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MODELLING TURBUI~NT MIXING BY RAYLEIGH-TAYLOR INSTABILITY 

David L. YOUNGS 
Atomic Weapons Establishement, A idermaston, Berkshire, UK 

Direct two-dimensional numerical simulation and experiments, in which small rocket motors accelerate a tank containing 
two fluids, have been used to investigate turbulent mixing by Rayleigh-Taylor instability at a wide range of density ratios. The 
experimental data obtained so far has been used to calibrate an empirical model of the mixing process which is needed to 
make predictions for complex applications. The model devised, which is a form of turbulence model, is based on the equations 
of multiphase flow. These equations describe velocity separation arising from the action of a pressure gradient on fluid 
fragments of different density. The dissipation arising from the drag between the fluid fragments is treated as a source of 
turbulence kinetic energy which is then used to define turbulent diffusion coefficients. Gradient diffusion processes are thereby 
included in the model. 

1. Introduction 

Rayleigh-Taylor instability occurs when a per- 
turbed interface between two fluids of different 
density is subjected to a normal pressure gradient, 
Taylor [1]. If the pressure is higher in the light 
fluid than in the dense fluid the differential accel- 
eration produced causes the two fluids to mix. For 
an overview of work published on Rayleigh- 
Taylor instability since [1] see the paper by Sharp 
I2]. One area of current interest is the effect of 
Rayleigh-Taylor instability on the performance of 
~rnertially Confined Fusion capsules. A simple cap- 
sule might consist of a spherical glass shell with 
radius of order 100 /~m filled with a 
deuterium/tritium gas mixture. Laser radiation 
(or other types of beam energy) is used to implode 
the capsule. The aim is to obtain sufficiently high 
temperatures and densities in the DT mixture for 
thermonuclear  reactions to take place. 
Rayleigh-Taylor instability may occur wherever 
the pressure-density gradient product Vv" V0 is 
negative. This will arise at the start c.f the implo- 
sion at the ablatic,n front between the heated and 
unheated glass or at the end of the implosion at 
the gas/glass interface. In either case instability 
growth tends to reduce capsule performance. Re- 

cent work at AWE has investigated the latter case, 
mixing at fluid interfaces. Ablation front instabili- 
ties have been studied by many authors, see for 
example Emery et al. [3]. 

The term Rayleigh-Taylor instability is some- 
times limited to the case when the iraterface 
between the two fluids is subjected to a finite con- 
tinuous acceleration. A related process, Richtmyer- 
Meshkov instability [4, 5] occurs when a shock 
wave passes through a perturbed interface or a 
nfixed region between fluids of different density. 
Both processes are important in compressible 
problems such as the ICF capsule implosion. The 
present paper will concentrate on Rayleigh-Taylor 
ir~stability. The Richtmyer-Meshkov process is 
discussed in this volume by BrouiUette [6] and 
Besnard et al. [7]. 

2. Outline of the programme 

In real situations the instability will evolve from 
a multiple wavelength initial perturbation and tur- 
bulent mixing will occur as suggested by Youngs 
[8]. Direct numerical simulation of this three- 
dimensional process is hnpractical except for very 
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simple cases. Hence turbulence models need to be 
devised to make predictions for real flows. These 
models need to be calibrated against experimental 
results. Experimental studies form an essential 
part of the AWE programme on this topic. 

The programme of work may be divided into 
three parts: 

The computer code solves the incompressible 
Navier-Stokes equations (pressure-velocity for- 
mulation) plus an equation for the fraction by 
volume, fx, of the denser fluid 1: 

at + div (flu) = O. (a) 

(a) Direct computer simulation of the mixing 
processes in simple situations. At present 2D com- 
puter codes are being used. However, in future 3D 
calculations will be performed. Dir~ , computer 
simulation has proved to be a useful source of 
ideas and has played an essential role in planning 
the experimental programme. It also helps to un- 
derstand the experimental results. 

