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ABSTRACT

In this paper an approximate analytic solution is obtained for the following problem: A perfect, in-
compressible fluid occupies the upper half of a vertical tube, being supported against gravity by a rigid
diaphragm. The lower half of the tube is empty. At time ) the diaphragm is removed, and an infinitesimal
disturbance of a simple kind is impressed on the free surface of the fluid. The problem is to describe the
subsequent flow, on the assumption that the fluid at sufficiently great heights above the free surface is
permanently at rest. The initial disturbance is so chosen that the fluid rises in the center of the tube and
runs down at the sides. The range of validity of the approximate solution obtained is discussed. It is
shown that the vertex height { increases exponentially, in agreement with the linearized theory, until
¢ = 0.2 \/2B1, where M is the diameter of the tube and B is the first zero of the Bessel function J,(r).
When ¢ 51.52/2 B4, it increases at a nearly constant rate. The method of solution described is applied
to an analogous problem involving two-dimensional flow between parallel plane walls and also to spa-
tially periodic flows.

I. INTRODUCTION

The study of small oscillations at the interface between superposed fluids in a gravita-
tional field was initiated by Stokes (see Lamb 1932). In the simplest case both fluids are
inviscid and incompressible and extend to infinity on either side of the interface. If the
mean level of the interface is the plane y = 0, and the gravitational potential is — gy, the
equation of the interface is

w0 = [ Au) eedk (As= 48, ®
where
— 1/2
A (D) = Apec®t =|gpP2_ P (2
() = e, o= [gr 2]

* Most of the new work described herein was done during the month of July, 1952, at the Forrestal
Research Center of Princeton University; the rest has been generously supported by the Air Force Cam-
bridge Research Center, Geophysics Research Directorate, through Contract AF 19(604)-146 with
Harvard University.
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The subscripts 1 and 2 refer to the lower and upper fluids, respectively. The initial
condition,

7 (5, 0) = [ Avet=dk, ®

determines the coefhcients 4. :

When p; > ps, the frequency o/i is real and the interface oscﬂlates perlodlcally
When p; < pe, however, o itself is real, and small disturbances of the interface grow
exponentially. The 1nsta.b111ty tends to brmg the heavy fluid to the bottom and the light
fluid to the top.

In the hydrodynamic equations the constant g need not represent a true gravitational
acceleration; it can equally well represent an “inertial” acceleration (see Taylor 1950).
For example, if two incompressible fluids occupy a tube fitted with a moving piston and
no gravitational field is present, the hydrodynamic equations in a frame of reference.
moving with the piston are identical with those for superposed fluids at rest in a gravita-
tional field that is equal in magnitude and opposite in sign to the acceleration of the
piston. A more interesting example is that of a liquid separated from a gas by a rigid
diaphragm. If the pressure of the gas exceeds the pressure of the liquid, the interface
will be unstable when the diaphragm is taken away. Evidence for this kind of instability
appears in photographs of underwater explosions (Cole 1948).

Spitzer (1954; see also Frieman 1954) has suggested that something analogous to an
underwater explosion may occur when an O star or a B star is formed in a medium of
neutral hydrogen. The ionizing radiation from the star produces a spherical volume of
gas in which the pressure and temperature are much higher than in the surrounding
medium. As the hot gas expands, it becomes less dense than its surroundings. One would
therefore expect the interface between the regions of neutral and ionized hydrogen to
become unstable—provided that the star is formed sufficiently rapidly.

The early work of Stokes has been generalized in several ways:

a) Viscosity and interfacial tension.—Stokes himself discussed the influence of vis-
cosity and surface tension on the oscillations at the free surface of a liquid (Lamb 1932).
Harrison (1908) worked out an approximate theory of oscillations at the interface be-
tween superposed viscous liquids, taking into account the effects of interfacial tension..
Pennington (1952), Chandrasekhar (1955), and Hide (1955) have extended Harrison’s
results. Viscosity and interfacial tension both exert a stabilizing influence on the inter-
face. When p; < pe, a critical wave length exists, whose value depends on the viscosity
and the interfacial tension. The interface is unstable against disturbances whose wave
lengths exceed the critical frequency, but stable against disturbances of shorter wave
length.

b) Compressibility—Wheeler, Carter, Frieman, and Pennington (1952) have modi-
fied Stokes’s theory to include the effects of compre551b111ty when the Mach number is
not too large.

