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3.1L1. Introduction

In a variety of applications of plasma physics, for example controlled thermo-
auclear fusion, solar physics, and astrophysics, an important problem is the stability
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against small perturbations of a steady state. _Of particula.r siguifican(:f: is ‘t?mt tja:s
of relatively slow motions describable in fluid terms which, 1f' _thc_y Iwrrg;p‘)on. E
instability, lead to a radical change in the state, for exgmp]e du\ruplm.nl? @ pine
discharge. The rigorous theory of such motions, parucula.r]y when co 15’19?15 z;re
weak, leads to formidable mathematical problems. Thus? one is led to analyze simpler
idcalized models of the phenomena, which are sufflc!cnlviy tractable to lead lol
general results, and which qualitatively or semiquantitatively apply to the rca
51#?120:::351 uscful such model 1s 1acal magnclohyldrod?'namics. Thf: plu:smaj 1s
viewed as a dissipation-free quasi-neutral fluid desenbed in terms of its Ccn’lc.l OF
mass density, isotropic total pressure, and center of mass vclomAty, via CqutI‘IOIL‘.,
representing conservation of mass, cnergy, and momentum. 11.1 this lfltteg t‘h\e‘ ‘orlcc
density due to the clectric field acting on t.hc cl.flargfz c!ens:t_y is neglected, aai is tt;c
electromagnetic momentum. The electric field is eliminated from t‘he‘prob en 1);
assuming perfect conductivity which allows one to r:elate thf: magnelic field strer‘l‘g‘lr 1
directly to the kinematics of the center of mass fluid. A discussion of the phy:?u,a
significance of this description is to be found in Chaptcr 1.4. The resulting equat‘:olns
are the counterpart for systems in which magnetic forces are important of the Euler
equations of ordinary fluid dynamics. . ‘ _ ‘ .
Even with the idealizations just described the linearized equations of motion
governing the small departures from a desired st.cady state us?ually detfy solgllon‘
Fortunately one is often not intcrested in the details of the motion, but rather in an
answer to the simpler question of whether or not the ;;ys}cm is unstable. That is,
does there exist a class of initial conditions which within hthc {ramcwqu f][ the
lingarized theory leads to exponential growth of the pcrtu‘rbanons‘ Ihe notion is that
such unstable behavior will usually result in destruction of _the desired stcad‘):
configuration, even when limited by nonlinear cl’fecl‘s. Clearly in order that thgst.
conclusions be significant it is nccessary that the maximum growth rate characteriz-
ing the instability be greater than that characterizing the transport phenomena Er
weak flows present in the real situations bcing modeled'. A§ will be shoyvn, for the
case of ideal magnetochydrodynamics the answer to thls.sm'lpler question can be
reduced to the determination of whether or not a functional W quadrgtlc in the
perturbed velocity can be made negative. This 1s qqalqgous to the notion that a
particle in a conservative field is in a stable cqulllbpum at Athe bottqm of the
potential well where all small displacements lead to an increase in pote‘nnal energy,
but unstable at a maximum of the potential energy where some small displacements
se in potential energy. _
lea”[c“‘htcov?lr(ijzfiﬁ?al prir?cipie alluded %0 above and its generalizations form the bgms og
a vast body of work the results of which undcrly.lhe present undcrsmndlc?g 0
magnetohydrodynamic stability. The notion was first introduced by \Lu‘n q[umlt
(1951) and the general theory elaborated by Hain ct al (1957) and Bern.sttzl? c al.
(1958). The demonstration that the results of the ideal magnetohydrodynamic

variational principle yields a pessimistic result compared with a thcory using the

Viasov equation was given by Kruskal and Oberman (1958) and completed by Grad
(1966). A comprehensive bibliography is to be found in the volume by Bateman
(1978).
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This chapter will develop in detail the general theory for a plasma separated from
perfectly conducting walls by a vacuum region, and apply it to two simple examples.
An outline of the development is as follows: Section 3.1.2 defines the mathematical
model, including the nonlinear equations of motion and the boundary conditions.
The static equilibria employed and the linearized equations describing the small
motions about them are presented in Section 3.1.3. Section 3.1.4 is devoted to a
derivation of the variational principle, and Section 3.1.5 to the transformation and
generalization of the resulting bilinear functional. Two applications are then given to
demonstrate the techniques employed and the generality of the results obtained in
relatively simple fashion. Section 3.1.6 derives a sufficient condition for stability for
a magnetic field free plasma supported by a vacuum magnetic field in terms of the
curvature of the bounding surface. Section 3.1.7 presents the derivation of Suydam’s

criterion for the stability of the diffuse Jinear pinch. Mathematical details are given
in Appendices 3.1.A-3.1.D,

3.1.2. Basic equations of ideal magnetohydrodynamics

Consider a plasma where the total mass density p, center of mass velocity v, total
material stress tensor P = pf, electric field E, and magnetic field B arc governed by
the equations of idcal magnetohydrodynamics, in Gaussian units,

dp/0t+ ve(po)=0 (1)
p(dv/ 3t + v vo) = — Vp+(1/4w)(v_><3)x3 (2)
(3/9t+ 0> v)p/p'=0 (3)
E+{l/c)vxB=0 (4)
veB=0

(5)
cVXE=-3B/d1. (6)

The current density associated with the description is J = (¢ /47) v X B. Note that

on taking its divergence (6) yields (8/3t) v+ B =0, whence (3) is true if it holds

initially. If (4) is used in (6) to eliminate E, there results
dB/dt=UX(vXB)=B-vo—v vB-Bv o, €)]

In order to display certain features of the system which depend on the topology of
the plasma and its surroundings, and to relate the theory to toroidal controlled
fusion devices it will be assumed in developing the general theory that the plasma is
a topological torus (region Iy surrounded by an annular vacuum region 11 enclosed
by a rigid perfectly conducting wall S’ as shown schematically in Figs. 3.1.] and
3.1.2,

In the vacuum region it will be assumed that the time for a light signal to cross the
system is much less than the time charactcrizing changes in B, whence displacement
current is negligible. Then since by assumption there is no conduction current

vXB=0

(8)
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Fig. 3.1.1. Schematic view of a torcidal plasma indicating the paths of integration C and Co.

which implies

whence following (5)
vix=0. (10)

These equations must be supplemented by boundary conditions. For example on a
rigid perfect conductor with unit surface normal a, if n+ B =0 initially, it roust
remain so, since for a fixed point on the immobile perfect conductor

S B)=n 2 o v xE. (11)

But integrating over an arbitrary area in the walf and using Stokes’s theorem gives
¢d2rn-vx5=¢dr-£=o (12)

since perfect conductivity implies that the tangential component of E vanishes on
the wall. But, since the area of integration is arbitrary, (12) implies that at each point
on the surface

nvXE=0 (13)

whence the right-hand side of (11) vanishes and » + B is a constant which is zero if so
initially, as will be assumed.

