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HYDROMAGNETIC STABILITY OF A PLASMA

B. B. Kadomtsev

Introduction

Plasma instabilities can be conveniently divided into two broad classes —
hydrodynamic instabilities, and kinetic, or microscopic, instabilities, Hydro-
dynamic instabilities imply the displacement of macroscopic portions of
plasma and can be analyzed theoretically through the use of the hydrodynamic
equations. In other words it is assumed, as an approximation, that all the
charged particles within a given macroscopic volume execute the same aver-
age motion.

On the other hand kinetic, or microscopic, instabilities can be defined
as instabilities for which the differences in the motion of different particles
in the same volume is important. A typical example of a kinetic instability
is the two-stream instability; this instability arises as a result of the interac-
tion between particles in a beam and the electrons and ions in a plasma. In
general, kinetic instabilities are characterized by high frequencies and short
wavelengths, and it is in this sense they are regarded as "microscopic” as
compared with the large-scale and slower hydrodynamic instabilities.

Since hydrodynamic instabilities imply the displacement of a plasma
in space, they are especially pertinent in cases in which macroscopic motion
is important. The results of the theory of hydrodynamic instabilities or, more
precisely, hydromagnetic instabilities, are useful in astrophysics (for example,
see [8]) and in the problem of controlled thermonuclear fusion.

One of the early papers in this field by Leontovich [1] considered the
stabilizing effect of a conducting wall on hydrodynamic flow, while a paper
by Leontovich and Shafranov [2] treated the stabilizing effect of a longitudi-
nal magnetic field on a flow. These questions were later considered in
greater detail by Shafranov (4, 6].
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The problem of plasma confinement by a magnetic field was also
treated in a paper by Kruskal and Schwarzschild [7]. These early investiga-
tions were followed by a large number of investigations of the stability of an
ideal plasma in a magnetic field and at the present time this topic has been
studied quite extensively.

It is our purpose, in the present review, to present a systematic picture
of the basic aspects of hydromagnetic stability of an ideally conducting
plasma {with the exception of § § 11 and 12, in which we consider the effect
of finite conductivity). In keeping with this purpose, the basis of our investi-
gaton will be the equations of single-fluid magnetohydrodynamics. 1In this
work we shall not treat drift instabilities, whose analysis requires two-fluid
hydrodynamics (the electron and ion fluids), or the kinetic instabilities, which
derive basically from the fact that the particles exhibit a distribution in velo-
city; these questions have been treated in a review by Vedenov, Velikhov, and
Sagdeev [33]. Furthermore, in this review we shall only consider equilibrium
systems, that is to say, it will be assumed in all cases that the plasma is
quiescent in the initial state.

In §1 we derive the equations for small oscillations of an inhomogene-
ous plasma. §2 is devoted to the so-called energy principle. This principle
has been formulated most completely in the work of Bernstein, Frieman,
Kruskal, and Kulsrud [15] although it had also been used earlier [12-14]. Ac-
cording to the energy principle, in investigating the hydromagnetic stability
of an ideal plasma one need only consider the potential energy associated
with the small oscillations [Eq. (2.7)].

It is shown in § 3 that a convex plasma boundary is unstable in the ab-
sence of a "frozen-in" magnetic field; on the other hand, a concave boundary
is shown to be stable. In §§4-6 we consider convective plasma instabilities
(Longmire and Rosenbluth [16], Kadomtsev [17]).

The stability of a pinch carrying a longitudinal current is treated in §7;
in particular, the Shafranov—Kruskal condition for stability with respect to
the so-called kink instability is derived. The physical meaning of this "heli-
cal” instability is examined in §9. In § 8 we consider the stability of a pinch
with a current distribution; in particular, we derive the criterion for the ab-
sence of a convective instability (the Suydam condition [19]) and analyze the
stability of a thin skin layer (after Rosenbluth). The stability of toroidal sys-

tems is discussed in §10.

The stability of a plasma with finite conductivity has not been investi-
gated to any great extent at the present time. For this reason, in the present
“review we shall only examine two particular examples, in which the
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relaxation of the ideal conductivity feature leads to the appearance of new
instabilities. In §11 we consider the current-convective instability; th%s in-
stability occurs in a current-carrying pinch if the plasmé conductivity is a
function of position. The "superheating” instability, which develops under.
typical conditions when the plasma conductivity depends on t_emp.eratur.e: is
treated in §12. The mechanism responsible for the superheating instability,
which can be important when the conductivities parallel and .transverse to the
magnetic field are different, was first pointed out by Lefontovmh‘ a:nd tl.len
treated by Shafranov and Braginskii. In the present review, stability w'111 bf"
investigated in the lincar approximation only. i.e., we.shall or'xly consider in-
finitesimally small perturbations. If one adopts the point of view that an ab-
solutely stable plasma state is excluded by the usual condmons. encountered
in unstable plasmas, considerable interest attaches to the quest%on ?f the ul-
timate development of plasma instabilities. This question ' wh101‘1 mvolve.,s
the analysis of various kinds of nonlinear effects, has been investigated with
some success at the present time; however, any nonlinear analyses would take
us beyond the framework of the present review.

§1. Equation for Small Oscillations

Mathematically the problem of stability reduces to an investiga-tion of
small oscillations about an equilibrium state. If the oscillation amplitudes
are small, the linearized equations of motion can be used. Let p. p, and B
represent small deviations of the density, pressure, and magnefi’c field from
the equilibrium values pg. pp. and By. The linearized equations of magneto-
hydrodynamics can then be written in the form

92 1 div(ev) =0, CBY

00 -2% + Vp = 4 [rot By, B] + - lrotB, B,  (1.2)
%’t’— 4 vype + YPedivy =0, (1.3

%’:— = rot [v Byl, (1.4)

where v is the plasma velocity and y is the adiabaticity index (specific-heat
ratio).

It is frequently not convenient to use the velocity v; rather, one treats
the plasma displacement from an equilibrium position §, in which case v=
9 £/0t. Under these conditions, Eqs. (1.1), (1.3), and (1.4) can be integrated
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with respect to time and p, p, and B can be expressed explicitly in terms of

E:
o= —div(ed), p= —EVpo—pedivs, B =rot[EB,l. (1.5)

Substitution of these expressions in Eq. (1.2) results in a single second-
order differential equation for E:

3
QO%TE— = V{§Vp, + ypodivg} + 41_3 [rot By, rot [B,] +

- [rot rot [EB], Bol. (1.6)

This equation must be supplemeated by boundary conditions. Under
laboratory conditions a plasma is usually surrounded by a conducting wall at
whose surface the tangential component of the electric field E; must vanish
(with the obvious possible exception of gaps in the wall). It follows that the
normal component of the magnetic field By must also vanish at this wall. If
the plasma is in contact with a fixed conductor, in particular the wall, the
condition Eg¢ = 0 necessarily implies that [EBy]; = 0 at the surface of all con-
ductors. In general, this condition means that the displacement § must vanish
at the point of contact. However, in certain frequently encountered cases, in
which By is tangential to the surface of the conductor, this condition reduces
to the simpler one £, = 0.

From the point of view of thermal isolation of a high-temperature
plasma, special interest attaches to equilibrium plasma states in which the
plasma is not in contact with external conductors, but is separated from them
by a vacuum region (negligibly small plasma density). This case is obviously
one of greater generality and raises the question of the appropriate boundary

conditions to be imposed at the boundary of the region occupied by the plasma.

Let S, represent the equilibrium boundary between the plasma and the
vacuum. To be general we assume that a surface current flows at the plasma
boundary so that the plasma pressure and magnetic field can exhibit finite
discontinuities across this current sheet. A boundary of this kind is essentially
a mathematical idealization of a very thin transition layer; in the equilibrium
state this layer represents an ensemble of surfaces of constant pressure, the
equilibrium boundary S, itself being a surface of constant pressure. For this
reason, the normal component of the magnetic field must vanish at S;. Fur-
thermore, it follows from the equilibrium equation

Vpo = - [rot By, Bl @n
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[ha‘. the total ressure + Tl 1 TOS:!

i + BY; = B2,/ 8w, where Byj is t
face, i.e., pp + Bgi /87 B/ 8, !
gion while Bge is the field in the region external to the plasma.
on must be observed in the displace-

imilar pressure balance conditi : e disp!
o the sufe f the boundary is to remain finite.

ment of the surface if the acceleration o
The specific condition is of the form

1
po+ P+ gl,?(Boz + B)? = g (Boe t B, (1.8)

caring here are taken at the displaced boundary', i.e., at tk:
where 1g is a point on the surface S and Ny is the norm

= (ng§). Expanding (1.8) in powers of the sm'ap quan-
btain one of the boundary conditions:

All quantities app
point 1 = rg + Eplo.
to Sy at this point, &n
tity and retaining linear terms, we O

B’ oBZ; '
BoBi _ BucB _g_,,_(___o,_ o8y
—YPo divg -+ (Zni‘: (j:nf -+ 8 \ dn an |’ 1.9

i i e equi-
where the values of all quantities are taken at an arbitrary point on th - eq

librium boundary Sg. o
The second boundary condition derives from the ideal conductivity O

the plasma; specifically, it derives from the fact that the lines ;)ft fo]:(;ei :;ie;i .

in th i lasma conductivity is assumed to '
frozen in the plasma. Since the p . . . .
Ff“ =E +(1 /ci)[vB o], the electric field in the coordinate .system fixed in the
Huid vanishes identically. Then, by virtue of the continuity otfh t.hef.taigg::m :

ic fi i lasma, this fie

tial component of the electric field EF outside of the p

also vanish:
E, + - [vBodi = 0. | (1.10)

. t
since both terms here are first-order quantities, we can assume tha

i i it canbe
this condition is satisfied at the unperturbed boundary, in which case i

written in the form:

1

[ngE] = — V.Boc- 1.11)

Now, by virtue of the Maxwell equation 9B /0t = —-cr.otE, the normal
, etic field can be expressed entirely in terms of the

t of the magn ‘
o tial ; f the electric field and Eq. (1.10) can be written in

tangential component o

the form

(neB,) = no rot [EBocl- (1.12)
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Outside of the plasma (in the vacuum) the electric and magnetic fields
can be written in terms of the vector potential: Ee=—(1/c)(@A/dt) and Be=
rot A, where A is subject to the gauge condition divA=0. Since there are
no currents in this region, A satisfies the equation

rotrotA = 0. (1.13)

The boundary condition in (1.12) can obviously be written in the form

[neA] = — &,B,. (1.14)

Furthermore, the potential A satisfies the condition

[nA] =0 (1.15)

at the metal wall.