¢) Boundary conditions—The formulae that have been obtained for two-dimensional
flow can be extended in a straightforward way to axially symmetric low. But the prob-
lem of small oscillations (or instability) at a spherical interface presents some new
features. It has recently been solved by Chandrasekhar (1955).

The investigations mentioned so far all proceed from a set of approximate hydro-
dynamic equations from which the nonlinear terms have been omitted. Consequently,
they apply only to the initial development of an unstable interface. Now in astronomical
applications the subsequent development is also of interest. In the present paper we
shall derive an approximate analytic solution of the exact, nonlinear equations for an
especially simple problem, which may be formulated in the following terms:

Let an incompressible, inviscid fluid occupy the region above the plane z = 0 inside
a right circular cylinder centered on the z-axis. The rest of the cylinder is empty; but the
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fluid is supported against gravity by a diaphragm. At time {, the diaphragm is taken

'ﬁi away, and a small disturbance of a simple kind is impressed on the free surface. We
i assume that the fluid at very great heights above the interface is permanently at rest.
T The problem is to describe the ensuing flow.

For the initial conditions that we shall use, the fluid rises near the center of the tube
and descends near the sides (see Fig. 1). After enough time has elapsed, the flow takes
on a quasi-steady aspect: the vertex (i.e., the highest point of the interface) rises at a
constant rate, and in a frame of reference moving with the vertex the flow is identical
with the steady flow around a solid of revolution in the absence of a gravitational field—
except that the descending fluid, having traveled only a finite distance, will not fill the
space between the solid and the walls of the tube.

Davies and Taylor (1950) have given an approximate theory of the steady state.
For the speed of the vertex they find

V =0.464 (gR) 2, @

where R is the radius of the tube.
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Fic. 1.—Illustrating the case of axially symmetric flow treated in Section II, 1
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The theory of Davies and Taylor holds for ¢ >> . The linear theory holds for ¢ = /.
One can bridge the gap between the two in a rough sort of way by using the linear theory
until the predicted vertex speed attains the value (4) and then switching to the steady-
state theory. As it happens (see Fig. 2), this simple approximation, which was originally
suggested by Fermi, is never in error by more than about 25 per cent. For many purposes
this accuracy will suffice. However, the more precise theory described later may be of
some interest in its own right, because very few nonsteady flows with a free boundary
have been successfully treated analytically, even in an approximate way.
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Fic 2.—Vertex height as a function of time, in the dimensionless units defined by equations (5) and
(52). 4, Fermi’s approximation for two-dimensional flow. B, Fermi’s approximation for tubular flow.
a, Present approximation for two-dimensional flow. b, Present approximation for tubular flow.

II. APPROXIMATE SOLUTIONS
1 TUBULAR FLOW

We shall find it convenient to adopt the units of length and time defined by the
equations
R
2o, =1, ()
B 8
where R is the radius of the tube, g is the acceleration of gravity, and 3,;(=3.83...)
is the first zero of the Bessel function Ji(7).
Since the fluid is inviscid and is initially at rest, the motion is permanently irrota-
tional. The velocity field can therefore be derived from a scalar velocity potential

g= —Vo. ©)

Since the fluid is also incompressible, the velocity field is solenoidal, so that ¢ must
satisfy Laplace’s equation,
Vi¢=0. )

We seek an axially symmetric solution ¢(z, 7, £) of Laplace’s equation that satisfies the
boundary conditions,

Lo (Z, B1, t) =0 &)+

(no radial flow at the walls) and
¢, (=, 7,1) =0 ©

! Here and in what follows we shall use subscripts to indicate partial derivatives. Thus ¢, = d¢/dr,
etc.