(b) Experiments. Definitive data on the turbu- 
lent mixing phenomena come from experimental 
measurements. An extensive set of experiments on 
the mixing of incompr~::,;~,ible fluids by Rayleigh- 
Taylor instability is de~,cribed by Read [9], Read 
and Youngs [10], Burrow~, Smeeton and Youngs 
[11] and Smeeton and Youngs [12]. In future, 
experimental work at AWE will investigate the 
mixing of compressible gases in shock tube experi- 
ments. 

(c) Turbulence models. The main objective of the 
programme is to develop turbulence models to 
represent the mixing processes. These models need 
to be calibrated against the experimental data. 
The turbulence models are then used to make 
predictions for real situations. 

3. Direct numedcal simulation 

Work began on this study of turbulent mixi~,g 
by Rayleigh-Taylor instability about ten years 
ago when a simple 2D finite difference incom- 
pressible code was written to calculate the growth 
oi" Rayleigh-Taylor instability ~. a plane bound- 
ary from a multiple wavelength initial perturba- 
tion. 

The fluid density is then p=f~#~ +(1-f~)o2.  
Initially the fighter fluid 2 lies above the denser 
fluid 1, with a body force g per unit mass acting 
vertically upwards. The initial volume fraction dis- 
tribution is: fl = 0 for y > ~'(x) and fl = 1 for 
y < ~'(x) where ~" is the initial perturbation at the 
interface y = 0. This is given by 

n ~ x  
= sY' .a . cos  w 

n 

for rind frictionless wall at x = 0 and x = W, 

o r  

2n~rx 2nvx ) 
~'(x) = S ~  a,cos - W -  + b, sin --W- 

for periodic boundary conditions in tile 
x-direction. 

The a,, and b,, are random numbers chosen: 
from a Gaussian distribution. S is a scaling factor 
chosen to give the required value nf o = { (~ 2) }l/z. 
W is the width of the computational region in the 
x-direction. 

The volume fraction transport equation (1) may 
be solved by a finite difference method which 
assumes a continuous variation of f~ with posi- 
tion. The method of van Leer [13] is used to 
minimise mixing by numerical diffusion. Alterna- 
tively a front tracking method, Youngs [141. may 
be used to preserve a sharp interface b :tween the 
two fluids. Other. more accurate, vorte~ methods 
for following Rayleigh-Taylor unstable interfaces 
are described by Tryggvason [15] and Kerr [16]. 
The front tracking method has been ased for 
sim~!~' situations such as the growth of t:~e insta- 
bility from a single wavOength initial :'erturba- 
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Fig. 1. Two-dimensional simulation with multiple wavelength initial perturbation. Density ratio Pl/P2 = 20. Acceleration g = 0.15 
m m / m s  2. Volume fraction contour levels fl  = 0.2, 0.5, 0.8. 

tion. It is not clear that it improves the accuracy if 1.0, 
a multiple wavelength initial perturbation is pres- 
ent. In this case fine-scale (sub-zone) nfixing should 
indeed occur due to the small scale eddies gener- 
ated in the turbulent mixing region, which cannot 
be represented on the computational mesh. Use of 
the van Leer method for the transport of volume 

0 
fraction and momentum introduces non-linear nu- -66 
merical diffusion into the calculation which plays 
a similar role to the subgrid eddy viscosity used in 
large eddy simulation of turbulent flow. The mul- 
tiple wavelength calculations have used the van 
Leer method rather than the front tracking 
method. 

An example is shown in fig. 1 which corre- 
sponds to the experiments described in section 4. 
The density ratio is Pl/P2 = 20. Periodic boundary, h 1 = a ~  
conditions are used. The initial perturbation con- 
sists of modes with wavelength in the range W/25 
to W/8. The width of the computational region is 
W = t50 mm. The initial perturbation has stan- 
dard deviation o = 0.025 ram. The size of the 
computational mesh is 150 x 200 zones. 

The numerical simulation shows a short wave- 
length perturbation of wavelength ---W/25 
appearing at early time. At the end of the calcula- 
tion, the dominant mode has wavelength W/2. 
Tiffs has evolved from the interaction between 
shorter wavelength modes. It was proposed by 
Youngs [8] and confirmed by the experiments of 
Read [9] that in such circumstances the growth of 
!he nfixing zone should tend to lose memory of the 

1.0 
....... T' l - [  (a) 50 ms 

0 

height (ram) 

(b) 70 ms 

Lh2 
___~ " ~ . . . .  

