable in a plas-
ma that supports a current. This kind of instability can be des-
cribed as follows. The Bernstein modes are waves for which the
wave vector is perpendicular, or almost perpendicular, to the mag-
netic field and in which the frequencies are grouped close to the
harmonics ZwH. These are pure electron oscillations at rather
high frequencies, and no interaction with the ions occurs. Let us
assume that a current flows through a plasma and that there are
no waves in a reference system that moves with the electrons.
Because of the Doppler effect, in the laboratory reference system
in which the ions are at rest the oscillation frequency is shifted
lw, —k * V4. I the drift velocity is large enough, then with suffi-
ciently large k (and k can be chosen as large as the Debye wave
vector) the frequency can be reduced significantly in the ion ref-
erence System, so that these oscillations can interact with the ions
(le — k - Vy) ~ kvyy. Inthis case an instability characterized by
a negative energy will be excited. The usual Maxwellian ion dis—
tribution can then be unstable if one takes account of the imaginary
part of the ion interaction with the Bernstein modes due to the
Landau resonance. It turns out thatthis instability has a rather
large imaginary part, this value being of the order of the electron
Larmor frequency reduced by a factor equal to the ratio of the
electron drift velocity te the electron thermal velocity. This in-

exp (i[k x v]/wy) so that v will appear with the Pitaevskii factor
k"’rf{e [122]. Since we are discussing very large values of

kry, ~ vTe/Vd (short wavelengths) this factor plays an important
role. As a result even a small nonlinearity is sufficient to suppress
the Bernstein instability.

The effective collision frequency v, for unstable Bernstein
modes can be found approximately by the following method. The
well-knowndispersion equation from the linear theory of the in-
stability is modified in order to include collisions with the frequen-
cy being determined, vefr. This can be done by adding a Fokker—
Planck collision term 8%f /6v2 in the linearized kinetic equation for
the correction to the electron distribution function. In the disper-
sion equation which results we assume that nonlinear effects
(which take account of Voge ) lead to saturation of the instability:

Ve—Vegr K =0. (4.44)

Then, substituting the growth rate y = wyV,/vy,.and the wave num-
ber k ~ wH/Vd for the growing waves, we have [123]

Vess = 107 oy (V/vre)?. (4.45)

The approach described here, in which nonlinear effects are taken
into account by introducing in the linear analysis turbulent trans-
port coefficients with values such that the system returns to the
stability threshold, hasbeen used frequently in problems on anom-
alous diffusion and thermal conductivity in inhomogeneous plas-
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mas [X]. Equation (4.39) can also be obtained from the nonlinear The collision term can be written as follows:

iele f£yra

theory of the instability by replacing the unperturbed partiele-tra

CCtoTr1es 3 FeE€to e d O CSPOoONAU o C dppIrop d
proximations in the turbulent fields [124]. Formally, this proce- : 5 B : :
dure corresponds to taking account of damping due to turbulent Mﬁ” E 1 (k)] == 2mo [F (v)]-
i;fs?:;gg g§ the particles. As a result, we find that Eq. (4.44) is The quantity Im wy [ (V)] symbolizes the dependence of the
growth rate on the distribution function f(v). This approximation.
Pi—k2D =0, (4.46) corresponds to the quasilinear approximation of Chapter 2 and
only takes account of the linear interaction between the waves and
where resonant particles, in accordance with the resonance relation

. w—k-.v=0.
[),N\,C—z\w'yFl!F;‘%z 1 - ! :
Ho <= /T k
k Vakry, In the second approximation
It is then an easy matter to estimate the level of the turbulence: (a) Wave—wave interaction (Chapter 1)
WINT . = (oj/0f)(Vlvr)?. (4.47) P
kl =t k: == k.'l'
T?e estin?ate for the effc?ctive collisionzfrequency then coincides The collision term in the
with that in Eq. (4.45), since D, =~ Veff Cler particle kinetic equation StMm) =n - n is a symbolic
describes the adiabatic notation which reflects the
interaction of waves with quadratic nature of the
CONCLUSION particles which participate three-wave interaction
in the wave motion

The relation between the various elements of the theory of
weak plasma turbulence can be given in the form of a chart de- (b) Nonlinear wave —particle interaction (Chapter 2)

rived from the equations that are used.
0y — Wy = (kl =) kz).v_

Theory of Weak Plasma Turbulence
Stm) =n+n- f is a sym-

bolic notation which re-

flects the fact that the par-
ticles also participate in ‘
the interaction

The collision term describes
the resonance interaction
between particles and "beat™"
waves

Vlas.ov equatl.on (for each| + M St equaticns
particle species)

Use of statistical approach

Kinetic equation for each In the third approximation

Particle kinetic equation
plasma wave

St) =n-.n-n. These ‘
processes are important

Again, only the adiabatic

The general symbolic forms for these equations are interaction between par-
, . o for the nondecay spect
- [d A ticles and waves is included #i SResC I