[
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(vanishing vertical flow at large positive values of ). In addition, ¢ must satisfy Ber-
noulli’s equation,

bi— % (it on) —z=1al(l) (10)

on the free surface. Here a is an arbitrary function.
The simplest nonconstant function that satisfies equations (7)-(9) is

o=F (1) e 2Jo(r), (11)

where Jo(r) is the Bessel function of order zero. The function F(¢!) must be chosen in
such a way that equation (10) is satisfied as nearly as possible on the free surface.
Now the equations of motion for a fluid particle are

i=—0¢,=F () e 2Jy(r), (12)
= —¢,=F () e 2T (), (13)

since
Jo(r)y = —=Ji(r). (14)

Suppose that we have found a solution of equations (12) and (13):
z=23(t roy, 30), r=r;ry 2), (15)

where (7o, 20) are the co-ordinates of the particle at time {,. By eliminating { between
these equations, we evidently obtain the equation of the trajectory of the particle.
Similarly, to find the equation z = ¢(r, ¢) of a surface that moves with the fluid, given
z = {(r, lo)—i.e., 20 = z0(r0)—we insert 2o(7o) in equations (15) and eliminate #o. In this
way we can find the equation of the free surface for any given initial condition. Before
doing this, let us consider briefly the nature of the flow defined by the velocity potential
(11).

The Stokes stream function y is defined by the equations
V.= —1¢,, V,=r¢,. (16)
Ji(r)

Since

Ji(r) =Jo(r) — an

r
and Jo(r) = —J1(r),
Y(z,r,8) =F@)reJ,(r), (18)
and the streamlines Y = Constant are given by
e2=CrJ.(r). (19)

Since the pattern of streamlines does not change with time, the streamlines coincide
with the trajectories of fluid particles. We can also obtain this result by noticing that
equation (19) is the integral of the equation

dsz ]0 ( 7’)
= 20
dr Ji(r)’ @
which follows from the equations of motion, (12) and (13).

According to equation (19), one can generate all the stream surfaces by displacing
any one of them parallel to the z-axis. The section of a stream surface by a plane through
the z-axis resembles an inverted U whose legs asymptotically approach the z-axis and
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the wall and whose apex lies directly above the first zero of Jo(r). The flow has an up-
ward component on the axis side and a downward component on the wall side (see
Fig. 1).

To find the equation of the free boundary, we integrate the equations of motion (12)
and (13). Set

Z=e*, (21)
v=17r?, (22)
4
T = | F@®dit+1, (23)
0 = [F@art
K (v) =£%Q (29)
In terms of the new variables, equations (12) and (13) become
Z =7y (v, 25)
72K (v) , 26

?

where the dot now denotes differentiation with respect to 7". Eliminating Z between these
equations and using the identity (17), one obtains, after a simple calculation,

v (I'—1)K ()
v Ze+1 7

Z_K(» T—1K(w)
ZO—K(%) Zit+1 )

These are the parametric equations of the free surface.

Since the velocity potential (11) is not exact, it cannot satisfy Bernoulli’s equation
(10) over the entire free surface. Now we are interested primarily in the flow near the
vertex, for when that is known, we can find the flow at the sides—at least in an approxi-
mate Way——by another method (see Sec. II, 3) We shall therefore choose the function
F(t) in such a way that Bernoulli’s equatlon is satisfied in a first-order neighborhood
of the vertex.

We shall assume that initially the free surface is perfectly flat, so that

z9(r0) =0, Zy(v) =1. (29)

(27

(28)

To obtain the equation of the free surface, we insert this value of Z, in equations (27)
and (28) and eliminate vo. Neglecting terms nonlinear in v (since we are concerned only
with a first-order neighborhood of the vertex), we obtain:

v= vl , (30)
d=T[1-g(1-T]. (31
We now substitute the velocity potential (11) in Bernoulli’s equation (10), replacing z

by ¢, as given by equation (31), and F(#) by T'(¢). Equating the coefficient of » in the
resulting equation to zero, we obtain a second-order, nonlinear differential equation for

the function 7'(¢):
TT+0)T"-T2-T2(T?—1) =0. (32)
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Let us verify that the solution of equation (32) has the proper asymptotic behavior.
When ¢ >> 4y, T >> 1, and equation (32) becomes, approximately,