A parallel sitvation prevails on the in general moving plasma-vacuum boundary
by virtue of (4). To demonstrate this a convective derivative is denoted by a dot,
whence, approaching the boundary from the plasma side,

B=0B/01+v VB (14)
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cuT s

Fig. 3.1.2. Schematic view from above of a toroidal plasma swrrounded by an annular vacuum region
enclosed in rigid perfeetly conducting walls.

ctc. Then using (A7) for &, (7) and (14)
(n"B) =a-B+nB
= [—(Vv)-n+nn-(Vv)'n]-B+u-[B' vVv—Bv-v]
=n+*BnX(nx V) v. (15)

This is a first-order homogeneous ordinary differential equation for »+ B along the
trajectory of a fluid point on the boundary, the motion of which is governed by

F=o(r 1), (16)

Hence, as will be assumed, if n* 8 is initially zero, it stays zero. Moreover since it
follows from v+ 8 =0 that n+ B is continuous at an interface, also n+ B =0 on the
vacuurn side of S.

A dynamic boundary condition linking fluid and vacuum quantities can be
obtained from (1)—(6) by noting that they imply conservation of momentum in the
form

a B? BB
E(pv)-i- V'l:pw+(p+8—w)f—GJ=0. 17

The Cartesian components of (17) are all of the conservation form
do/dt+ v-I'=0 (18)

where o can be interpreted as a volume density and I' as the associated flux density.
Consider a set of nested surfaces with associated family of unit normals # as shown
in Fig. 3.1.3. A surface of discontinuity S can be viewed as the limit as the thickness
& of a thin boundary layer goes to zero, such that ¢ varies rapidly in the direction of
a but slowly perpendicular to # (see Figs. 3.1.3 and 3.1.4). It is convenient to write
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Fig. 3.1.3. Schematic plot of a density ¢ versus arc length 5 in 2 boundary layer of thickness 8.

(18) in the form

n+v[a(F—vo)l=-6—an* v(n-v)+nx(vxa) vo

+a{(vn)T+ax{(nx v)T (19)

where 6 = do /3t + v+ Vo is the time derivative of ¢ as seen by an observer moving
with the fluid. Note that all the terms on the right-hand side of (19) do not vary
rapidly as one traverses the boundary layer along a curve everywhere parallel to ».
Thus if s denotes arc length, one writes n+ ¥ = 3/3ds, and integrates (19) across the
boundary layer, obtaining in the limit § - 0

(n(I'—vo))=0. (20)
In (20) the notation { ) denotes the jump in the enclosed quantity. Equation (20),
when applied 1o (17), yields, since n+ B =0,

{p+ BY87)=0. (21

Equation (21) is a statement of balance of total pressure, material plus magnetic,
required in order that in a region of rapid variation of density, pressure, etc., there
not be infinite acceleration of an element of mass.

In the annular vacuum region II, in addition to the boundary condition

nB=0 (22)

/s°+ 8/2

n \50‘8/2

Fig. 3.1.4. Schematic diagram displaying nested surfaces on which a density o is constant and indicating
the path of integration tangent to the slowly varying unit normal sr.
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Fig. 3.1.5. Schematic diagram of cut toreidal regions showing washer-like surfac

R - ¢ ¢ of integralion S
(stippled), and ribbon-like surface § p (shaded). & T

whicl_l will hbe assumed to prevail on S and §', it is necessary in order for a nontrivial
solution, given the boundary condition n+ B = 0, to stipulate the toroidal flux

L =f5Td2ruT°B =— fdzrnT- vX (23)

and the poloidal flux

@szspdzr"f"‘3=*fd2r"r="7x (24)

where S, is a washer-like surface such as is shown on Fig. 3.1.5 in a section cutting
the torus the short way, and Sp is a similar ribbon in a section slicing the torus the
long way. Thesc fluxes are independent of time, for, using (All),
do, JB
— = .= _ .
T j;T -y LTdr vX B

=-—fd2r'CVXE_fdr'v><B

=-c dr-E—cf

1
e CTdr-(E—F;ﬂX B). (25)

But, on C, n X E = 0, while on § it follows from (6) that
(nx[E+(1/c)ox B])=0 (26)

whence, since (7) holds on the plasma side, it follows that n X[E+(1/c)oxXb])=0
on the vacuum side. Thus the right-hand side of (25) vanishes. A similar proof holds
for @, The fluxes are also independent of the choice of cut provided it yields a
surflace. of the same topological character. Thus if ST is obtained by a different
sectioning of_ the torus as shewn in Fig. 3.1.6, if onc integrates ¥+ B =0 over the
volume interior to S, &, Sp, and S} and applies Gauss’s theorem, the contributions
from those parts of the boundary lying in S and S’ vanish because there n+ 8 = 0.
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Fig. 3.1.6. Schematic diagram of a segment of toroidal domain.

whence the conclusion follows on taking account of the direction of the unit normals
to S; and ST.