+133 -66 0 +133 
height(mm) 

Fig. 2. Volume fraction averaged over a horizontal layer ver-  
sus height, for m,qtiple wavelength calculation. 

initial conditions and that the depth to which the 
. . . . . . . .  should mi.xJng zone penetrates t_,,c uc:,_,~c,. ,qoid I 

be given by 

Pl - P2 
Pl + P: 

gt (2) 

2D numerical simulation indicated a -  0.04 to 
0.05, whereas experiments suggested a -  0.06 to 
0.07; 

Fig. 2 shows a plot of f l  = ffl dx /W,  i.e. the 
volume fraction averaged over a horizontal layer, 
versus height y, for the multiwavelength calcula- 
tion. Measurements of h I (bubble penetration) 
and h 2 (spike penetration) from these plots indi- 
cate a = 0.042 and h2/h 1 = 2.3 for this calcula- 
tion. 

The variation of h2/h x with density ratio for 
the single wavelength perturbation case is shown 
in fig. 3. The interface tracking method is used. In 
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Fig. 3. Variation of h2/h I with density ratio. Two-dimen- 
sional numerical simulation with single wavelength initial per- 
turbation. Interface plots at nt = 6. 

the absence of viscosity or other stabilising mecha- 
nisms, the growth in the linear regime of the 
amplitude, a, of a small perturbation of wave- 
length X is given by [1] / /=  n2a, where 

n2 2~rg Pt - P2 (3) 
"- ~k g . t + p 2 "  

The initial amplitude used is a 0 = 0.02X. For 
the thr~e density ratios considered results are 
shown at times corresponding to the same number 
of exponer, tial growth periods, i.e. nt = 6. h2/h ~ is 
a slowly increasing function of #x/Oz. At O~/P2 = 
20, h2/h 1 is 2.9, a little more than the value 
estimated from the multiwavelength calculation, 
figs. 1 and 2. 

The two-dimensional simulatirns suggested that 
significant instability growth should arise from 
small random perturbations (via mode coupling) 
and that the results should fit into a simple pat- 
tern, h x given by eq. (2  and hz /h  x a slowly 
increasing function of v,/P2. As a result of the 
numerical sim,..l,~tmns a~, experimental pro- 
gramme was set up to investigate the true 
three-dimensional behz:'~eu:. Tb.~ value of the nu- 
merical simulations lies in the fact that they are an 
important source of ideas and a stimulus to the 
experimental programme, rather than m their abil- 

ity to make accurate predictions of the mixing 
phenomena. 

4. Experimental results 

Experiments on the mixing of two incompress- 
ible fluids have been performed at a wide range of 
density ratios using the apparatus described by 
Read [9]. This consists of an enclosed tank con- 
taining the two fluids, initially at rest with the 
lighter fluid 2 on top of the denser fluid 1. The 
tank is then driven downwards by one or two 
small rocket motors. The tank is attached to two 
guide rods which ensure that motion of the tank is 
vertical. Tank accelerations are in the range 15g0 
to 70g o, high enough to ensure that the effects of 
surface tension and viscosity are small (go = 9.8 
m/ s  2 denotes the acceleration due to gravity). 

Most experiments have been carried out without 
any large imposed perturbations, i.e. the aim was 
to investigate instability growth from small ran- 
dom perturbations and to confirm tht: gt 2 growth 
law (2). Details of the experimental results are 
given in a set of three reports [10-12]. A wide 
range of fluid combinations has been used, for 
example: 

Liquid/liquid: 
Nal solution/hexane 
NaI solution/water 

pl//P2 = 3, 
P l / P 2  = 1.8. 

Liquid~gas: 
alcohol/air (1 bar) 
pentane/SF 6 (up to 10 bar) 

P l / P 2 - -  700,  

pl//P2 " 8 tO 30. 