: T"—-T=0. (33
Hence
/ F(t) =T (f) = et+e (> 1), 34
and

¢ = e (7t=9], (r) (t>>t0) . 35)
From equations (31) and (24) we find
' a¢| - _dlogT _

G| == 1 (> 1) . 36

Thus the velocity potential (35) describes a steady state of flow in which the vertex ad-
vances with unit velocity. In c.g.s. units the vertex speed is

» 1/2
V=(5B—R ~0.511 (gR) 1. -
1

* The experimental values of the numerical coefficient in this formula (Davies and
Taylor 1949) lie between this value and that derived by Davies and Taylor (eq. [4]).
Although Davies and Taylor used a velocity potential that is equivalent to equation
(35), they chose to satisfy Bernoulli’s equation at two distinct points (r = 0, » = 3R)
rather than in a first-order neighborhood of the vertex.

When ¢ = lo,
T=1+17() [ () 1], 68

and equation (32) becomes, approximately,

—7r=0. (39)

The initial condition (29) requires that
7 () =0. (40)

Hence the appropriate solution of equation (39) is

7 (f) = aeb sinh (£ — &) (getok 1), (41
so that
F @) =T (t) =7’ () = ae’o cosh (£ — tp) (42)
and
¢ =aeb cosh (! —1y) e=2Jo(7r) (t=t). (43

The velocity potential (43) is the one given by the linearized theory. We conclude that
the solutions of equation (32) have the proper asymptotic form.
To obtain the complete solution of equation (32), we set

X (T) =T". (44)
Equation (32) may be written in the form
d N1 o
ET[X(1+T W =2T—-T7Y, (45)
whence
X=T"?=F= (14772 "1 (T?—2 log T + const.) (46)
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the constant in equation (46) being determined by the asymptotic form of 7'(¢) for ¢ ~#,.
For the sake of simplicity, we choose

to—_:—-—-w, a=2_ (47)
Then equation (41) becomes
7() = et, (48)
and the constant in equation (46) = —1.

Let {*(¢) denote the co-ordinate of the vertex. The height of the vertex is given by
equation (31):

$*¥ () =logT (%) . (49)
Combining this equation with equation (46), we obtain, for the vertex speed,
A eX*— 2 ¢* — 1\V2
V(t)—Tﬁ_—( 1 ) . (50)
The height of the vertex at time ¢ is given implicitly by the formula
ey e+ 1 1/2
% Ny e
t(§2)_t(§_1)—'/§; (62“—1—296 dx1 (51)

and is plotted in Figure 2.

2. TWO-DIMENSIONAL FLOW BETWEEN PARALLEL WALLS

The extension of the preceding theory to the case of two-dimensional flow between
parallel walls presents no new features. We shall therefore quote the results for two-
dimensional flow, but we shall omit the working.

We assume that the flow is identical in every plane parallel to the xy-plane. The gravi-
tational field is in the negative y-direction, the walls are at x = + R, the planey = 0
represents the free surface at time ¢, and the equation of the free surface is y = 5 (¥, ?).
The units of length and time are so chosen that

R— -1 —= —
;_k =1, g=1. (52)

The velocity potential is
¢=F(f) e Ycosx. (53)

The streamlines and the trajectories of fluid particles are given by the equation
e?=Csin x . (54)

The auxiliary quantity T is defined as before and satisfies the equation

T3+ D)T"'+ (T3 —-1)T-T2(T3-1) =0, (55)
which has the asymptotic solutions
T = g8/ t+e (t>>1) (560
and
T=1—I—ae‘o Sinh(t—’to) (t%to). (57)

The corresponding velocity potentials are

b= e @30 cos & (t>1), (58
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¢=acet cosh({—1%) e ¥ cos x (E=ty). (59)
The vertex speed in the steady state is

1/2
Y =31 (%?) ~ 0.326 (gR) 2. 60)
The vertex speed for arbitrary ¢ is

e — 3p* — 112
] : 1)

(et + %)
and the vertex height is given implicitly by the formula

t(ng) —t(nt) =f:2 [3(63x+%) ]1/2 dx (62)

s —1—3x

V(t)=[

M1

and is plotted in Figure 2.