3.1.3. Linearized description about a static equilibrium

We shall be concerned with the stability of static equilibria, that i§ sol_utions of the
governing equations for which the velocity vanishes 'and which are time independent.
Then (1), (3), and (6) are satisfied automatically since it follows fro_n} {4 tha_l the
electric field in the plasma vanishes, whence (6) is satisfied. If quantities. associated
with this state are distinguished by a subscript zero, (2) and (5) become

vpo = (1/47)(v X By)X B, (7)
v B,={. (28)
In the vacuum region, distinguishing the vacuum magnetic field by a circumnflex,
By =~ VX0 (29)
VX0 =0 (30)
On the static interface S between the plasma and the vacuum
Pot g:é - % =0 (31)
no- By =0. (32)
ny B, =0 (33)
and on the rigid perfect conductor &
n-B,=0. (34)
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The two fluxcs
- 2 T,
fppo—f d*m . B, (35)
Spo

Dy =};Tnd2mm - B, (36)

are assumed to be given. This system of equations has been shown to have solutions
for the case of axisymmetric toroidal symmetry. The general theory, however, is not
completely understood, but conventionally one assumes that a solution exjsts and
cxamines the consequences as regards stability as follows,

Consider a small motion about a static equilibrinm such as defined above and
write p=pg+p,, p=py+p,, v=0+p, B =By+ B,, E=0+E,, etc, where
lo1] << py, | p)| << py, etc. I (1), (2), (3), (5), and (7) are linearized there resuits

dp, /0t + V+(pov,) =0 (37)

Podv /it = — vp, +(1/47")(VxBI)XBU+(1/4W)(VXBU)XBI (38)

3p,/3t+ 0" Vpy+yp, Vv, =0 (39)

VB =0 (40)

0B/t = v x(v, X B,). (41)
In writing (43) the exact equation

op/dt+e Vp+ypveo=20 (42)

has been used which was obtained using (1) to eliminate p from (3). If one takes the
time derivative of (38), and uses (37), (39), and (41) to eliminate dp, /0, dp, /a1,
and B, /31 there results

pod%v, /31% = Fo, (43)
where the linear operator F acting on a vector § is given by
K= v{ypov-¢+§-vpy)
+(1/47)(v x @)X By +(1/47)( v X B,)x O (44)
and
Q=vXx(¢xB). (45)

In the vacuum region, if where necessary quantities are distinguished by a
circumflex, one has

VB =0 v-3B,/d1=0 ' (46)
VXB =0 vxaB /ot=0. (47)
Clearly lollowing (46) one can write
IB /dt= v X 4, (48)
where — ¢4, is the perturbed electric field, and (47) implies
VX VXA =0. (49)
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Alternatively it follows from (47) that

3B, /8t=- vx, (50)
whence (46) requires

vix,=0. (51)

One is at liberty to use either the vector potential 4, or the scalar potential x,. The
former is more convenient in derivations, the latter for use with the energy pri nciple
to be derived. On the rigid perfectly conducting wall §’ the condition n - B = 0 yields
on linearization, since # there does not change in time,

0=n0°3f3]/81=n0°VXA,=—nU-Vx|. (52)
Note that for any area in S’ (52) implies

0=fd2r-va,m95dr-A1. : (53)
Since the closed line over which the integral in (53) is performed is arbitrary, il
follows that

ne XA, =nx{nX V)A (54)

where A is a scalar defined on S’ such that # X TA is single valued. We shail choose
the gauge such that A = 0. On the moving boundary S, the lime derivative as seen by
an observer moving with the fluid of n» B =0 yields, as for (13),

O=n*B+nB
={-(wv)n+an vo)n]-B+n-[3B/3t + v vl
=n[3B/9t +o- vB-B-vv+BV-D]
—n-[3B/3— v x{vx B)]. (55)
On linearization (54) yields
0=ng[3B, /3t — vx(v,x B)] (56)
or, using (48), (55) requires
O=nyvx{A4, —v X B)=0 (57)
which with a suitable choicc of gauge implies, since ny* 1‘30 =0,
0=ngX{A,— v, X By)=nX A, +ny v B, (58)
When (50) is employed (55) requires
0=ng[ vx,+ vX{(v, X B)]. (59)

Note that on integrating over an arbitrary element of surface in S, since By Xdris
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paralicl to
fdzrnu' Vx(leBo)zédr-v, X B,
=¢vi-Bﬂ Xdr
=@y v\m,* By Xdr
=¢dr-n”><8{}n(,-v|

=fd2ru0- V X (ny X Bynyrv,). (60)
Since the area of integration is arbitrary it follows that
nyr VX (e, X By)=ny v X(ny X Bynyv,)
={ng X v){ny X Byny-v,) (61)

which 1nvolves only n,+ v, and n, X v, that is onl

.. derivati
flux condition (25) yields on linearization y derivatives tangent to 8. The

0={ dir-—"- ‘v, X B
f;m re fcmdr v, X B,. (62)
When (48) is employed with boundary conditions (55) and (57), (62) is satisfied

automatically, as is immediately seen on applyi 5 .
employed, (62) implies pplying Stokes’ theorem. When (50) is

0=f d» vx,+[ drevx3B |
5 o+ dreox B, (63)
Parallel conclusions hold as regards the poloidal flux, where
0={ d¥ vy, +[ drev,xB
Seo Xi ‘/(.:Pn rev X B,. (64)

The connective time derivative of (21) yields
ap ] aB 3
__+v.v +__B-(_ . =Ln- aB
R P+ o T VB) B (—6,1—+v° VB) (65)
which on linearization requires, on using (39), (41), and (48)
—YPVro+(1/45) By+[ v X (v, X By)+v,- VB]
=(l/4-rr)BD-[VXA]+v]-VB]. (66)

Henceforth, for notational simplicity, the subscripts zero and one

pressed. will be sup-
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3.1.4. The variational principle

It will now be shown that {43) implies a conservation law. To this end the scalar
product of (43} with dv/d¢ is formed and integrated over the volume of the plasma.
The property shown in Appendix C that F is self-adjoint will be uscd, namely that
on integrating over the plasma region

fcl3u u-Fu=[d3ru-Fu. (67)
Then if the quadratic form (the kinctic energy)
Kzfd3r%p(80/3t)2 (68)

one has, since the domain of integration is time-dependent, and d/31(dv/d1)% =
du/dt+ 3*v/ 3%, on employing (43),

dX y 0o
—— —  F
d¢ [d "o
l ¢, (48 t:)
i vr— F_...
Zfd r( 3 Ffo+vo R
— —dWydt, (69)
where
1 s 70)
= e = « Fi . (
W{v Z.I;d ro- Fo
Thus
K + W =constant = £, (71)

Since (43} is a linear equation with time-independent coeflicients, onc can scek
eigensolutions of the form

o(r, 1) =e'“t(r) (72)
which when inserted in (43) yields
— wipt=Ft. (73)