Thus, the problem of small oscillations of the plasma about an equilib-
rium state reduces to the solution of Egs. (1.6) and (1.13) subject to the boun-
dary conditions (1.9) and (1.14) at the free plasma boundary and the boundary
conditions (1.15) at the conducting wall.

Since the equations are linear, the time-dependence of all quantities
can be expressed in the form exp(—iwt). All relations then remain unchanged
when the time factor is suppressed, with the exception of Eq. (1.6), in which
the quantity Qo®?§ appears on the left side. Under these conditions, the
instability problem reduces to an eigenvalue problem.

It will be shown in §2 that the square of the frequency of the charac-
teristic oscillations o is a real quantity in an ideal plasma (which is con-
sidered here). Hence, if all of the eigenvalues w? are positive, the correspond -
ing equilibrium state is stable. If this condition is not satisfied, i.e., if at
least one eigenvalue wf is negative, the perturbation increases exponentially
in time and the equilibrium is unstable,

§2. Energy Principle

In the form in which it has been formulated in the preceding section,
the problem of stability assumes that the characteristic oscillations have al-
ready been determined. In certain cases, characterized by simple geometries,
the eigenvalue problem can actually be solved and such a solution gives a
complete picture of the low-frequency oscillations of the plasma; in particu-
lar, the question of stability can be decided. However, in more complicated
~ geometries the solution of the problem becomes one of appreciable mathe-
matical difficulty. For this reason it is desirable to have a method of
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evaluating the stability of a system without actually finding the charajlctf:ristic
frequencies. The energy principle serves this purpose ideally; th1_s principle
is based on the investigation of the potential energy associated with the small

oscillations.

Before considering the energy principle itself, we shall first show that
the equation for small oscillations (1.6) is self-adjoint. For this pllr;?ose we
write this equation in the form podtk/ott = —K§ = F(E), where K is an
operator whose explicit form is given by the right side of Eq. (1.6).“ Ph?'smal-
ly. F(§) can be interpreted as a force, while K can be regardejd' as spring
constant” for small displacements of the plasma from the equilibrium position.

We shall only be interested in the sufficient condition that must be -
satisfied for the operator K to be self-adjoint, Consider a displacement 3
which, together with the vector potential Q, satisfies the same boundary con-
ditions as A and §; specifically,

[n,Q] = M.Boe (2.1)
at the plasma boundary and

[nQ] =0 (2.2)

at a conducting wall. |
To demonstrate self-adjointness, we must show that | 1K Edr =
j' ‘g’,l/{n dr for any E and A and any 7 and Q that satisfy the boundary condi-

tions (1.14), (1.15), (2.1), and (2.2). Let us multiply K§ by n and integrate
over the volume occupied by the plasma Vj. Integrating by parts, we have

S‘ nf{§dr = Y {YPo divydivg -{——41; rot [nB,] rot [EB,] + EVpedivn —

v, V;

BB
— 4 (7ot Byl rot (8B4} } dr + é‘)(p + D )n,dS.  (2.9)
| P

We now show that g and € appear in completely symmetric fashion in
the volume integral on the right side of Eq. (2.3). This statement. is obvious
for the first two terms in the mntegrand, so that we need only consider the last
two terms. The component of the displacement along the magnetic field §
does not appear in these terms. We note that g also does not aPpear. Tak-
ingm=m = aBg, and using the equilibrium condition (1.7), we find
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. 1
§Vpodivny — [0, rot B,] rot [EB,] = §V (B,Va) -+
+ aVpyrot (8Bl = div (n, -EVpy).

Consequently, the corresponding integral can be transformed into a surface
integral S, which vanishes by virtue of ngn;, = 0.

Let us now assume that Vp, does not vanish identically. In this case,
the direction of current flow does not coincide with that of the magnetic field
and E and 75 can be expanded in terms of the vectors By, rotBy, and e =
Vpo/| Vpy | . However, since the component of the displacement along the
field does not appear in the last two terms of the volume integral (2.3), we
can write

E=2CErot B+ & and m=mn,rotBy-} nge.
Using this representation of g and 75, and the equilibrium condition, we
find
I
— 4= [nrot Byl rot [§Bo] = — —E-[e rot Byl rot {47k, Vp, + &, [eB,]} =

in

. i
= nypPo (rot B V&) -+ nVp, div (e&,) + ’]zgzﬁ [erot Bol{(eV) B, —
— (BoV)e).
Thus, the sum we are considering reduces to a form which is complete-
ly symmetric in 7 and §:

. 1 . .
§Vp, div m — —[nrot Byl rot [§Bo] = §.Vpodiv ny + . VpedivEL -+

+ (11€) (§€) 5 (e 10tBy] (V) B, — (BoV)e). .

Now, we must transform to a symmetric form of the surface integral in
Eq. (2.3). Taking account of the boundary conditions (2.1) and (2.2) for Q,
and integrating by parts, we have

g Ny (Bo. rot A)dS = | {rot Arot Q — Q rot rot A} dr,
. Ve (2.5)

where the integral on the right is taken over the volume outside of the plasma.

Using this relation and adding mutually canceling terms in Eq. (2.3),
we have
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K . B,,B
j n K§dr 'l--,il;; YQrot rot Adr— @{—ypodwg-}— 4; L
v,

Vz Se

| aB2, 053,.) BerotA} _S( L
——8-;&”< A Annba 7 nndS—V \YPodivndivg +

i
+ 4'7 rot [nBo] rot [EB,] + &V pydivy — 41—“ [n rot By] rot [§Bol} dr +

' 1 a2 1 632‘.
+ -;‘1; S rol Arot Qdr -|- CX) NaEn ('8Y —ar‘l’—‘; —%‘_’ﬁ' __an°_) ds.
K > (2.6)

Now consider the boundary condition (1.8), which expresses the pres-
sure balance in the displacement of the boundary, and Eq. (1.13), which ex-
presses the absence of current in the vacuum; when these conditions are taken
into account only the first integral remains on the left side of Eq. (2.6). But
this means that the integral [ nKE dr can be written in the form of the right
side of Eq. (2.8), which is completely symmetric with respect to the vector
pairs § and A and n and Q; thus, the operator K is self-adjoint.

The fact that they are self-adjoint means that the small-oscillation
equations can be obtained from a variational principle, i.e., a least-action
formulation, §{fLdg = 0, where L is the Lagrangian, given by the difference

I 2 .
between the kinetic energy T = 5 f Qo (%%) dr and the potential energy
14
i

W = g {{vpodiver + = (rot [EBo])? + §Vpy divE—
vV

i

dpe
— ot Bl rot (8B dr + g7 [ (ot AP dr — 5 &) (o +
V, S,

| aB I az;f,e) £2 4S.
(2.7)

If the potential energy (2.7) is varied with respect to § and A subject
to the constraint imposed by the "freczing " conditions [Ng0A lso = (ne68)B,,,
[ndAlg, == 0, an expression is obtained which coincides with the left side
of Eq. (2.6) if n = 6§ and Q = 6A. But the variation of the time integral of

N . ) ) s
the kinetic energy is 0 j Tdt = — H‘ Qo 572 88drdt. writing

) S Ldt = 0,and taking account of the fact that the variations § § and 6 A are




162 B. B. KADOMTSEV

arbitrary, we obtain Eqs.(1.6) and (1.13) and the boundary condition (1.7).

By virtue of general theorems of mechanics, we then conclude that a
necessary and sufficient condition for plasma stability is that the potential
energy of the small vibrations (2.7) must be positive for any displacement {
and potential A which satisfy the boundary conditions (1.14) and (1.15). In
other words, W must be characterized by a positive minimum,

We note that the energy principle can also be used to obtain the ap-
proximate frequencies of the characteristic oscillations (by means of direct
variational methods). For example, if the time dependence of all quantities
is written in the form exp (~iwt), the equation for small vibrations reduces to
20, = K&; this relation can be obtained from the variational principle
5(w? = 0, where

ot — JERE AT
faogddr ° (2.8)

In particular, it follows from the last expression that W? is real.

The energy principle is useful in cases in which one wishes to obtain a
general idea of the stability of an equilibrium configuration. In simple cases
it is advisable to solve the small-oscillation equations, because this proced-
ure not only evaluates the stability of the system, but also yields information
concerning the full set of oscillations, and this information may be of inter-
est in its own right. For this reason, both the energy principle and the method
of characteristic oscillations will be used in the present review.

§3. Stability of the Boundary Between a Plasma and a
Magnetic Field

We now consider the simplest case, in which there is no magnetic field
inside the plasma, so that all currents flow along the surface. Under these
conditions the potential energy expression is simplified appreciably; specifi-
cally:

¢ 2

W=y ‘\ Yoo(diveids + o [ (ot Apdr oy | 2o g1 4S (

i v, S 3.1)

If aaﬁ /an > 0, i.e., if the magnetic field increases in all directions go-

ing away from the plasma boundary in the outward sense, the potential energy
is positive and the plasma is stable. Now consider the inverse case, in which
9B /on < 0 over some portion of the surface So. 1t will be shown that in this

case there is always at least one perturbation for which the potential energy is

negative. For reasons of simplicity we shall only consider perturbations with
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very short wavelengths, for which the boundary can be regarded as approxi-
mately plane. Now let us introduce a local coordinate system with x axis di-
rected along the normal to the surface and z axis along the magnetic field.
We assume that £ = £y has a simple dependence on y and z; specifically:
£y = Egexplikyy + ikzz). The potential A can be written in the form
Agexp(ikr), where Ay = const. Taking the minimum of (3.1) with respect to
A, we haverotrotA= 0, i.e.,

k2A, — k (Agk) = 0. (3.2)

From the boundary condition (1.14) we have Agz = 0, Agy = —€ nBs.

Since the magnetic field B= rotA = i(kA] is determined only by the
transverse component of A, we can write kA, = 0 without loss of generality;
then, it follows from (3.2) that K = 0, i.e., ky = =i 1 +kg = —in. Assum-

ing that Ak, + A),ky = 0, we have

g 2 2 —
|rot A |* = 2k2BjEs e 2.
Since the perturbation being considered does not change the amount of
matter within the surface Sy, i.e., | &, dS = 0, & can extend into the
Sa

plasma so that div § = 0, that is to say, this displacement acts as if it were
"incompressible.” In this case, the first integral in (3.1) vanishes and the
other two integrals yield the value of Wg, the amount of energy per unit sur-
face:

2122 2
. I ky By 1 9B 2
Ws = ['8?' T o | B (3.3)

When 8B%/0n < 0, it is evident that the potential energy becomes nega-
tive for perturbations characterized by kzz/ w — 0, i.e., perturbations with
long wavelengths along the lines of force.