Some of the latest experiments [12] used a com- 
bination of a liquid and a compressed dense gas, 
SF 6. This enabled density ratios in the ~an~e 8 to 
30 to be used where computer sim~qation-see 
section 3 -,,,,~'"A ,,,,,,,,,,,,~,;~,'; ..... ~ that there was uncer- 
tainty in the depth to which spikes at hea~' fluid 
would penetrate the lighter fluid. Photographs for 
two examples of the pentane/compressed SF6 ex- 
periments are shown in fig. 4 (01/02 = 8.5) and fig. 
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Fig. 4. Pentane/compressed SF 6 experiment. Density ratio Ol/& = 8.5. Acceleration g = 15g e. (a) 32.8 ms. (b) 53.3 ms. (c) 73.7 ms. 

5 (Pl/P2 = 29.1). The width of the tank in these 
and subsequent experiments is W= 150 mm. As 
the two fluids have very different refractive in- 
dices, the mixed region appears black on the back- 
lit photographs. The photographs clearly show the 
increase in bubble size as time proceeds. The 
presence of the meniscus at the start of the experi- 
ment results in a thin film of liquid climbing the 
tank walls. Also large bubbles form in the tank 

comers where the effect of the meniscus is great- 
est. These effects are ignored when measurements 
of growth rates are made; h 1 and h 2 are measured 
on the darkest region in the centre of the tank. 

Plots of h x against ( P l - P 2 ) / ( P l  + P2)g t2 for 
these two experiments are shown in fig. 6. Reason- 
ably good linear correlations are obtained, though 
for the higher density ratio experiment there is 
some slowing down of the growth rate at late time 

Fig. 5. Pentane/compressed SF 6 experiment. Density ratio &/P2 = 29.1. Acceleration g = I5g o. (a) 33.5 ma. (b) 56.9 ms. (c) 67.3 ms. 
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Fig. 6. Bubble penetration versus scaled acceleration distance 
for two pentane/compressed SF 6 experiments. 

which may be due to the dominance of the large 
comer bubbles at this stage. The values of a for 
these two experiments are 0.072 and 0.060. 

has been measured for about 50 of the experi- 
ments described in refs. [10-12]. The values ob- 
tained lie in the range 0.050 to 0.077. There is no 
noticeable variation with density ratio. Some of 
the experiments were of better quality than others. 
If this is taken into account, the recommended 
value is a = 0.06 for all density ratios. 

The variation of h z/h~ with density ratio is 
shown in fig. 7. As predicted by the numerical 
simulations h 2/h~ is a slowly increasing function 
of #~/P=- At #x/#~ = 20, the experimental.  'sults 
give hz/h~ = 2.0, a little less than the value of 2.3 
indicated by the multiwavelength numerical simu- 
lation, fig. 1. 
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Fig. 7. Experimental variation of h2/h I with density ratio. 

In some experiments the fluids used were CaC12 
solution and hexane with the CaC12 concentration 
adjusted so that the two fluids had the same 
refractive index. The density ratio obtained is 
P~/O2 = 1.73. The CaC1 z solution is dyed and the 
backlighting made as uniform as possible. The 
fluids then act as pure absorbers of the backlight 
and the film density, at, on the photographic nega- 
tive may be related to the amount of dyed fluid. 
The dye level is chosen so that d varies linearly 
with f~ in calibration tests. Then for the experb 
ments 

d m a x  ~ d 

f~ = dm~,- dmi~' 

where d ~ ,  is the film density at the top of the 
tank (pure fluid 2) and d~j, is the film density at 
the bottom of the tank (pure fluid 1). Fig. 8 shows 

Fig. 8. Experiment  using fluids with matched refractive indices. CaCI 2 solution (dyed) /hexane (clear~. Density ratio 

Acceleration g = 43g o. (a) 0 ms. (b) 63.0 ms. (c) 73.9 ms. 

o , / ~ = 1 7 3  
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Fig. 9. Volume fraction averaged over a horizontal layer ver- 
sus height for the experimem shown in fig. 8. 

photographs for one of the matched refractive 
index experiments. Fig. 9 shows plots of ft, i.e. fl 
averaged over a horizontal layer, versus he i s t .  
The sLape obtained is in reasonable agreement 
with that expected from 2D numerical simulation. 
However, the experimental profile should be re- 
garded as approximate because of the difficulty in 
achieving perfectly uniform backlighting and in 
matching the refractive indices exactly. 