It is readily scen from the sclf-adjointness property (67) thaf lhe eigenvalues‘ w? are
real. In general, however, the spectrum is very complex, consisting of both point and
continuous eigenvalues, while the eigenvalue w? = 0 is infinitely degenerate, since the
choice { = a{ p)B + B( p) v X B with a and B arbitrary functions of p makes F£ = 0.
Moreover the task of solving (73) is insuperable except for the cases of slab or
cylindrical symmetry, and very simple magnetic field configurations and pressure
profiles. Fortunately for many applications all that is desired is a yes—no answer w
the question of stability. As will be seen, on choosing a physically plausible
definition of stability, the problem can be reduced to ascertaining whether or not the
functional W of (70) can be madc negative.
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Now the linear growth in time associated with w? = 0 js physically not significant
since in practice the ideal magnetohydrodynamic model is but an approximation to
real systems involving weak flows usually due to transport associated with collisions
or turbulence. A dangerous instability is one which grows in a time short compared
with 7, that characterizing the weak flows. As will be seen, apart from «? = 0, any
unstable motions grow exponentially in time and may be expected to be dangerous if
the effective growth rate is greater than 1/

Now it is evident from (71) that if W > 0 then the non-negative functional X
cannot grow without bound in time, since (71) implies

K=FE - W< E = constant. (74)

Thus it is sufficient for stability defined as boundedness of X that W be non-nega-
tive.

1t will now be shown that when W can be made negative the positive functional,
the Kinetic energy

__I, k] 2
f—zfdrpu (75)

will grow exponentially in time, which will be deemed instability. To this end note
that, denoting a time derivative by a dot,

. dv
= { PBrop- 22
I={drpo = (76)
and on using (43), (68), and (70)
. dv\? v
= [ q3,,( 00 3,090 e Fe e K
I—fdrp(at]+jdrpv " 2K+fdrv Fo=2K—2W. (77
Thus
o I I
(lnl) =}—]—£
1 1 3 do\?
_I[ 2W+2K I(fdrva)J
;}[—zwux-u]h% (78)

since by Schwartz’s inequality

(fd%pv-%]z < Ud%p&](fds,p(%)z) ~ 41K, (79)

Suppose there is a velocity field v,(#) which satisfies all the various boundary
conditions and which makes W < 0. Consider a motion such that initially © = v, and
dv/dt=0. Then the associated value of £ is negative. Let y =1In [{¢)/I(0) and
define E = ~2»%/(0). Then (78) implies

V=20 (80)
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and y(0) =0, y(0)=0. Let Y(¢) satisfy these same initial conditions and (8[_)) w_ilh
the equality sign. Clearly y > Y. But a first integral can be obtained by mulliplying
¥ =2»%"" by Y, namely

172=2p(1-¢"") (81)

while a second integration gives

-Y
2vr=j:dy(l—e'y)_1ﬂ=]nl—l:%l(-l:if—y)%5. (82)
Thus
= In{cosh»t)’ (83)
and
CI() 2 I0) (e + 24P, (84)

Clearly i(f) grows exponentially in time. Thus with the definitions hen_a: adopted the
necessary and sufficient condition for stability is that W be non-negative.

3.1.5. Transformation and generalization of the
potential energy W

In order to investigate W, it is convenient to transform (70} into a more
convenient form, That is one writes on using {(44) and (70)

WiE) = -3 [&reFe
- —%£d3r§°(v(}'p veE+Ervp)
1 1
+ G(vx Q)><B+E(VX B)XQ)

%fld%{ V'(E("rp veb+ée Vp)-ﬁQx(fX B))

[P CRNEE BV }
—(v&)yp v+ Evp)- - Q0+ (VX B)X Q). (85)
Define
1 ] ! .
WF{E}=5£d3f(YP(V'E)2+(V’€]E‘VP"‘EQZWLZE«‘EXQ vxB|
(86)
Then on using Gauss's theorem since n+ B = 0, one can express {85) as,

1. 1 B?
W“WF= —"2'1;,(1 f‘ﬂ‘f[’{p V‘f—E‘B‘(Q-}-E‘ VB)+E' V(pﬁ‘g;):l,
(87)
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where the unit normal # is directed outward from the plasma. On using boundary
condition (66) 1o climinate yp v+ £ from (87) one obtains

5 B2 B?_
- -——nfdrni-—-—B UXA+E- V[p+§-;——8~;}]. (88)
But everywhere on S, p + B?/87 — B2/8x =0, whence n X v(p + B3/87 — B/8m)
= (. Thus if one defines
17 B> B?
2fd r(n¢)’n- V(erSW g) {89}

and uses boundary conditions (54) and (58), then (88) leads to

W—WI;~WS=—SLWdemeA-va

=8iw./:, _Sszr(~n)-A x{(vXA4)
=%fud3rv-[,4 x{vx4)]
=éf”d3r(vx/1)? (90)

In transforming (90) the fact has been used that — n is the outward normal to S as
seen from the vacuum side, and the integral over S’ is zero in virtue of (54) with
A = 0. Thus if one introduces

__1_ 3 2
W\,—Sﬂj;[d r(vx4) (91)

then
W=We+ W+ W,. (92)

We are concerned with whether W can be made negative. A systematic way of
investigating this question is to seek to minimize W with respect to £ subject to any
suitable norm which keeps W bounded. Since ¥ X v X A =0 is the Buler—Lagrange
equation determining that vector potential which minimizes the non-negative func-
tional Wy, subject ton X A =—n- EB on S and n X A=0 on §, it is sufficient to
minimize W with respect to A, rather than requirc that ¢ X v X A = 0. Moreover,
in the minimization onc need not require that the pressure balance condition (66} be
satisfied. for it will be shown that if there are any vector fields £ and 4 which make
W negative but do not satisfy (66) onc can always [ind neighboring [ields £ and 4
which also make W negative but do satisfy (66). To demonstrate this let § = E+em,
where 5, which is of order £, changes rapidly in an arbitrarily small distance of order
€ as one moves normally from $ into the fluid, but has slowly varying derivatives in
directions tangent to S in this boundary layer, and v is or order v§ outside the
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boundary layer. Then
v(en) = [an- v —nx(nx v)]"(en)
=n+v(en n)—n+(vayeng—nax{nx v)(en)
= O(n+7) (93)

since n *(vn) is of order unity, as arc tangential derivatives n X 7. But the pressurc
balance condition {66) can be written