This perturbation is essentially a "flute” which is oriented along the
lines of force (Fig. 1). This flute does not perturb the magnetic field to any
great extent: instead, it "slips” through the lines of force without separating
them greatly. 1f 3Bj /an < 0, the end of the flute enters a region in which the
magnetic pressure is smaller than py; the resulting pressure differential causes
further growth of the flute and eventually the flute grows without limit,

A similar instability occurs when 0 BZ/on = 0 and the plasma is in a
gravitational field in the direction of the magnetic field. In this case, the
pressure of the magnetic field is uniform at all points, so that the force of
gravity is not balanced in the flute; under these conditions, the flute is
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Fig. 1

Fig. 3

accelerated downward (Fig. 2). This instability is evidently similar to the
classic instability of Rayleigh and Taylor, who investigated the insta-
bility of a heavy liquid supported from below by a light liquid. However, the
analogy is not complete since it only holds for perturbations which are ex-
tended along the lines of force. Perturbations for which k;/ « is not a small
quantity lead to a strong deformation of the magnetic field, tending to bend
the lines of force, and thus do not lead to an instability. An example of this
kind would be a flute oriented across the lines of force.

The classic Rayleigh— Taylor instability is essentially the limiting case
of a convective instability of an inhomogeneous (or nonuniformly heated)
fluid in a gravitational field. In precisely the same way, the instability of a
plasma-field boundary is also the limiting case of a convective plasma in-
stability (cf. §5). Hence,the flute perturbations considered above, which are
almost constant along the linesof force, will be called convective perturbations.
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To summarize: the boundary between a plasma and a field is stable
only if the lines of force are concave, as seell from the plasma, in which case
the magnetic field increases going away from the plasma. If the lines of
force are convex, the boundary is unstable against convective perturbations
(Fig. 3). This instability leads to fluting of the plasma surface along the lines
of force and, in the final analysis, to the expulsion of plasma in the direction.
of weaker magnetic field. Under these conditions the positions of the plasma
and the magnetic field can be interchanged so that convective instabilities
are also called interchange instabilities in this context.

§4. Pinch with No Longitudinal Field

Let us consider a plasma pinch, i.e., a plasma column confined by the
current flowing within the plasma itself; this configuration will serve as an '
example for the analysis of stability of a plasma in an "inside” region. We
assume that the plasma occupies the entire region up to the conducting walls.

We shall use a cylindrical coordinate system 1, ¢, and z with z axis
along the axis of symmetry. In the absence of a longitudinal magnetic field,
the equilibrium equation can be written in the form

dp B d

= w8 (4.1)

(for simplicity, we have omitted the zero subscripts on the equilibrium quan-
tities).

We first consider perturbations that are independent of the azimuthal
angle ¢. For these convective perturbations the potential energy is

Wl L ot + B g [B B b @0

dp [1 9 9k, __d_P_[a§z 19 ]

+ & dar. [T‘JF (r&) + —dz_] + & dr | 0z + 5o (B%,) dl'.(4'2)
Evidently, the integrand is a quadratic form in the two variables £ and

div g, which can be regarded as independent by virtue of the fact that &; and

£, are independent.

It is well known that 3 @;;x;x;, 2 quadratic form of several variables .
ij

Xi, is positive definite if all of the principal minors of the matrix g jj are posi-
tive. By applying this criterion to (4.2), we can obtain the stability condition..
Omitting some simple intermediate calculations, we write the criterion in the
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form
dinp 4y
T dhr S TFp (4.3)

where B = 8ap/B? is the ratio of the plasma pressure to the magnetic pressure,
P p 8 P

The condition in (4.3) must be satisfied at all points r. Let us assume
that this condition is actually violated near some point r,. In this case, we
can choose Er and div g, say £r = adiv§, o = const, so as to make the inte-
grand negative in the vicinity of this point. Let us now form a local perturba-
tion which falls to zero rapidly with increasing distance from ry; close to this
point Er = adiv §. This perturbation essentially represents the interchange
of two force tubes. For example, if a > 0, the tube with plasma will be ex-
panded somewhat in being displaced along the radius, while the plasma
that ties this tube to the axis will be compressed. The potential ener-
gy for this localized perturbation is determined only by the conditions in the
vicinity of the point r, and can be negative if (4.3) is not satisfied. If this
happens, a convective instability can arise.

The condition in (4.3) implies that the plasma pressure must not dimi-
nish too rapidly with increasing r. Taking account of the equilibrium condi-
tion (4.1), which can be written in the form

dinp 1 dInp __ 8np
dlnr_l-i—ﬁ(dlnr—‘?)’ where  f = J=,

and changing the inequality in (4.3) into an equality, we can obtain the
limiting pressure distribution which is still stable against an axially symmetric
perturbation. In parametric form this limiting pressure is given by (with y =%4)

_ B\ _ 0848
p=r(osry) SR (4.4)

Here, p is the pressure atr = 0, i.e., 8 = 87p/B? = =, while a is the
characteristic radius of the pinch. This distribution is shown in Fig. 4. Ac-
cording to (4.4), the plasma pressure cannot fall off more rapidly than 172 =
13978 35 a function of distance from pinch. If the pressure falls off more
rapidly than this, then (4.4) indicates that the pinch is unstable against an
axially symmetric perturbation. In particular, in the limiting case of a pinch
with sharp boundaries the instability is manifest in a "necking" or sausage in-
stability at the boundary (Fig. 5). The interchange nature of this instability
is demonstrated particularly clearly under these conditions.

The sausage instability can be interpreted as the result of the compres-
sion of the lines of force around the neck, where the magnetic field is larger
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Plp,

Fig. 4 Fig. 5

than in the other portions of the boundary further removed from the axis. The
stretching of the lines of force near the neck then forces the plasma out of
this region.

We now consider perturbations which exhibit a functional dependence
on the azimuthal angle . Since any perturbation can be expanded in a
Fourier series, and since the different harmonics are orthogonal {fE;Ekdr =0),
without loss of generality we can write the dependence on ¢ in the form

£, =, (r, 2)smmey; £, = Eo(r, 2)cosme; E, =&, (r, 2)sin meo.

In this case, the integrand in (2.7) will contain factors such as cosfme
and sin®me¢ which yield a value of 14 when averaged. It is evident that the
component of the displacement along the magnetic field £, appears only in
the first term of the integrand (2.7) and if m = 0, £ can always be chosen
so that div § = 0. It is easy to show that the potential energy for these per-
turbations W differs from (4.2) only in that the term yp(div £ does not ap-
pear in the integrand; it is replaced by the new term

I m?B?

o (B + E2)-

The z dependence of the perturbations can be written in the form exp(ikz) by
virtue of the translational symmetry, and the component £z will appear in
div g1 in the form of a product with k. Hence, if k approaches infinity while
kE , remains fixed, the term m?B? g2/ 4nr? vanishes and we again obtain a
quadratic form in two variables: &p and div g, . It is a simple matter 1o ob-

tain the stability condition in this case:
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(4.5)

Since y > 1, perturbations with m = 2 do not lead to instability if
(4.3) is satisfied. However, when B > 2y/3, the m = 1 mode, i.e., the inner
portion of the pinch, is subject to a more stringent stability condition than
that given in (4.3). It can be shown that, in this case, a kink (m = 1) insta-
bility develops inside the pinch and that this leads to the appearance of a
sausage instability {(m = 0) at the periphery.

Thus, when m = 1 perturbations are taken into account, the distribution
in (4.4) is found to be unstable. However, a current-carrying conductor lo-
cated at the axis can be used to reduce B8 in an annular plasma distribution;
then the plasma can be stabilized if the pressure does not fall off too rapid-
ly withiradius.

The condition in (4.4) also represents a limitation on the curvature of
tPe pressure distribution, A pinch with a sharp boundary can develop perturba-
tions for any m. The m =1 perturbation is essentially a kinking of the pinch,
the instability arising as a consequence of compression of the lines of force at
the concave side of the pinch and expansion at the convex side. At higher
values of m the perturbed pinch assumes the form of a multistranded cable
(Fig. 6). These modes can be unstable only if the pitch is small enough (i.e
if the ratio m/ka is small). o

§ 5. Convective Instability
of a Low-Pressure Plasma

Let us now consider the particu-
‘. lar case of a low-pressure plasma (8 <<
1). In this case, the stability criteria
for m = 0 perturbations can be neglected
and (4.3) assumes the form

dinp
T dinr <2y.

(5.1)

Thus, if B, = 0, and the plasma
pressure is much smaller than the mag-
netic pressure, the stability is deter-
mined completely by (5.1). It wrnsout
' that the condition in (5.1) is a particu-
Fig. 6 lar case of a more general condition for
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convective stability in an arbitrary field with closed lines of force. Letus
consider a single closed tube formed by the lines of force of the magnetic
field and filled with plasma at a pressure p << B*/8r. Since the plasma uies
to expand, this tube will extend itself in such a way as to increase its volume.
However, the motion of the tube is not free in a strong magnetic field: any
appieciable curvature requires a large increase in magnetic energy and,
hence, is not allowed. Only those displacements of the tube are allowed for
which the magnetic field remains unchanged, i.e., the magnetic field at the
final location of the tube must be essentially the same as the field at the ini-

tial location.

The volume of the force tube is V = $sdl, where s is the cross sec-
tion of the tube and the integral is taken along the lines of force. But sB= ¢
is the magnetic flux within this tube and this flux must remain constant, both
along the tube and in time, by virtue of the fact that the magnetic flux is

frozen in in an ideal plasma. Hence, V = ¢ ‘C}) —d-;— , and the tube con-
s ) . . R . . dl
taining plasma will try to move in the direction in which the integral (H—p-

increases. It could be said that a tube containing plasma in a magnetic field

has a potential energy pU, where U = — %, and that the tube tries to

move in the direction of lower U. By analogy with the case of an inhomo-
geneous fluid in a gravitational field we may conclude that the plasma can
be in equilibrium only when the pressure is constant along a surface of con-

stant U, i.e., p = p(U).