3. VALIDITY OF THE APPROXIMATION; NATURE OF THE FLOW NEAR THE WALLS

We shall explicitly consider the case of tubular flow; but the following discussion,
with some obvious modifications, also applies to two-dimensional flow. In the quasi-
steady state, the flow at depths greater than about 1.5R below the vertex is nearly
parallel to the wall of the tube. Using this fact, together with Bernoulli’s equation and
the equation of continuity, Davies and Taylor (1950) wrote down the equations

TRV =7 (R2—r?) g=a (R2—r?) [2g (¢*— 2)]1/2, (63)

where V is the vertex speed. These equations, rather than the theory of Section II, 1,
should be used to calculate the shape of the interface in the region where the fluid runs
parallel to the wall.

According to the second of equations (63), ¢ « (—z)¥2 for large negative values of z.
The approximate theory of Section II, 1, gives ¢ « exp(—z). Unfortunately, it does not
seem possible to develop a simple unified approximation that will yield both the correct
vertex speed and the correct asymptotic flow for large negative values of z. The follow-
ing discussion will bring out the nature of the difficulty.

The velocity potential (11) describes the simplest kind of axially symmetric flow that
satisfies the fixed-boundary conditions of the present problem and is free of singularities
in the entire tube. The most general flow of this kind is given by the velocity potential,

= Fp (1) e /P Ber (64
¢ k2=1 % (8) Jo 8, )
where the B:’s are the zeros of the Bessel function J(r). We see at once that this velocity
potential cannot have the proper asymptotic form for large negative values of z and
t > to. Consequently, the exact velocity potential cannot be free of singularities in the
entire tube: it must contain terms that represent sources in the region not actually
occupied by the fluid.

Symmetry requires the sources to lie on the z-axis. Let 2*(#) denote the co-ordinate
of the highest source (or the limit point of a continuous distribution of sources). Then
expansion (64) holds only for z > 2z*.

We can form a rough idea of how z* varies with time by examining the limiting cases
£>>to and ¢ = fy. In the quasi-steady state the quantity ({* — z*) is constant in time.
Inspection of the flows that have been calculated for various distributions of sources
(Milne-Thomson 1950) suggests that {* — z* =~ R. At the other limit, ¢ — o, the ve-
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locity potential (11) becomes exact. Hence {* — 2*— -4 « as ¢— #. These two limit-
ing cases suggest the approximate rule

-t = =00, ©5)

That is, the highest singularity coincides approximately with the center of curvature
of the vertex.

The theory of Section II, 1, probably describes the flow above the plane z = z* with
good accuracy. To describe the rest of the flow, one can use equations (63), together
with the requirement that the volume of fluid below the plane z = 0 equals the volume
not occupied by fluid above the plane z = 0.

III. INSTABILITY OF AN INFINITE PLANE INTERFACE
1. PERIODIC FLOWS

In Section II we considered flows confined by tubes and by parallel plane walls. We
shall now extend the results to unconfined, but spatially periodic, flows. In the case of
two-dimensional flow between parallel walls the extension is trivial: we may evidently
regard the walls as mathematical planes of symmetry. To extend the results for tubular
flow, consider an infinite array of right cylinders whose walls intersect any plane z =
Constant in a network of regular hexagons. We may reasonably assume that the flow in
a hexagonal cylinder of mean radius R resembles the flow in a circular cylinder of radius
R, except in the neighborhood of the walls. We may therefore use the expression derived
in Section IT, 1, for the vertex speed. Near the walls, however, the fluid will tend to flow
into the corners, forming long spikes rather than a uniform curtain. If the flow is the
same in every cylinder, it will not be affected by the walls, which we may therefore re-
gard as mathematical planes of symmetry.

The fluid displaced by a rising bubble runs down into six spikes, each of which serves
three bubbles; hence there are two spikes for every bubble. Assuming that the spikes
have circular cross-sections of radius a(z), we can determine a(z) approximately from
Bernoulli’s equation and the equation of continuity. Considerations of continuity ap-
proximately fix the rate of growth of the spikes (see the final paragraph of Sec. II, 3).