B* i 1 - .
-(7P+‘§)V$+EB(VE)B"EB[VXA+E vB] {94)
whence correct to zeroth order in ¢, since B+ ¥ involves no normal derivatives,
- )r,t:!-+-B—2 [V'E--Fen"V(n"q]]+-l—B°(V§)'B
87 4
| = .
=:GB~[VXA+£-VB] (95)

which determines n+ ¥(n+n) on S. Since (95) involves only the normal derivative of
neq and not n+y itself, =7 = 0 can be chosen on S. Thus W and Wy need not be
changed on using £ in place of §. Note, moreover, that the only changes of order
unity in the integrand of Wy resulting from using £ in place of £ occur via those
terms involving v +§, in the boundary layer of thickness € near S. Qutside the
boundary layer the changes are of order e. Thus the associated change in Wg is of
order &, and can be made arbitrarily small. Consequently one can dispense wlth (66)
in minimizing W.

One can, if desired, so as to deal with a scalar rather than a vector, use x in place
of 4. It is only necessary to write

1 3 2
Wy == fud r(vx) (96)
and employ the boundary conditions (52) and (59). The constraints (63) and (64)
must also be included in order to have a unique minimum.
The program of determining whether W can be made negative is conveniently

carried out as follows. Consider first the class of § for which n<£{=0 on S. Then
= and W, = 0. Using (D13}

8aWy = fd3r{4ar7p('7 £ +[vx(ExBY+(vX B)xn(n-§)]
—2An-£) (VX B)Xn+(B+ vn)). (97)

Clearly in order to bound W; from below it is only necessary to norm n+§, for
example to require

fldlr(l‘l'E)z =
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But, as shown in Appendix 3.1.D, if one writes §=avp + b ¥ X B +¢B, then
8mWy =fd3r{[ v X{(—aBX vp)+an(vb)X vp+a(vx B)x vp]’
i

+dayp[v(avp)+{(vb) v X B+ B~ V’i:‘]2

—2a*(vx B)x(vp)(B-vvp)). (98)
Note that the integrand in (98) involves no derivatives of b and ¢ in the direction of
v p. Thus the Euler equations resulting from seeking to minimize W;. with respect to
b and ¢ holding « fixed will not link the values of ¢ and & on different magnetic
surfaces p = constant, and are hencc partial differential equations in two rather than
three variables. Finally the potentially negative term in the the integrand of (98) can
be written in terms of the dilferential geometry of the lines of force defined by the
system of ordinary differential equations dr/dA = B. Then ¢= B/B is the unit
tangenl, and if » is the unit normal and 4 the binormal, these unit vectors obey the
Serret—Frenet formulas

tevh=1p, t*vv=r1h—«t, te Vi=Kvp, (99}
where 7 is the torsion and x the curvature. The unit normal n= vp/| vp| to the
magnetic surface can be expressed as

n=~ bsing +rcos¢ (100)

since ¢+ ¥p =0, where ¢ is the angle between the osculating plane of the line of
force and the tangent plane to the magnetic surface. If onc writes, sincen- v X 8 = {,

vXB=|vXB|(tcosd +nXxtsinb), (101}
it is readily established that
—(vxB)xn(B-vn)=xr-Vp+(B-VXB)7~1-V9). (102)

It follows dircctly from (99) that if the line of force in question is bending in the
direction of the pressure gradient then xv+ vp < (. Moreover 7 — ¢+ V¢ measures
the twist of n relative to », while the signature of 8+ v X B depends on the direction
of the current density J = (¢/47) v X B relative to the magaetic lield.

Suppose that cither by use of a trial function or by analytic or numerical
minimization of {98) one finds a ¢ such that W < 0 with £ =0 on S. Then, clcarly,
the system is unstable. If it can be shown that W >0 with a-£=0 on S it is
necessary to relax this boundary condition and seek to minimize W, + W+ W,
The enhanced potential for instability arises because Wy is possibly negative, though
W, is intrinsicaily non-negative.

3.1.6. The example of a magnetic field - free plasma
supported by a vacuum magnetic field

A particularly simple application of the energy principle is to the case of a system
made up of a plasma in which B =0, p=constant surrounded by a vacuum
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magnetic field. In this case
1 2
We=75 [&rp(v-£)'=0.

Choose § so that v +£ = 0. For any given assignment ol # « £ and S ene can find such
a £ by writing § = V¢ and solving ¥2¢ = 0. Then

Lt aecaeva. o B 3 :
W“Z.[Sdr(" £)a V8ﬁ+j;]dr(VXA), (103)

where A is the unit normal to the interface S pointing towards the plasma. Let R be
the vector pointing from the point on the line of force in question to the associated
center of curvature. Now since p = constant in the plasma, it follows from (21) that
B? = constant on S. Moreover ¥ X B = 0 whence with 8 = 8¢

i vB = [BxX(vxB)+B-vB]=B*(1- vi)=4-RB*/R*  (104)

since consequent to (99) #- vf=xky=R/R? and #i+7=0.

Consider a point on S where R is dirccted toward the plasma and construct there a
local Cartesian coordinate system with z-axis normal to the surface and pointing into
the vacuum, and the x-axis parailel to B. Choose

§.(x, »,0) =& f(x, y)sinky (105)

where f is a function of order unity in magnitude which falls to zcro in the small
distance @ << R, and ka? > R. Choose also the trial vector potential

A:f(x.y)v(%‘gcoskyc"”). (106)

Note that with B= Bex, (105) and (106} satisfy boundary condition (58). Thesce
choices of § and 4 make the vacuum contribution to (103) negligible comparcd with
the surface contribution, for

j;lds"'(VXA)2=fHd3f[(Vf)X V{%ﬁé’-cosk}’e‘“)r

zf d3rlvf|2£(2]‘§2e—2kz
II
= 2Bk, (107)

since | Vf|* =1/a* and [qd*r|Vf|? = a*( vf)® = ], while
s

2 (.. 2 s RB? _§3B%°
fsdr(uﬁ] SR

Therefore W is negative and the system is unstable. Nole that this conclusion of
instabitity holds if anywhere on the boundary the surfiace S is concave towards the
plasma.