Let us now consider the stability of such an equilibrium plasma state.
Assume that a tube containing plasma is displaced by an infinitesimally small
amount, separating the remaining tubes in its displacement. If this displace-
ment is convective, i.e., if it does not distort the magnetic field, the relative
change in tube volume is §V/V = §U/U; on the other hand, the change in
pressure as a consequence of the adiabatic expansion is dp = —ypsU/U. If
the displacement occurs in the direction of increasing p(U + sU)=p+
(dp/dU)S U and the pressure in the displaced tube is smaller than that of the
plasma which surrounds it, the tube will be subject to a buoyant force and the
expansion of the plasma will be unstable. On the other hand, if the pressure
in the tube is higher, i.e., if ~yp(6U/U) > (dp/dU)6 U, the tube will be ex-
pelled in the direction of equilibrium and the plasma will be stable. Thus, in
a magnetic trap with closed lines of force the lines must satisfy the stability

condition
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Fig, 1

dp - VP
au Ut (5.2)
To summarize: stability does not necessarily mean that the pressure
must diminish with increasing U. Stable states are also possible if the pres-
sure increases with U, provided the rate of increase is not too rapid. Thiscon-
dition is completely analogous to the criterion for convective stability of an

inhomogeneous compressible gas in a gravitational field. We now consider
several particular cases.

a. Magnetic Field of a Straight Current. The field of a straight cur-
rent falls off as 1™, and the length of the lines of force is proportional to r;
hence, U falls off as — with increasing distance from the conductor. The
stability condition (5.2) is obviously the same as (5.1).

b. Point Dipole. The magnetic field of a point dipole can also be re-
garded as a magnetic trap. A natural trap of this kind is the magnetic field
of the earth and the existence of ion belts around the earth is a direct demon-
stration of its efficiency.

We assume that the surface of the dipole is insulated so that the ends of
the lines of force are not frozen in its surface. This will be the case, in par-
ticular, if the field is produced by circular currents of small dimensions. The
plasma is then subject to convective instabilities and the instability condition
is of the form in (5.2). Since the magnetic field of a dipole falls off as 1”3,
while the length of the line of force is proportional to r, then U~ —1* and the
stability condition assumes the form

dinp
— Ty <A (5.3)
¢. Bumpy Field. Let us now consider an axially symmetric periodic
field with B, = 0. The lines of force of this "bumpy” field are shown in Fig.7.
Each section of this field can be regarded as an individual magnetic mirror.
Hence, the stability investigation carried out here can shed light on the
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stability of a plasma in a mirror device. In a bumpy field.it is evident that‘
the "potential energy” U falls off with r (i.e., U increases in a:xbsolute me.lgm—
tude with increasing distance from the axis of the system). Since there is no
current flow in the trap, we have JBdl = const and fdi/B = fQ/BBdl,
i.e., |U| can be regarded as the mean value of (1/B). But the mean value
of the square of a quantity is always larger than the square of the mean value,
so that

[ —‘£—>M = const 2,

J B j Bdl
that is to say, | U] increases with the length of the line of forc?e. It is evident
from Fig. 7 that the lines of force become longer at great‘er cl.lstance:s fror.n
the axis of symmetry, so that U = —J(d 1/B) diminishes w1.th mc‘reas'mg dis-
tance from the axis. It then follows that any plasma configuration is unstable
in which the plasma pressure vanishes at some line of force; this result fol}ows
because p = 0, while dp/dU =0 at such points. In other words, a plasma. in a
bumpy field is generally unstable.

One further conclusion follows from our analysis. Since any increa:se in
the inhomogeneity of the magnetic field caused l?y external conductors.1 in-
creases the length of peripheral lines of force, in genera.l a plasma will
tend to move in the direction of the inhomogeneity, that is 10 say, towaid the
external windings. _

d. Multiply Connected Traps. In the final analysis, the convective in-

stability of a plasma is a consequence of its diamagnetism, which ter.lds to ex-
pel the plasma from a region of higher magnetic field. From the point of
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view of stability, one would then tend to pre-
l fer a trap in which the magnetic field increases
(on the average) with increasing distance from
the region occupied by plasma.

One trap of this kind is a periodic sys-
tem (Fig. 8) consisting of a straight solenoid
\ plus conducting rings, the current flow in the
E  rings being in the opposite direction to that in
the solenoid. In this configuration the field
inhomogeneity is produced by the rings, so that
plasma tubes close to the axis of symmetry and
near the solenoid will be accelerated in thedi-
rection of the rings. Only those tubes which
are located on the dashed lines of force pass-
Fig. 9 ing through points at which the field vanishes
will be stable; this result follows because U is
equal to minus infinity on these lines. Since U increases in all directions go-
ing away from the dashed lines of force, any such distribution of low -pressure
plasma in which the pressure falls off monotonically with increasing distance
from these lines is known to be stable a priori. However, this trap has one
important shortcoming in that the plasma occupies a multiply connected re-
gion surrounding the current rings, so that it is difficult to support these rings.

\ }
i/

§6. Stabilizing Effect of Conducting End Plates

The stability condition in (5.2) only holds for systems with closed lines
of force. Such systems constitute a rather special narrow class because lines
of force are generally not closed.

Let us consider the case in which the lines of force intersect a conductor
of infinite conductivity. It should be kept in mind that the electron and ion
velocity distributions must be highly anisotropic; if this were not the case, the
particles would escape along the lines of force and recombine at the walls.
However, in making a qualitative analysis we can regard the distribution as
isotropic and use the hydrodynamic approximation assuming, however, that
there is no recombination at the end electrodes and that the plasma pressure
is constant along the lines of force, up to the walls. Here we shall make spe-
cific use of the hydrodynamic model and assume, in addition, that the plasma
is in good electrical contact with the electrodes so that the ends of the lines
of force can be assumed to be frozen in the conductor.

ndi e it
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We shall again introduce a simple example: specifically, the field of
a straight current. Assume that a cylindrically symmetric plasma.column lo-
cated in the ficld of a straight current is divided in half longitudinally along
the z axis of an ideally conducting plane (Fig. 9). The displacement § is
zero in this plane and hence m = 0 perturbations are now allowed. This
feature means that any perturbation must lead to deformation of the lines of
force. However, as we have indicated above, the most dangerous perturba-
tions are the interchange type, which are characterized by a minimum dis-
tortion of the magnetic field. As an approximation we can assume that fh'ese
perturbations are m = 1 perturbations, because the latter satisfy the cox?dmon
g, = 0 at the boundary and have the smallest distorting effect on the lines of
force. Since plasma flow through the divider is forbidden, in this case we
can eliminate the possibility that div § vanishes. For this reason the poten-
tial energy expression will contain two stabilizing terms and an apl.)roximéte‘
stability criterion can be obtained by adding the right sides of the inequali-
ties in (4.5) and (5.1). This criterion is of the form

dinp R (6.1)
- dlnr<2Y+ B’
where
8.
.

The second term expresses the stabilizing effect of the conducting plane.
In the case of perturbations with m = 2, as before we can use Eq. (4.5), be-
cause we have already chosen Epto make div § = 0.

A similar analysis can be carried out for more realistic systems. For
example, let us consider a trap of length L with magnetic mirrors (Fig. 10).
We are interested in a perturbation of the convective type, which corresponds
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to the interchange of two tubes. These tubes cannot be
interchanged completely, however, because they are
) anchored at the ends. Hence, the magnetic field is dis-
torted and a restoring force arises as a consequence of
41 > the stretching of the lines of force. The most danger-

ous perturbations are those which result in the minimum
field distortion. For this reason we consider the inter-
change of two ribbon-shaped tubes, since these tubes arc
only slightly bent in the azimuthal direction and thus
4;:,4 - give the minimum azimuthal perturbation of the field.

The relative change in the volume of the tube in
Fig. 11 the convect%ve perturbation is div § = E(VU/U), and
‘ _ the change in the magnetic field resulting from the
bending of the lines is approximately B's B(d&r/dz) = (m/L)EB; the per-
turbations we are considering are directed along the radius, i.e., along E. In

this case the last term in the integrand in Eq. (2.7) can be neglected and we
have approximately

Ve [ () + e + 27 e

U (6.2)
Whence we obtain the stability condition
___VpvU VU \?2 aB?
U <W’(T> T (6.3)

' In this expression the second term takes explicit account of the stabiliz-
ing effect of the conducting end plates.

- For example, in a trap formed by a dipole and a conducting surface, us-
ing (6.3) we obtain the criterion

dp aB?
rar SHPE g (6.9)
where ¢ is a numerical coefficient of order unity. The magnetic field of the
earth can be regarded as a trap of this kind because the highly conducting

ionosphere can be regarded as a solid ideal conductor to a high degree of ac-
curacy.

§7. Surface-Layer Pinch in a Longitudinal Field

'In all of the simple cases considered above, the stability condition was
essentially .a local expression. This is explained by the fact that the geometry
(more precisely, the topology) of the systems that have been considered has
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always been simple: parallel lines of force
that remain parallel at large distances. Hence,
the displacement of a tube in such a system
was found to have an effect only on the nearby
tubes, without affecting things at great dis-
tances, Generally, however, this picture does
not hold and the stability criterion cannot be
written in local form. It is possible to make
an cven stronger statement: with the excep-
tion of certain particular cases, the stability
T T~ of a system cannot be determined by local
conditions alone., Acwally, the most danger-
Fig. 12 ous perturbation is one for which W assumes
a minimum value. Let us assume that of
this. class of local perturbations we select the one which gives minimum
W. 1f we now relinquish the local nature of the criterion and consider a more
general class of perturbations, it is possible to find a smaller value of W, and
hence, a more dangerous perturbation; consequently, the stability criterion
certainly cannot be a local criterion,

e
%Wﬁ

In this section we shall be interested in the stability of a pinch with a
longitudinal magnetic field. For reasons of simplicity, we assume that the
pinch is a "skin" pinch, i.e., that all of the current flows in a thin surface
sheet so that the pressure p and the longitudinal fields Bj and Bze inside and
outside of the pinch are independent of r (Fig. 11). In this example, we shall
encounter a new stabilizing effect — shear in the lines of force.

We have shown in §4 that a skin pinch without a longitudinal magnetic
field is unstable. The presence of an internal longitudinal field has a marked
effect on this result. If the field direction inside the pinch is not the same as
the field direction outside the flute instability oriented along the outer lines
of force tends to cause a strong distortion of the inner field. Hence, if the
field is "frozen-in" the local perturbations cannot produce an instability.

A longitudinal field has precisely the same stabilizing influence on
longwave perturbations. For example, consider a pinch with a frozen longi-
tudinal field B = 0 and assume that Bze = 0. If the pinch is bent, the lines
of force of the azimuthal field are crowded together inside the "bend” and ex-
tended outside. Consequently, the inside field pressure will be greater than
the outside pressure and the equilibrating force Fg is directed outward. The
stretching of the distorted lines of the longitudinal field produces a force Fg
directed inward (Fig, 12). 1f Fp > Fs, the pinch is stabilized against this kink
instability.
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Let us consider this effect in greater detail. Because of the cylindrical
symmetry of the problem, the displacement § can be written in the form
E(r) exp{im ¢ + ikz}. If we limit ourselves to the case k = 0, it is always
possible to choose £, so as to make div § vanish, in which case the first
term in the integrand of the potential energy also vanishes. Thus, from the

point of view of pinch stability the plasma can be regarded as incompressible.