2. APERIODIC FLOWS

The periodic flows arise from initial conditions that are very unlikely to be realized
in nature. However, the theoretical description of more general flows presents great
difficulty. In the present section we shall try to get some insight into the nature of
aperiodic flows by qualitative arguments based on our knowledge of special flows.

Consider an arbitrary two-dimensional disturbance. In the initial phase of growth
n(x, ¢) is a superposition of independent Fourier amplitudes,

A, (8) = Ay exp [(gk)1/%], (66)
where

— 1 ® —ikx
Ak_-z—;f_mn(x, 0) e—i=dy , ")

According to equation (66), the Fourier amplitudes corresponding to large values of %
(i.e., small wave lengths) grow faster than those corresponding to small values of % (i.e.,
large wave lengths). On the other hand, the phase of exponential growth lasts longer for
the latter than for the former. Now the Fourier amplitudes begin to interfere badly with
one another when the mean amplitude of the disturbance becomes comparable with the
mean wave length. From the preceding remarks it is clear that at this stage the pre-
dominant wave numbers will come from a relatively narrow subrange of the range of
wave numbers for which the coefficients Ay are appreciable. Fourier amplitudes cor-
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responding to the largest wave numbers will have been outstripped; those corresponding
to the smallest wave numbers will not have had time to develop. Thus the initial compe-
tition between Fourier amplitudes tends to establish a nearly periodic pattern of flow.

As the mean amplitude of the disturbance becomes comparable with the mean wave
length, the competition between noninterfering Fourier amplitudes goes over into a
competition between individual bubbles. To see what effects are introduced by small
departures from periodicity at this stage, let us consider a simple example. Figure 3
shows three well-developed bubbles, the middle one being slightly narrower than its
companions. In general, the pattern of flow will resemble that for periodic low. How-
ever, the flow pattern associated with the middle bubble will be slightly compressed at
the top, while the flow patterns associated with the bubbles on either side will be cor-
respondingly dilated. This is indicated in Figure 3 by the bending of the streamlines .S\S
and S”S’. That the channel defined by these streamlines must, in fact, narrow from bot-
tom to top follows from the requirement that the flow be continuous on SS and S’S’
and the fact that the vertex speed of the two large bubbles exceeds that of the small

w s s’ W’
\ 2
J %
N §
#
_ %
///—\\ L

\ S
| \ L
1 s
N | \5
N I Lr
N | I
N L
N LV
N L
N %
N L
\ Vv
N V
N #
A | Dd N
q' l' 11 1
N i Il \
\: 1 1! %
N th i 1%
w S s’ W’

Fic. 3.—Illustrating the competition between well-developed bubbles in two-dimensional flow.
The middle bubble is crowded out by the larger bubbles on either side. S5 and S’S’ are streamlines.

bubble. The large bubbles will therefore expand, thereby acquiring a higher vertex
speed, while the small bubble will shrink and slow down. This development, which is
indicated in Figure 3 by the broken lines, shows up clearly in some experiments by D. J.
Lewis (1950). Ultimately, the two large bubbles will fill the entire channel, the middle
bubble having been washed downstream. Since perfectly periodic flow can never be
attained in practice, the number of bubbles per unit length will continually diminish.
The foregoing remarks apply, with some obvious modifications, to the more general case
of three-dimensional flow.

Finally, we shall consider briefly the question whether an arbitrary disturbance tends
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to develop into a two-dimensional system of cylindrical troughs and crests or a three-
dimensional system of bubbles and spikes. From equations (37) and (60) we see that the
final vertex speed of a bubble in a tube of diameter 2R is higher, by a factor (3w/B81)Y?,
than the final vertex speed of a cylindrical wave in a channel of width 2R. This suggests
that a well-developed two-dimensional disturbance would tend to break up into a system
of bubbles and spikes.

I am indebted to Capt. Ralph Pennington for pointing out to me that equation (32)
has a first integral, and to Capt. Pennington and Mr. Robert Goerss for performing the
quadratures on which Figure 2 is based. Professor John A. Wheeler directed my atten-
tion to the problems discussed herein and made several valuable suggestions for improv-
ing the readability of the paper. The qualitative description of aperiodic flow contained
in Section III, 2, was largely worked out in the course of a conversation with Professor
Wheeler.
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