(108)
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3.1.7. The diffuse linear pinch

The next _cxampie to be considered is that of a diffuse linear pinch (Newcomb,
1960). This is a model where in cylindrical coordinates r,0, z one has p = p(r) and
B = By(r)ey + B.(r)e,. Then the condition of magnetostatic equilibrium (29) re-
quires that

o T Bt g =0 (109)
and in the vacuum annulus surrounding the cylindrical plasma column of radius a
B=fi,,(a)(R/r)eg+f?zez (110)
where B, = constant, and folfowing (31)
87p(a)+ By(a)'+ B (a) = By(a)*+ B2 (111)
Because of the cylindrical symmetry one can seek solutions of the form
§=1 [dk[8.(r)e, +£(r)ep + £,(r)e, Jctberm, (112)

Then on introducing

£=¢, n=(im/r)g, +ik{,, §=i(£B8, - ¢, By) (113)
with inverse
__ Kkr$+rBym . m{—rBxy
b= :krB:+mB,‘ E’*IkrBz—FmBa' (114)
it can be shown after some algebra that
T - o
W}==5W2_mj_mdkwk_m. (115)
When & =0 and m = 0, on using (98) one can write
N 1d(rg)* k% +m?
Wk‘m—fdrr(A +4srr'ypn+-;_— e ~—-r2—-—|§~r|2 (116)
with
I N d¢ £J°
A(g)= m (]\!‘BI + mBg)E; +(krBz —mBs);
2 d(fB) 52
+((krB:+mB,3) —2B, dr“ )'ri (117
e [ d¢ 3
b k2r2+m2((krBa~—mB‘_]a—;—(krB,,—f-mBz);)‘ (118)

When m =10, & =0 it is convenient to define

1 a
Wk.u=Wo+§kzj; drrB] (£ (119)
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where
a d¢ 2 B? dp
_ 2| ds it SR, Bou? ) [P
Wo_j(; dr[rBz dr +( ;Y2 (20
Finally
. d¢ &), 14t £
— 2___-_ 5 -
14/0‘0_;4/0+f‘J drr{B,, . +vp| 4 | ) {(121)

Clearly if any of the W, ,, can be made negative the system is unstable. But when
& and m are both nonzero it follows from (116) that W, , is minimized by choosing

1 d(r§) _
t- =4 =0, {~v=0
Moreover, writing § = a +if, then W, (§)=W,  (a)+ W, ,(B). Since a and 8 are
real and independent, it is sufficicnt to minimize W, () treating £ as real. For this
purpose it is convenient to integrate by parts and write

d 2
Wk.m=fdr[f(§§] +g£2] ' (122)
where
2
+
_ r(krB, + mBy) (123)
kir? + m?

_ 1 (krB, — mB,)* . (krB,+ mB,)* 2B, d(rB,) _ d ( k*r’B} - m’B}

rokir?4+m? r r dr dr kir? 4+ m? .

(124)

Consider the case m = 0 and write k = mg. Then only the second term on the right
in (124) depends on m; indeed it is positive and proportional to m?. Thus the least
stable case corresponds to m®=1 and since W, ,=W_, _, it is sufficient to
consider only m =1 for — oo < k < o0. Moreover, when m =0, k = 0, (119) indicates
that W, ,, is non-negative if W, (which does not conlain &} is non-negative, since the
second term on the right is manifestly non-negative. Thus it is only necessary to
consider the limit X — 0. Finally, when & = @ it is clear from (121} that W, , = W,,.
Thus the system is stable against perturbations with m = 0 if W > 0. Note that ¥,
has the same form as (122). _

A complete and rigorous analysis of the stability of the diffuse linear pinch has
becn given by Newcomb (1960). Here a simple sufficient condition for instability
will be derived, and the balance of Newcomb's results will merely be quoted. To this
end note that if W, , of (122) can be made negative by a trial function £,(r), then it
can be made negative by employing 4£,(r) when A 1s ap arbitrarily large factor.
Thus in order to obtain a well posed minimum problem one must impose a norm to
bound (122) from below. In particular trial functions will be treated which are
localized near the zeros of the coefficient f which vanishes at points r, such that

kr,B,(r,)+ mBy(r,}=0. (125)

3.1. Ideal magnetohydrodynamic stability 441

In ti_le ne_ighborhood of r,, f and g can be well approximated by the leading
non-identicaily zero terms in their Taylor series, namely

f=a("_-’})2s g:_Bs (126)
where the constants @ and B are given by
_ r*BPBY fdinp)?
B2 ( dr ) r”;{] (127)
= - 8':'1‘3..;2 dp
5 a5 . (128)
and
_ mB,
“= %, (129)

_Smce In most cases of il?tc?rest dp/dr <0 onehas 8> 0. For perturbations localized
in a neighborhood sufficiently close to r = r, one can write for perturbations that
vanish at r, and r,

_ (" 2 d¢
Wim f dr[a(r—r,) (5)-352]. (130)
Suppose both « and § are positive and minimize

[Irzdr(rur,)z(-g—f) (131)

subject to the norm
2
dré?=1.
fr | (132)

By the standard teghniqucs of the caleulus of variations this leads to the
Euler—1.agrange equation, homogeneous in r — r,,

_d 2d¢ 2
—-a—r((r—rs) -a:)+(?\ +1}¢, §(r)=0,&(r) =0, {133)

where A is a Lagrange muitiplier. Equation (133) has the solution

0

Al —p )2 =1
¢ {(r—r) sm(llnr__r ), (134)

5

where A is a normalizing constant, provided that

R
A=rm[lnrz GJ \

ry—r

n=12,3.4,. .. (135)

Note thfal one can make A a.rbilvraril)r smali by choosing r, sufficiently close to r. If
{139) with n =1 is used as a trial function in (130), there results on inlegratiorj by
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§+dr-vE

Fig. 3.L.7. Diagram rclating the change in the vector element of length dr under an infinitcsimal
displacement §.

parts

Wyom mj:’dx[%(a(r - rj)z‘;—f )ﬂa‘fad—r((r -~ rs)z—g-—f—)—ﬁ.fz] (136)
on employing (132) and (133), (136) can be reduced to

W, n=a(X+1)-8. (137)
Since A can be made arbitrarily small, W, ,, can be made negative if

8> ia. (138)

Equation (138} is clearly a sufficient condition for instability, and with the inequality
sign reversed is a necessary condition for stability. This is called Suydam’s criterion
(Suydam, 1958). Note that it is independent of k and m, and local to those points
where (125) holds.