Making use of this fact, we consider a model problem in which the
plasma is replaced by an incompressible fluid of the same density p,. Ob-
viously, the oscillation spectrum is changed by this substitution but the sta-
bility criterion is not,

Because the geometry of the problem is simple, the small-oscillation

equation can be solved. By virtue of the fact that the fluid is incompressible,

B' = rot{EB il = ikBE, and the small-oscillation equation reduces to the form

. L=B2
— w?%Qy + {E,——Vp

(7.1)
where p~= p +BB'/4w. Then Ap~= 0, since div§ =0, i.e.,
~ Am (kr)
P ()= p @7y (1.2

where q is the radius of the pinch. Using Eq. (7.1) we can now easily find
the displacement at the boundary £:

& (a) =

4nk ~( ) i (ka)
dnQew? — Bkt P T, kay _ (1.3)

where Iy is a Bessel function of imaginary argument.

Outside of the pinch we have rotB' = 0 and divB® = 0, i.e., we can
write B' = V¢, where Vi = 0. The solution for y that remains bounded at
infinity is of the form = CKm(kr)/Km(ka), where K, is the MacDonald
function and C = const,

We must now take account of the boundary conditions, namely the
equality of the pressures and the normal components of the magnetic field at
the surface of the pinch. Outside the plasma the magnetic field is made up
of the longitudinal field Bye and the azimuthal field By,. Since Bze = const
while B, ~ 1/r, then (a/ar)(B2 +B2 )= —282 /o at the boundary, and the
pressure condition (1.9) becomes

p(a) (szt + ) 4n:a gr( ) (7.4)
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In our case (cylindrical symmetry) the field freezing condition (1.12)
is written
K, (ka)
m
= Ck 4+~
i (EBy+ 4 By) Erla) = Ch gl oy 15
From the condition that Egs. (7.3)-(7.5) be solvable with respect to C,
P and Er(a), we find the dispersion equation

1(ka) K5 (ka)
. popr ﬂ 2 m -
4710,0° == sz (szc + ‘P) I (ka) K;n (ka)
Bék m (k)

a T (ka) (1.6)

m

In this expression the first term results from the stretching of the lines
of force of the magnetic field inside the pinch. The second term, which is
also positive since Kin/Kjy < 0, arises as a consequence of the stretching of
the lines of force outside the pinch. This term is proportional to the square
of the component of the wave vector in the direction of the external mag-
netic field and vanishes when kB = kBze +(m/a)Bg = 0, i.e., this term
vanishes when the perturbation is constant along the lines of force of the ex-
ternal field. As we have seen earlier on the basis of physical considerations,
in these perturbations the magnetic field outside the pinch is not distorted, so
that it cannot stabilize the boundary. However, we note that the first term
does not vanish, this being precisely the result of the shear of the lines of force.

Finally, we note that the last term in Eq. (1.6 is negative; it is this
term which can give rise to the instability. If the origin of this term is
traced, one finds that it arises from the second term in Eq. (1.4), i.e., in the
final analysis this term is a result of the fact that the magnetic field dimin-
ishes with increasing distance from the pinch boundary.

Let us consider two particular cases,

a) Bge = 0.
If By = 0, we find for m = 0 modes,

Bz { . _522 15 (ka)

2 . SIS A R
T 4ng, B? kal, (ka) |’

(O]

N

The maximum value of IJ(x)/xIy(x) is 1/2, so that the pinch is stable against
the sausage instability if B} > thp/ 2. However, the internal field does not
give complete stability against the m =1 perturbation. Form =1,
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sok  11(ka) K, (ka)

B
2 __ R2L2% _
4ngew® = B2k* - a0 K ()

At long wavelengths, in which case ka — 0, this expression becomes

of = B_’f_{ — (L))
4ng, B; ka(?

that is to say, the longwave perturbations are not stabilized even in the limit-
ing case in which B, = Bj, so that p = 0. On the other hand, this instability
can be stabilized by the presence of conducting walls located close to the
pinch. The normal component of the field must vanish at the conducting
wall, i.c., 3y /or|=p = 0, and when this condition is taken into account the
ratio K p{ka)/Kin(ka) in the second term on the right side of Eq. (7.6) is re-
placed by

Ko (ka) I, (k0) + 1, (ka) K, (kb)
K, (ka) I, (kb) — I, (ka) K, (kb) ’

where b is the radius of the chamber.

An appropriate analysis shows that this pinch with a frozen-in longitudi-
nal field will be stable if b < 5q.

b) Bze >> By,

The addition of a small longitudinal field outside the pinch only de-
teriorates the stability because the second term in Eq. (7.6) can be reduced in
this case. Hence, at the outset we shall consider the second limiting case, in
which Bze >> B, outside the pinch. In this case, longwave perturbations char-
acterized by ka << 1 can lead to an instability. Let us assume that m is posi-
tive. Atsmall ka we then find I},/Ip; = m/ka, Kiy/Km = —m/ka, and
Eq. (7.6) assumes the simpler form

. - m 2 mep
dngq® = KB} + (kB" T B“’) e (7.7)
It is then an easy matter to find the minimum value «?,;,. This value
obtains when k(B%¢ + B}) + (m /a)BzeB = 0, and is given by
Bz, m?B%
0 = —um |.
min "~ dngea® | p2, 4 B (1.8

If B = B4e = Bz, Eq. (7.8) shows that only the m = 1 perturbation grows
in time (the screw instability) and the pinch is stable against the remaining
perturbations, characterized by m = 2.

HYDROMAGNETIC STABILITY OF A PLASMA 179

Thus, an infinitely long pinch is unstable against the screw instability
(m = 1) for an arbitrarily large ratio B,/B,. However, any real pinch will
be of finite length, say L, so that k cannot be smaller than 27 /L. When Bj =
Bze = By, it is evident from Eq. (7.7) that «? is positive for | k| < By, /aBz;
consequently, a pinch of finite length L is stable if

By 2na
‘137< L (1.9)

This condition, obtained independently by Shafranov and by Kruskal,
is a necessary one for stability of a plasma pinch in a strong longitudinal
field. It means that the pitch of the lines of force must be greater than L.

§8. Pinch with Distributed Current

The casc treated in § 7 represents an extreme idealization. In reality,
thie skin depth cannot be infinitesimally thin for two reasons: 1) under actual
conditions the current will exhibit a rather broad radial distribution, and, 2)
even if the skin depth is small, it is always possible that there are perturba-
tions whose wavelength is comparable with the skin depth.

The stability of a pinch with a distributed current can be investigated
most conveniently by means of the energy principle. We shall assume that
the plasma occupies the entire volume up to the conducting wall of radius b,
so that the potential energy is given completely by the first integral in Eq.
(2.7). By virtue of the cylindrical symmetry of the problem, the dependence
of £ on z and ¢ can be written in the form exp(ikz + img). In this case, the
minimization of the potential energy with respect to § @ and £, can be car-
ried out algebraically and yields

m oe -+ k§z= ._‘_..d_.(rg),
roee rodr (8.1)
. 1 dE
‘ E;(sz — QzB(p R ‘/'72,_2[;_ m? |:(/€I'BqJ —-IHBZ)F; -
— (krB B.)-E
(krBy + mBg)-1-| (8.2)

where £ = & is the radial component of the displacement,

If this expression is substituted in Eq. (2,7),afteran additional integra-
tion by parts the potential energy can be expressed completely in terms of
the radial displacement £ and assumes the form

W= %‘f {f (%)2 + ggz}dr’ 69

0
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where
fe= r (krB; 4 mBg)? |
T dn Ri¥2 4 g ! (8.4)

k%2 d |
g= W—_;,Tg’,l+4—,t7(kr3,+rn3¢)

g KT m®— |

ka2 + m? +

2k%r

+ 47 (k%2 - m?)? (

kzr2B§~rnzBa). (5.5)

Minimizing Eq, (8.3) with respect to £, we obtain the Euler equation

;_r (f Tdi%) —g=0 (8.6)

with the following boundary conditions: & is finite for r = 0 and vanishes for
r=b.

Thus, the problem of determining the stability of a distributed -current
pinch is reduced to the solution of a second-order differential equation (8.6).
The stability condition can be formulated as follows: a necessary and suffi-
cient condition for stability of a distributed -current pinch is that the solution
of Eq. (8.6) have fewer than two zeros in the interval 0 < r < b,

If we wish to solve the complete problem of finding the characteristic
oscillations of the plasma, we must find an extremum of the Lagrangian L=
T = W rather than the potential energy W; hence, if w = 0, Eq. (8.5) for g
will include an additional term which is positive when w?< 0 and negative
when «? > 0. Let us now assume that the solution of Eq. (8.6) has more than
two zeros in the interval (0,b). Then, by adding a positive quantity to Eq.
(8.5) we can shift the zeros and one of them will move to the pointr =b
and the other to the point r = 0. Since displacement of the zero to the singu-
larity r = 0 gives a solution that remains bounded for r = 0, both boundary
conditions are satisfied and, consequently, the plasma will be unstable (w? <
0). However, if there are fewer than two zeros in the interval (0, b), the
boundary conditions can be satisfied only by a negative increment to the ex-
pression in (8.5), i.e., w?> 0.

Let us now examine some of the consequences that follow from this
general statement. We start with the stability condition with respect to a
local perturbation, i.e., a very large azimuthal number m. If m and k both
approach infinity but their ratio remains finite, the quantity f remains finite
in all terms in Eq. (8.5), with the exception of the second, The second term
is positive and approaches infinity when m — «, Hence, when m >> 1, an in-
stability can only arise if this term is very small, i.e., near the point r= Ig,

HYDROMAGNETIC STABILITY OF A PLASMA 181"

where kiBz + mBy, = 0. At this point the pitch of the helical line of forc'e co-
incides exactly with the pitch of the perturbation, i.e., the perturbation is
constant along the line of force, In other words, the perturbation is convec-
tive near the point r = 1. s

Now we introduce the quantity y =B, /1B, which characterizes the
pitch of the line of force, and write x = r — 1, to represent the distance from
the point ry. We assume that x is small, so that f and g can be expanded in
powers of x; only the first terms are retained. Assuming that krBz + mB‘P =
mB, rp'x, we have

I37:3 282 m?rB?

[= g WP &= —Fpzp' + —— ()4

so that the Euler equation (8.6) becomes

G 2B 4, (8.1
where
7= r(irf;fBi & ZZT’%; W=
V=%

If x << 1/wn ~1/m , the right side of Eq. (8.6) can be neglected and
in this region the solution is in the form of a power function § = xV, where
v==YYq31 Y —q 1f ¢ <!/, the exponent v is real and the solution has
no zeros. On the other hand, if q > % the solution can be written in the
form g = xV2 sin (Wq- 1/4 In x) and thus exhibits an infinite number of zeros
in the vicinity of the point x = 0, The general stability criterion indicates
that the pinch is stable in a local sense only when q < 14 or, in more ex-
plicit form, when

2
dp B rdin m )2
—8wr <7 (Tmr) - (8.8)
This condition on the convective stability of a current pinch was first
given by Suydam.

It follows from (8.8) that any pressure distribution that diminishes in
the radial direction is unstable if g = const. In particular, a pinch with a
uniform longitudinal current is absolutely unstable if B; = const.
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If p = const, the pitch of the lines of force I = 2w /u is independent of
radius and two lines separated by any radial distance can be interchanged
without appreciable distortion of the magnetic field. Under these conditions
the convective instability is not forbidden in any way. However, free inter-
change of the tubes is not possible if u varies with r. For example, let us
consider two magnetic surfaces A and B separated from each other by asmall
distance. In Fig. 13, the surfaces are shown as planes, and points character-
ized by the same value of the azimuth angle lie above each other.

The lines of force on surface A are shown by dotted lines and those on sur-
face B are shown by solid lines. If p # const, these lines exhibit a shear with
respect to each other: they form an angle 6« proportional to g£mu' [more
precisely, o= (B2 /B¥)p'g]. Hence, interchange of a very long tube, for
example CD, from plane A to plane B will cause a strong distortion of the
magnetic field close to the surface B. The perturbation which produces the
minimum distortion of the magnetic field will be one for which the displaced
force tube makes the smallest possible angle with the lines of force. For
example, if the displacement is a kinking of the tube EFG, with the anchored
ends EG, the displaced tube must assume the shape of one of a helical
spiral with pitch L = 27 &/6 = 2nB%/ B’ (cf. Fig. 13).

Thus, shearing of the lines of force produces the same stabilizing ef-
fect as conducting endplates (cf. § 6): shear effectively limits the length of
the convectively interchanged tubes to the value L ® owB*/ B"’zrp' .

Let us now assume that dp/dr = 0 at some value of 1, In this case, we
must, in g, in Eq. (8.5) take account of higher-order quantities in x; as an
approximation we write

B3 mtr32

g:.__l_f.‘i’._f.z} x4+ 2 (1,")22
o T E A T (R

The Euler equation then beconies

2
1 d [ ,dtE 4u By t op  miB?
1 dx (x dx) rip’ B x =®E = J27: L (8.9
' 2 .

which is analogous to the Schrédinger equation for the hydrogen atom. The
stability criterion is then analogous to the criterion for the absence of a
bound state, i.e.,

B?DBE m? ( dinp >2
Bs 4 \dlnr

Equations (8.9) show that when y'/p > 0 the instability can only occur
outside the surface x = 0; similarly, when p*/p < 0, the instability can only
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A

Fig. 13

occur inside the layer (x < 0), i.e., only those perturbations contribute to the
instability whose pitch is greater than the pitch of the lines of force.

This instability is related to the existence of an azimuthal field and
represents a localized variant of the screw instability. It is evident from Eq.
(8.9) that the instability is due to perturbations characterized by small m, A
and that the most dangerous mode is the m = 1 mode (which cannot be
treated by our local analysis).

The Suydam condition is only a necesséry condition since it refers only
to a localized perturbation (m >> 1). Some perturbations with small m are
not localized and the appropriate stability condition cannot be a local one.

Let us first consider m = 0 perturbations. It follows from Eq. (8.5),
which governs the quantity g, that the most dangerous perturbation is the one
for which k — 0; for this perturbation,

7 b rB? dE \? dp B? |
g = — z _— Balatly ] L 2
Wi=o = -5 J {4n <dr) + 28+ B

It is evident that the pinch is stable with respect to the sausage insta-
bility (m = 0) if the ratio 8mp/B? is small enough.

Let us now assume that m # 0. Since k can assume arbitrary values in
an infinite pinch, we can write k = qm. Then m disappears everywhere ex-
cept in the second term in Eq. (8.5); since this term is positive, it follows
immediately that the most dangerous perturbation is the one for which m = 1.
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Integrating the potential energy by parts (8.3), we find
: 1 : dt Bk
W = -—g— }‘ {m [(kaz + mB(p) ar + (krBl '——ﬂle) T] +
0

-+ [(krBz + mBg)* — 2B, —d‘-ir— (qu,)] ?—:] rdr.

Lin the

It then follows that a pinch in which B, falls off faster than 1~
radial direction is stable against any perturbation. However, this distribution
can only be produced by means of a metal current-carrying conductor at the

center of the pinch.

This result, generally speaking, is all that can be obtained from our
general analysis. In order to go beyond this point, it is necessary to solve
the Euler equation (8.6) for each particular case. It is possible to find cer-
tain stable distributions of fields and currents in this way, but this question
is rather special and goes beyond the framework of the present review. We
shall confine ourselves here to consideration of the very simple case of a
thin skin layer.

In §7 we have considered the stability of a sheet pinch in the approxi-
mation in which the thickness of the sheet is vanishingly small. Actually,
however, the skin depth is of finite thickness 6 ,.and the transition to the
limit 6 -»0 is not completely trivial.

When & << q, the Suydam condition is easily satisfied since the left
side of Eq. (8.8), ~1/&, while the right side ~1/ &% Thus, the sheet is
stable locally, i.e., with respect to perturbations with transverse wavelength
A~ a/m = &, and it is only necessary to consider perturbations with m <<
a/&. When & << a, we only need solutions outside the pinch and inside the
pinch, weating the sheet itself in the form of a connecting condition. We as-
sume that B, = 0 inside the pinch; in this case the solution of the Euler
equation (for the inner part) which remains bounded for r = 0 is

E = Im(kr), (8.10)
where Iy is the Bessel function with imaginary argument.

If there is no conducting wall (b = ), the solution of Eq. (8.8) for the
region outside the pinch, where p =0, is

£ = .krma K;n(kf),
krBz. -+ —;—‘ B (8.11)
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where Ky, is the MacDonald function of index m.

When m << a/&, we need only retain the first term in the expression
for g inside the sheet, i.e., as an approximation we have

_ e dp
8= 1apz Fmidr’ (8.12)
We first consider the perturbations for which f does not vanish inside
the sheet . In this case, £ can be regarded as constant inside the thin sheet.
Integrating Eq. (8.6)across the sheet, we find the connection condition:

(f%)8_<f%)i=—-—k%2“k—:ﬁnz—p’ (8.13)

where the subscripts e and i mean that a given quantity is taken outside or
inside the pinch, respectively.

If the soludons (8.10) and (8.11) are substituted in Eq. (8.13), and if
the left side is smaller than the right side, the solution satisfying the connec-
tion condition {(8.13) will have fewer than two zeros and the pinch is stable.
However, if the left side is larger than the right side, a solution satisfying
(8.13) will have at least two zeros in the range 0 < r < e, and will be un-
stable, in accordance with our general criterion. Thus, the stability criterion
for the pinch is obtained by substituting (8.10) or (8.11) in (8.13) and replac-
ing the equality sign by the < symbol. This criterion is

I (ka) ___k__ B2 >0

m 2 K, (ka)
. . m 1 212
(k‘BH a B“‘) -5, I,, (ka) a @ (8.14)

K (ka)
and is evidently exactly the same as (7.6).

Let us assume now that f vanishes at some point r = rg within the sheet.
We shall show, first of all, that the singularity at this point is sufficiently
strong so that the solutions to the left and to the right are completely inde-
pendent.

Near the singularity the Euler equation (8.7) can be written
” q -
v +-79=0

where p = Ex, i.e., this equation is in the form of a Schrodinger equation
with potential U; = -q/x%. If we take account of inertia (w = 0), the poten-
tial well will have a "bottom™ so that the function U; can be taken as con-
stant when | x| < xo. Even e and odd p, solutions in this region are, re-
spectively, ¢ = cos(v qx 7x,) and go=sin (Yqx/xy). The solution for x> x,
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i = 41 ¢ =1 = S =

is of the form p = Ax™1 + B.x . where v =14+ {T—dand vy ="~ 41/~ q,
so that v; > v,. The coefficients A and B can be found from the connection
conditions on the logarithmic derivatives at X = Xg:

leex(Yf—l'*' VQBex(Y'—I — ﬁ tgl/_
A3+ Bxyt *o '

iAoty ™! 4 vyBert _Va ctg V7
Agcyt - Byxg® Xo )

From these conditions we have:

B. wHVateVa . v,
Ae w+VetgVqg °
Bo Vi — V—EClg ﬁ ViV

_0 o X

0 voa—VqctgVq

Since vy > vy, it follows that B— 0 when xo = 0, i.e., in the limit
w— 0 both the odd and even solutions go as § = x%, where o = —1,5 +
41/4— q. Let us take half the sum and half the difference of these solutions:
we then find that one of the two independent solutions of the Euler equation
vanishes when x < 0, going as X when x > 0, and that the other vanishes
when x > 0, becoming |x|® when x < 0. Thus, the solutions on the two
sides of the singularity are completely independent and the stability condi-
tion splits up into two conditions.

We now integrate Eq. (8.6) once with respect to r from the inner bound -
ary of the sheet r = roj to the singularity. Since f = 0 whenr =1g, we find

r

of Toi
where we have taken ¢ out from under the integral sign; this procedure is
valid because o is small whenq <<1 and £ = x® for almost all values of x.
Taking account of the equilibrium condition 8ap + B2 + BZ(P = const inside
the sheet, we can obtain one of these stability conditions from the solutions
(8.10) and (8.11):

g Im(ka) ka
@ (ka) k*a* t m*

2 2
(B% + Bor) >0 (815)

P

HYDROMAGNETIC STABILITY OF A PLASMA 187

where Byg and B, are the field values at the singularity. 1

In exactly the same way, by integrating Eq. (8.6) from rg to rge, We ob-
tain the second condition:

m 2 K (ka) ka
= (kB + G Ba) R Gy (P B)

* pe
a Boe =" (8.16)
Taken together, the two conditions (8.15) and (8.16) represent a more

stringent condition than the single condition (8.14). This is explained by the
fact that it is impossible to impose a connection condition on ¢ from both .
sides of the sheet because the perturbation has a singularity within the sheet.’
For this reason, the condition (8.14), which is obtained under the assumption
that £ is continuous, is a weaker condition,

Let us now consider the particular case By = const, B(’,/Bz << 1. In this
case we can assume that ka << m and two very simple conditions are de-
rived from (8.15) and (8.16):

1—1—(1+—§1%i\>0' (8.17)
()7 -
m z k? m

(1B, + 2-By) + 4 Bi— g By >0. 616

It is then obvious that the external portion of the sheet is unstable for
all m, while the inner portion if weakly unstable only for m = 1. The un-
stable nature of the outer layer of the sheet is due to the last term in Eq.
(8.18). In the final analysis, the instability is due to the reduction in azi-
muthal field as a function of distance from the boundary of the pinch; in
other words, the jump in current density. Hence, this instability can also
arise when the current is distributed over the entire pinch. According to
Eqs. (8.1) and (8.2), £/ £ and &g /& approach infinity close to the singu-
larity r = rg, so that this instability is expressed in the fact that the thin sur-
face layer of the pinch tries to form a helical "braid."” -

It is evident from this example that any kind of singularity in the cur-
rent distribution requires a special analysis, and that satisfaction of the
Suydam condition is not sufficient for stability of such discontinuities.