Newcomb has also shown that the diffuse linear pinch is unstable if there is any
solution of

perhaps singular at points where (125) holds but such that W, _ is defined, which
vanishes in any interval r, <r <r, . Moreover it is necessary for stability that the
plasma pressure have a minimum at r =9,

Appendices

3.1.4. Various vector theorems

Consider a vector element of length dr that is displaced by an infinitesimal
displacement field £ which depends on r. Then the change in dr under displacement
is readily seen from Fig. 3.1.7 to be

Sdr=dr- v¢. (A1)

Let dr’ be another element of length not collinear with dr. Then one can define the
vector element of area associated with the trapezoid which has dr and d#’ as sides to
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Exdr

Y

<

Fig. 3.1.8. Diagram of the change of an arca 4 bounded by a curve C associated with the displacement §
of an clemcat of length dr in C.

be
d2r=drxdr. (Az)

The change in d?r under displacement correct to linear order in § is readily
calculated to be

8d% = (dr+ vE)xdr' +dr x(dr'- v§)
= —[(drxdr)x v]x¢. (A3)
If 7 is the unit vector parallel to d2r = d%r a1, (A3) implies
d*r8n+n8d*r = —d%(nx v)xE. (A4)
Since n+n =1, it follows that n+8n =0, and the scalar product of (A4) with a yicids
§d%r = —drn-(nx v)xé=—d¥rax(nX V)£ (AS)
If onc subtracts #r times (AS) from (A4) there results
Sn=—(axX V)x{+anX{nx v)¢
=~(v&)n+nn(vi)n. (A6)

Note that (A5) and {A6) involve only # X ¥, that is derivatives tangent to the
surface. Moreover if & is derived from a flow field described by velocity v, then
£ =v6: and (A6) yiclds

. . On
A= ﬁ£1_r£10 T (voyn+an-(vo)n (A7)
while (A3) implies

(dr) = ~(d% x v)xo. (AR)

Consider the change in area assaciated with the displacement of the bounding
curve C ol an area 4. The contribution of a segment dr along C to this change is
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seen from Fig. 3.1.8 to be
§dir=¢xdr. (A9)

Thus the change in the magnetic flux through 4 is
5{ d’-B=| d*-8B+ | B-{Xxdr (A10)
f o= [ rams |,

which implies that

4 p [ qz..98 _ .
dtLdrB_Ldraf j;:druXB
=fd2r‘(§£'— VX(TJXB))‘ (Al1)
y ot

11 is wished to demonstrate that
nX{EXBY=(aX V)(n-tnxB), (A12)

that is, it involves only tangential derivatives of the normal component of . To this
end write, assuming #+ B =0,
n*UX(E§XB)=n(B vi-§-VB-BvV-§)
=B(vé)yn—¢(VB)n
=B -v(tn)-B(vn)t{—¢ vin-B)+E(vn)B. (Al13)

But since n is the unit normal to S, it can be assumed that S is a level surface of a
function f, whence if c={v/|"!

n=cvy (A14)
and
vh=cvvi+(ve)vf
=cvvf+c (veln (A15)
whenee as v vf is symmetric, since n+ B =0,
£(vn)B—B-(va)yt=—cB(vc)n-¢§ (Al6)

and n- v X (£ X B) involves only n-{ Hence, writing §=mn-§+n X (£ X n) and
inserting it in n+ ¥ X{§ X B), only the part involving n £ can survive, whence

nUX(EXBY=(nX v)(n-tnXxXB}. (A17)
Note that (A15) implies v Xn=cv X(Vf)+c (Ve)Xa=c™(ve)Xn whence
n*yXn=0. (A18)
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3.1.B. A vector identity

=(vE) vp+E vvp+(1/4n) (v X B)XQ

=[(vP)X VIxE+(v-§) vp+ 4 vop+(1/40) (v X B)X 0

=(1/47K[(vX B)X B]IX v)x ¢+ (v-£) vp
+&vvp+(l/4n)(vx B)xQ

=(1/47)}[B(VX B) v~ (VX B)B- v]x { + vivp
+Evvp+(1/4n) (VX B)X[B- vE—¢- vB—-RBvy-¢)
=(1/47)]{BX[(vX B) v¢]- Bx[¢+ v(vx B)]

& V(vXB)XB]+BxX(VvXB)v-§)
+(ve)vp+t-vop

=(1/47)}B xX{v X [¢ x(vX B)]}+(1/47) B x (v X B)v-¢

=(1/4n)BX{ v X[¢ X (VX B)]}~(v-£) vp.

3.1.C. Details of the derivation of conservation of energy and self adjointness
Let @'= v X(¢’X B) and @ = V X(§ X B). Then on using (B1)
EFE) =8 [vrp v+ vp)+(1/4n) (v X Q)x B

+(1/47)(vx B)x Q]
=¢{v(vpv-§)+(1/4n)(vxQ)x B

+(1/47)Bx{v x[§ x(vX B)]}~(v-£) vp]

=v{{rpv-§-(1/47)Q X (¢ X B)
+(1/47)[§ X (v X B)]x(¢'x B)])
— (VN v-¢)-(1/47)0- Q"
+H(1/47)[EX(Vv X B Q' ~(v-§)¢- vp
=v{§vpv-¢-(1/41)Q X{(£' X B)

+&(1/4n ) (v x B)XB—(1/4n)Bt'x £+ VX B)

445

Recall that vp = (1/47)(v X B)X B and that Q= v X (£ X B). Then the vector
v{§ vp)+(1/4m) (v x B)xQ

(B1)

~(1/47)Q- @+ £+(1/47) (v X B)X @'~ (v £)(yp v+ £+ £+ vp)

=V v vE—$yp v —(1/47)Q X (¥ X B)