In concluding this portion of the review, we wish to consider another
question of qualitative nature concerning the difference between a vacuum -
plasma and a force-free plasma. In the last example we have not assumed -
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that the region outside of the pinch is necessarily a vacuum, but have only
stipulated zero plasma pressure in this region. We might call such a plasma
a "zero-pressure” plasma. The following question then arises: Is a zero-
pressure plasma always equivalent to a vacuum? The answer to this question
is negative. A zero-pressure plasma can be regarded as a vacuum only if
there are no singularities within the region, i.e., if the pitch of the perturba-
tion nowhere coincides with the pitch of the line of force. If this condition
does not hold, and if f vanishes at some point r = rg, then, as we have seen
earlier, the solution for £ at this point must vary like a power series with a
small exponent. But this behavior of the solution implies that § vanishes at
a point close to the singularity. The singularity r = rs is then equivalent to
a conducting wall of radius b = r5; consequently, an ideally conducting
plasma with zero pressure outside the pinch can have a stabilizing effect on
certain perturbations.

§9. Screw Instability

In view of the particular importance of the m = 1 perturbations, which
are the most dangerous from the point of view of stability, it is desirable to
consider in greater detail the physical nature of this instability, which we
will call the screw instability.

Consider a thin ideally conducting pinch of radius ¢ with current I
flowing along its surface which is located in a uniform magnetic field Bz
(Fig. 14). For simplicity we assume that this pinch is‘an incompressible fluid
and that there is no magnetic field inside the pinch. We also assume that
By = 21/ca << B,. Then, as follows from Eq. (7.7), the frequency of the
m = 1 oscillations is given by

. 2 B
dngow® = (kBZ’*‘"},“Bw) — (9.1)

a2

The largest growth rate is thus to be associated with the perturbation
for which k = —(1/a)(B¢/Bz). As long as it is small, this perturbation is con-
stant along the lines of force and does not perturb the external field. We
now wish to determine what happens in the subsequent growth in the perturba-
tion.

Obviously, the pinch will be subject to an accelerating force until the
magnetic field becomes uniform (Fig. 15). The radius of the equilibrium
helix r, can be found from the flux conservation condition as applied to the
flux trapped by the ideal conductor. In the initial state, the flux trapped by
the conductor is &, = L(2I /c)In(b/a ), where b is the radius of the ideally
conducting wall and L is the length of the entire system (which can be bent
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into a torus). In the second equilibrium state this
flux is given by & = m§B,L/l, where I is the pitch

of the helical line; for perturbations with the maxi-
? mum growth rate the pitch is found from the condi-
( > tion 2w/l = k = (1/aXBy/Bz). Equating &, and &y,

we find

211 b b

\ f0= —;EB—OIHT‘—_—‘G 21“'—‘1—. (9.2)
This state is not completely an equilibrium
) state; the lines of force of the longitudinal field
J/ tend to smooth the fluid conductor, first forming it
\\ into a helical ribbon and then into a thin-walled

cylindrical tube of the same radius r,. In a straight
Fig. 14 pinch this final equilibrium state is obviously a

neutral condition, since the field is everywhere uni- .

form. In toroidal geometry, however, equilibrium is

not possible without the longitudinal current and the

/’t\ fluid will move toward the outer wall as long as an

equilibrium state is not reached.

The motion we have been describing is actual-
ly an imaginary motion which would occur if the
pinch were located in a medium of high viscosity.
Actually, however, the pinch will have a high radial
velocity when it reaches the second equilibrium state,
since all of the energy of the azimuthal field has -
been converted into kinetic energy. For this reason,
’ f\ the process becomes oscillatory. Nonetheless, the

fact still remains that the screw instability arises as

Fig. 15 a consequence of the stretching of the lines of force,

which try to annihilate the azimuthal field. Since
this effect overcomes the infinite conductivity, the pinch is distorted into a -
helix.

%

In the second equilibrium state there is no azimuthal magnetic field
and the ficld energy assumes the minimum possible value. It should be noted
that this stable state is possible for any I, but that the perturbations can grow
only when I = mBza/Bp. The transition to the minimum energy state re-
quires the overcoming of a potential barrier for smaller values of l; conse-
quently this transition is not possible for small initial perturbations and infin-
ite conductivity.
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Now let us assume that there is a trapped magnetic field inside the
pinch. Aswe have seen in §7, a pinch of infinite length is unstable in this
case and will tend to be formed into a helix. However, the longitudinal
field inside the pinch exerts a tension so that the equilibrium radius 1y is
somewhat smaller under these conditions for the same pitch. Moreover, be-
cause of the trapped field the azimuthal field does not vanish completely.

Thus, the screw instability arises as a result of the stretching of the
lines of force of the magnetic field, which try to become straight. This ef-
fect is clearly demonstrated in the m = 1 screw instability, but this mode
can easily develop into the m = 2 mode. We have shown above that this
transition will occur if the shear of the lines of force is small, i.e., if p* = 0.

§10. Stability of Toroidal Systems

Toroid al systems are of very great interest from the point of view of
containment of high-temperature plasma by a magnetic field. By toroidal,
here, we mean any system which is topologically equivalent to a torus: this
can be a simple circular torus, a stellarator with a figure-eight configuration,
a stellarator with helical stabilizing windings, or any other more complicated
system which can be continuously transformed into a torus.

Obviously, the exact analysis of the stability of a plasma in systems of
this kind is a problem of enormous mathematical difficulty; this is especial-
ly true because the absence of axial symmeury with respect to the magnetic
axis of the system means that modes with different m cannot be separated,
and the problem cannot be reduced to a one-dimensional problem. In the
present state of research on stability, one is not basically interested in an
exact investigation of a particular plasma distribution in a specified mag-
netic field; rather, one is interested in the general qualitative question of
which fields are the most useful from the point of view of stability, and what
a change in a given field configuration implies as far as stability is concerned.
These qualitative considerations can be derived from a variational principle
by appropriate choice of certain test functions for the perturbations; some-
times the required information can be obtained rather simply from direct
consideration of the change in potential energy for small perturbations.

In the final analysis, the plasma instability in toroidal systems with
longitudinal currents is essentially a combination of the screw and convec-
tive instabilities that we have already considered and the corresponding sta-
bility conditions are similar to those that have been obtained for the cylin-
drical pinch.
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We first consider an ordinary circular torus. We denote the minor radi-
us of the pinch by @ and the radius of curvature by R; R is then the major
radius of the torus, The quantity & = g /R is rather small, about 1/3. even in
a highly curved torus, so that it is natural to use the quantity & as the small
expansion parameter. In the first approximation in ¢ all of the stability con-
ditions remain unchanged and the only difference, as compared with the
straight pinch, is the fact that the pinch is bounded in length, so that the
longitudinal wave number k can only assume discrete values: k = 2 /Lgn =
n/R, where Ly = 2aR is the length of one circuit around the system, and n is
an integer. In a system with a strong longitudinal field, this condition re-
duces to the Kruskal—Shafranov condition (7.9), i.e., to the absence of a
screw instability.

It is found that this condition must be modified in systems in which the
magnetic axis is not a plane curve, but exhibits finite curvature. These sys-
tems (the simplest example being a stellarator in the figure-eight configura-
tion) are characterized by a so-called rotational transform, i.e., even in the
absence of a longitudinal current the lines of force turn through some angle
« in making a complete circuit around the system. This means that points
with the coordinates (z + Ly, ¢) and (z, ¢ + o) actually represent the same
point in space and the phases of perturbations of the form exp (ikz + im¢)
must differ by an amount which is a multiple of 2w at these points; similar-
ly, the wave number k must satisfy the condition

kL, — ma = —2nn. (10.1)

Assume that B, is positive and that m = 1. Then, according to (1.7),
a sheet pinch will be stable if —kB; >B_ /a. Substituting k from (10.1),we
find the condition for helical stability of a current-carrying pinch current in
a system in which a # 0:

B 2 B,(—a+ 2nn
o< 2(— o+ 2nn), (10.2)
where n is the integer for which the right side of the inequality (10.2) as-
sumes its smallest positive value. It is found that this condition is not limited
to the case of a sheet pinch, but is valid for any radial current distribution.

When o # (2q + 1)w, where q is an integer, it follows from (10.2) that
the limiting currents are different for flow along the field (B;/By, > 0) and
against the field (B /By < 0).  Furthermore, it also follows from this condi-
tion that the limiting current against the field is small for small a > 0 (n=0).
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When | o < 7, the condition in (10.2) remains approximately the
same as when the rotational transform is produced by means of auxiliary
helical windings. However, this statement may not hold if |a|> w. For
example, assume that the stabilizing winding is an 1=3 winding; in the case
oB ¢/ B> 0, i.e., when the rotation of the lines of force caused by the
longitudinal current is of the same sign as in the case of the stabilizing wind-
ings, the pinch is found to be stable with respect to kinking when |B,/ Byl -

Ly/a <|af.

Now let us consider the helical instability of the pinch (m = 1). Per-
turbations with m >> 1 can be reduced to a convective instability. Ina
weakly curved smooth pinch the convective instability rises when the Suydam
condition (8.8) is violated. However, if the primary magnetic field is not
uniform (i.e., if there are stabilizing helical fields), this condition is modi-
fied. We now write the Suydam condition in a form which shows its physical
content more directly:

2 dp n3?
Rg dr 4L® ° (10.3)

Here, Rs = rBz(p/Bz is the radius of curvature of the line of force, while
L = 2nB/Bgry’ is the minimum possible wavelength of the perturbation along
the line of force. In this form this condition is completely analogous to
(6.3), so that the right side of (10.3) expresses the stabilizing effect of the
shear of the lines of force. In the absence of a longitudinal current the
quantity p' in the expression for L is to be replaced by a'/Ly, where o is the
rotational transform computed for a complete circuit Ly. This procedure
yields the following criterion for convective stability in a stellarator system
with stabilizing windings:

(10.4)

In a highly modulated field, the quantity 2/Rg ~ U'/U can be of the
order of 1/r; the rotational transform angle per unit length o/Lg can also be
rather large, and it then follows from (10.4) that a low-pressure plasma (B=
8mp/ B <<1) will be stable in this "shear” field (' = 0).

§11. Current Convective Instability

Up to this point we have assumed in all cases that the plasma conduc-
tivity is infinite. If the conductivity is high but not infinite, all of the rela-
tions given above hold for perturbations characterized by long wavelengths
and high frequencies. Furthermore, when o # « new kinds of slow
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oscillations can appear and the frequencies of shortwave perturbations can be
modified. We shall consider one example of this kind, h

We start with the simplest possible case.

Assume that a current Iy flows in a thin conductor of radius ¢ and den-
sity pg, and that the conductor is located in a uniform magnetic field Bg. If
the conductivity is infinite, this conductor is unstable against kinking and
will assume a helical shape at a growth rate given by Wt~ thp/41ra'zpo. We
assume now that the conductivity is low and that the magnetic field is not
trapped. Then, while being distorted into a helix the conductor is subject
to a Lorentz force (1/c) Bz, where I, = KEIy is the azimuthal component
of the current and £ is the radial displacement. Thus, we have of =
kLB /cma®py = kaB Bz (2mpga® ™. When ka ~ 1, the growth rate is /B;7 B,
times greater than.when o = «. In other words, when o =« the pinch is un-
stable only against longwave ‘perturbations, for which ka ~ Bq;/Bz <<1; at
low conductivities, however, the barrier against shortwave perturbations is
removed and increasing the longitudinal field can even enhance the in-
stability.

If the conductivity is large, but finite, the magnetic field is almost
frozen in the plasma and the instability can only develop in the form of
shortwave perturbations; the motion of the plasma, under these conditions,
will be of the nature of a diffusion "leakage" across the lines of force. Since
inertia does not play any role in. this slow motion, the charged particles move
at the drift velocity. Let us assume that the ion and electron pressures are
small and that the magnetic field is uniform. In this case the only agency
capable of producing a drift is the electric field and the electron and ion
drift velocities are the same, v = c[EB] - B-2. We now show that this drift
leads to an instability of the convective type in the presence of a Jongitudi-
nal current and a nonuniform conductivity,

Assume that a current j, flows along a uniform magnetic field By in the,
z direction; the current is so weak that the magnetic field it produces B @ <<
B,. We also assume that in the equilibrium state the plasma conductivity g,
is a slowly varying function of x. In a fully ionized plasma, in which the
conductivity depends only on the electron temperature, this variation can be
due to a temperature variation; in a weakly ionized plasma the gradient of
0, can also arise as a consequence of a density gradient,

Now assume that this equilibrium state is subject to small perturbations.
The semiclassical approximation can be used for shortwave perturbations and
the dependence on coordinates and time can be expressed in the form
exp(—iwt + ikr). We also assume that the longitudinal magnetic field is very
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strong and that the frequency of the Alfvén waves kgca = kzByldmp e /2 i
much higher than the frequency of the oscillations being considered here. In
this case the perturbation of the magnetic field will be negligibly small and
the electric field associated with the oscillations is irrotational: E = —Ve.

The wransverse velocities of the electrons and ions are the same in the
approximation being used here; hence, there is no wansverse electric field
and the perturbation of the longitudinal current must vanish, i.e.,

— k9o, -+ 6E, = 0. (11.1)

Drift in the transverse electric field leads to transport of plasma with a
resultant change in the conductivity; the conductivity perturbation o can be
written

cky day

. i . 2
{00 — i 5% —r- @ = —x k0, (11.2)

where the coefficient x takes account of the "equalization” of the electrical
conductivity along the lines of force: in a fully ionized plasma, x is the
thermal conductivity and in a weakly ionized (but highly "magnetized”)
plasma, x is D, , the ambipolar diffusion coefficient. We can now find w
from Eqs. (11.1) and (11.2):

. . kyE,c do
i b2 yEof 40
o= —ixk; +ighe T (11.3)

if ky is large, the second term in Eq. (11.3) can be larger than the first
and the corresponding perturbation will grow.

Let us consider in greater detail the origin of this instability, which we
will call the current convective instability. Let us suppose that doy/dx < 0,
and that the plasma is displaced from equilibrium position as shown in Fig.
16. Since the conductivity of layer ABCD is increased as a consequence of
this displacement, charges will accumulate at its boundary surfaces — posi-
tive charge at the upper surface and negative charge at the lower surface.
These charges give rise to an electric field with a nonvanishing E, compo-
nent, If the sign of ky/kz is appropriate, the drift due to this field will be
in the same direction as the original displacement and will reinforce the
original perturbation,

It is evident from Eq. (11.3) that the highest growth rates are to be as-
sociated with small k, i.e., this instability is manifest in the displacement
of a plasma tube which is highly elongated along the lines of force of the
magnetic field. In order to determine the wave number kg for which the
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Fig. 16

growth rate is a maximum, we must take account of the inertia terms in the
equations of motion and in Ohm's law. An analysis of this kind for a plane
layer in a gravitational fieid has been carried out in [34], Itis shown there
that the current convective instability is not the only possibility. An inhomo-
geneous plasma with finite conductivity is also subject to an instability of the
"local pinch" type, which develops as a consequence of the tendency toward
filamentation of the current flow, and to an instability of the convective
("gravitational”) type which arises because the lines of force in a finite-
conductivity plasma are not frozen in, so that the convective instability
criterion becomes much more stringent. In particular, the inverted pinch
(i.e., a concentric discharge in which the current rotates about a center con-
ductor located at the axis of the discharge) is completely stable for ideal
conductivity because d/dr (qu,) < 0. However, Rebut has shown [35] that if .
the conductivity is finite this configuration becomes unstable if the current
density exceeds some critical value which is smaller, the thinner the dis-
charge. This result has been verified experimentally.

§12. Superheating Instability

There is another instability that is to be associated with the finite con-
ductivity of a plasma; this instability can arise in Joule heating (by virtue of
current flow) of a plasma in which the electrical conductivity increases with
temperature. This instability arises because overheating of a plasma tube
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carrying a current increases the conductivity; in turn, the higher conductivity
means a higher current flow, with further overheating, and so on.

As a simple example, let us consider the following idealized problem.
Assume that a current j; flows along a uniform magnetic field By in the z
direction; the current is so weak that the magnetic field it produces can be
neglected. We also assume that the plasma pressure is much smaller than
the magnetic pressure. In this case, the equation of motion for small oscilla-
tions can be written in the form

. 1 .
—iov = —— [jB
Mngc [iBdl » (12.1)
where M is the ion mass, v is the ion velocity, ng is the density, and j is the
current density, If the ions are cold, Ohm's law can be written in the form
jO dln To T

1 j
== VBl + 5 — 5 amT, Ty (12.2)
where j is the current perturbation; Ty is the equilibrium electron tempera-
ture, and T is the temperature perturbation,

Substituting the expression for the field (12.2) in the equation 8j/0t =
—c®/ArrotrotE, which derives from Maxwell's equations, and eliminating v
by means of Eq. (12.1), we have

K . ding, T
4no, ]°dlnT0 Ty’ (12.3)

c2k?
410,

((o"’—i— iw

— c‘j,ki) j: = io
where cp = B°(41moM)'1/ Z is the Alfvén velocity and k is the wave number
for small oscillations of the form exp(—iwt + ikr).

The temperature T can be found from the heat balance equation. We
assume that plasma is uniform in the equilibrium state and that the Joule
heat j}/0, is completely carried away by radiation Q{Ty). Then, neglecting
the displacement of the plasma along z, we can write the linearized heat-
balance equation in the form

2
L 2 2 2 dQ, 2jp  dlne, \ T
( {0 + Xukz + XKy + 5= + g T, [T
e
3n9T 00 **’ (12.4)

where x is the thermal conductivity (anisotropic).

HYDROMAGNETIC STABILITY OF A PLASMA 191

From Eqs. (12.3) and (12.4) we find the dispersion equation for deter-
mining the frequency of the small oscillations w:

(m2 + {wvs —c%qki) ((o -+ ix“ki + L'xlsz_ -+ iv, - ivq) -4~

2
k.L

+ 20vyv, 7 =0, (12.5)
where
v 2 dQ, | _ 2  dino,
=7 Adngy r 3ny dT,° 97 3ngToge dInT, °

fvg=0,ie., if the conductivity is independent of temperature, Eq.
(12.5) shows that the oscillations split into Alfvén waves and temperature
perturbations which are damped as a consequence of the thermal conductivity
and radiation (y; >0). A similar splitting takes place if vq # 0, provided
the magnetic field is very strong, i.e., cAkz must be larger than all of the
other characteristic frequencies. In this case, the frequency for the thermal
perturbations w is

® = —ixnkE — iy LKL — v, — ivg. (12.6)

These perturbations can grow only if vq < 0, i.e., if the conductivity
diminishes with temperature,

Now let us consider shortwave perturbations, for which v is appreciably
higher than the other characteristic frequencies. Going to the limit vg— =,
we find ’ :

K — K
. 2 . 2 . . 1
W = — gk — iy kL — v + Vg — 55 ~. (12.7)

It is evident that the instability can now arise for either positive or
negative vg. In the first case, the instability appears in the formation of a
filament of higher conductivity which extends along the lines of force of the .
magnetic field; in the second case, the instability appears in the form of al-
ternating layers of high and low conductivity similar to the striations in a
glow discharge. However, since the electron thermal conductivity is very
high along the field lines, in a fully ionized plasma an instability will arise
only for perturbations which are highly elongated along the magnetic field
(k, - 0). In this case, the plasma is unstable only if vq > 0, which corre-
sponds precisely to the actual conditions in a fully ionized plasma in which
the conductivity is proportional to the electron temperature to the ¥, power.
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It should be noted that the growth time for this instability is relative-

1y large, being of the order of the penetration time. Hence, it is difficult
to say whether it appears under actual conditions. On the one hand, the
long wavelength perturbations (kK* < 4w0 gcak,c2) are stabilized in a strong
magnetic field and a current pinch has a tendency to break up into many
filaments which are highly elongated along the lines of force of the mag-
netic field. The growth time for this instability is of the same order as the
time required for the production of the discharge, so the possibility is not
excluded that this instability will appear as a contraction of the discharge
as a whole as occurs, for example, in the pinching of an ordinary arc.
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