(/A7) Q' X (EXBY+ ¢ vp— 8 vp - BE X ¢+ vp)
+V-{§vp v+ 8 vp)~(1/47)Q X (£ X B)]
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—(1/47)QQ'+§(1/47)( v X B)x Q'
~ (v &)ypv-&+&-vp) (C1)
or
§-F§) = v€[vpv-E-(1/47)Q B+ §- vp]
+B((1/4n){(¢Q~ ¢ Q)+ EXE Up)
—¢[ypv-t—(1/47)0 B+ ¥ vp])
+&[v(ypv-t'+¢-vp)+{(1/4n) (v X B)X Q"
+(1/47) (v x Q') X B]
= vA{t[ypv-£—(1/47)(Q B +§-(vB) B)+§ v(p+ BY/8n)]
—¢[vp vt —(1/87 )@ B+ &(VB) B)+&- v{p+ BY/8n)]
+ B{(1/47)(§-Q— £ Q) +EX £ vp)h+§- KE). (C2)

Thus if (C2) is integrated over the volume of the plasma, sincen=B=0on §

JERIGR{GR (9

=fd2rn'{€'[yp vef— El;(Q'B +¢-(vB)B)

B* B B*
+§-v(p+g—§]+£ =

—e[vp V&~ (QB+E-(VB)B)

B* A? B2
r, — L —_— . C3
+E V(‘D+8ﬂ 8-:r)l+-'E VB'.’T } (©3)

Now it follows from (33) which holds everywhere on S that

B* B?
nXV(p+§'7—r*—‘g*;)=0. (C4)

Thus the terms in (C3) involving p + B%/87 — 32/8-;: cgnccl. Moreover on using
(58), (66), (49), and (54) (since i = — n) {(C3) can be rewritten as:

an [@r[§ )= FE) = [ dra{—¢B- v xA+{B v x4)

=_f dr[AX A VXA—AX A VXA
S+5

_ _f r[Ax(TX A)- AX(vXAY]
S+§
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= -f Ervfax(vx4)-Aax(vx4)]
Y]

=fd3r[A’-v>< VXA~ A VX VX A)

= 0. (C5)

In (C5) A is the vector potential associated with £ and 4’ that associated with £,
Note that (CS) applies equally well where ¢’ = dv/ 3t since the equations and
boundary conditions are the same, only with v and A replaced by dv/ 3¢ and 94 /¢

3.1.D. Transformation of W

Note that in the fluid where 47 vp = (v X B)X B the vectors vp,B,and v X B
are noncoplanar and one can write

§=avp+bVXB+cB, (D1}
whence

EXB=—aBX Vp+anbvp (D2)

EX(UVXB)==a(vXB)X vp—duncvp. (D3)
Moreover

a(vp) v+(bv x B+cB)- v-[a(vp)(bv X B +cB))
m—(b\?XB-l-cB)'V[a(Vp)z]
=—bv-[a(Vp)2VXB]—CV'[G( Vp)ZB]
== bv((vp)x[a(vXB)x vpl}~cv-[(vp)x(aB X vp)]
=b(vp) vX[a(v X B)X vpl+c(vp) v x(aB X vp)
= v{[a(vXBYX vp]xbvp}+a(vx BYx(vp) vX(bvp)
te(vp) vx(aBX vp), {D4)
whence
a(Vp)ZV'(bVXB+cB]
= v-[ac(vp)’ B +a(vx B)x(vp) v x(bvp)
+e(vp) vx(aB X vp). (D5)

Thus on using (86), Gauss’s theorem, and n+ B = 0,

8aWy = [dr{4myp(v-§) +[ v X(= aB X vp +47b vp)]?
1

+4-:ra(Vp)2V'(an+bVX B+ cB)

+[a(vXB)X vp+dncvpl v x(~aB x vp+4xbvp))



A48

I.B. Bernstein

= [@r{anyp(v £+ [ v x (- aBX vp +ambvp)]’
I

+4':ra(Vp)2V'(an)

+8ma( VX B)X(vp) vx{(bvp)

—a(v X BYX(vp) v XxX{aB X vp)}
=fld3f{4fr7p(‘7'£)2+[VX(—'GBX vp+anbvp)+a(vx BYx vpl

+a{VXB)X{vp)vX(aBX vp)

-a?[(vx B)X Vp]2+41m(Vp)2‘V'(an)}. {D6)

Define

n=vp/|vpl. (D7)

Then since 4r Vp =(V X B)X B

—a*[(vxBYx vpl*+a(vx BYx{vp) v x{aB X vp)

+ana(vp) v{avp)

= —a (v x BY(vp)'+a* (VX B)x(vp) vx(BX vp)
+a(vx B)X(vp)(va)x{Bx vp)
+4na®(vp) vip +4ma( vp)(va) vp

= —a*(vxB)(vp)’
+a*(vxB)x(vp)[(vp) vB—B-vvp+Bvp]
+a(vx B)x(vp)[B(va) vp-(vp)B-va]
+ama*(vp) vip +4na(vp)(va) vp

= a(vpY[~(vX BY+(vX B)xn+(n+ VB~ B-vn)].  (D8)

Since v+ B =0, it follows that

0=v(n"B)=n-vB+B*vn+nx(vXB)+Bx{vxn), (D9)

whence

~(vXB)'+(vXB)Xn-[n-vB-B-vn]
= (vXBY+(vxB)xn[-2B: va—nX{VXB)-Bx(vxn)]
=—(vxBY+[ax(vXB) -AvXB)Xn{B-vn)
~(vXB)BnvXn—(vXB)(VXn)nB

=—2(vXB)xn+(B+vn) (D10}
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since by virtue of 47 Vp = (¥ X B)X B it follows that n+ v X B =0, whence
[nx(vxB)*=n*(vxBY—(n-vxB)=(vxB), (D11)

and since a is a unit vector, the integral over an arbitrary area in a surface
p = constant of n* ¥ X n yields on using Stokes’ theorem

fdzrn-VXn=fdr°n=0 (D12)

whence, since the surface is arbitrary, it follows that #+ ¥ X #=0. Thus one can
write using (D6) and (D10)

B”WFZfIdS"{“'FTP(V'5)2+[Q+(VX B)xnn+§]

~An-£) (VX B)Xn-(B- vn)). (D13)
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