For lhe two experiments described in [12] the 
tank was first accelerated as usual and then, when 
the rocket motor had burnt out, was decelerated 
cy springs. In the final stage the tank moved 
vemcally upwards with near constant vel,ocity~ 
These ex,',~,q,-~-~t~. ~.~,, :~ocl ~h~ CaC!~ solution/ 
hexane combination. 1he but~ble penetration /~, 
sbown in fig. 13(a), was deduced from the f 
profile, h t was measured to the point where f~ = 
0.95. During the acceleration phase h~ increases as 
expected. During the deceleration phase h~ de- 
creases, i.e. partial de-mixing occurs. In the final 
coasting phase the mixed region grows again. It is 

shown in the next section how the late time be- 
haviour may be modelled by a combination of 
pressure gradient and turbulent diffusion effects. 

Some experiments described in il l ,  12] used 
three layers of liquid, carbon tetrachloride/NaCl 
solution/hexane, with densities Pl > P2 > Ps- The 
density of the intermediate layer was chosen so 
that P2 = J(PtP2), i.e. the Atwood number was the 
same at the two interfaces. The initial thickness of 
the intermediate layer A varied from 5 to 20 ram. 
However, it proved difficult to obtain good results 
with zl = 5 ram; the meniscus on the top and 
bottom of the layer appeared to affect the results. 
The aim of these experiments was to quantify the 
reduction in the mixing of fluids 1 and 3 due to 
the intermediate layer. In order to obtain results 
in a non-dimensional form 6/A is plotted (see fig. 
16(a)) against ( 01 -  P2)/(Pt + P2)gt2/A where the 
width of the mixed region 8 (which equals A at 
t = 0) is the distance between the boundary of the 
unmixed fluid 1 and the boundary of the unmixed 
fluid 3. At early times the rate of growth of 6 is 
about half that expected without the intermediate 
layer. This is consistent with the reduced initial 
Atwood number. However, even when 8 - 5A long 
after the intermediate layer is fully mixed the 
growth rate appears to be significantly reduced by 
the effect of the intermediate layer. 

In several experiments the tank and guide rods 
were inclined at an accurately measured angle, 0, 
to the vertical. The acceleration g remained paral- 
lel to the tank sides and the initial interface was 
inclined at an angle 0 to the direction of accelera- 
tion. The inclination of the initial interface results 
in a gross overturning motion in addition to the 
fine scale rmxing. This .gives a flow which is on 
average two-dimensional from precisely known 
initial conditions and provides data for testing 
future two-dimensional versions of the turbulence 
model described in the next section. Results for 
two such experiments are shown in figs. 10 i p , / p ,  

\ • , t . ~  . .  

= 3) and 11 (Px/P2 = 20). At •x/p2 = 3 a large 
bubble of fluid 2 penetrates the heavier fluid at the 
right-hand side of the tank. A similar structure 
forms on the left-hand side of the tank. This grows 
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Fig. t0. NaI solut ion/hexane experiment. Rig tilted by 5 ° 46', Density ratio Pl/O2 = 2.9. Acceleration g = 35go. (a) 35.7 ms. (b) 54.9 
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Fig. 12. Two-dimensional numerical solution of t"e tilted-rig experiments. Volume fraction contour levels, fl = 0.2,0.5,0.8. 

a little faster. At 101/102 = 20, the behaviour is 
significantly different. In this case a thin spike of 
fluid 1 forms at the left-hand side of the tank. 
Results of two-dimensional numerical simulation 
of these two experiments are shown in fig. 12. 
Rigid frictionless walls were used at x = 0 and 
x = W. The initial perturbation consisted of a 
combination of cosine modes with n = 31 to 50 
and o = 0.025 nun (see section 3), superimposed 
on the tilted interface. The simulations reproduce 
the behaviour of the observed features at the sides 
of the tank. This shows that neither wall frictio, 
nor the presence of the meniscus has a w.ajor 
effect on the development of these features. The 
fine scale mixing in the centre of the tank appears 
to be underestimated in the simulations. It is 
likely that three-dimensional simulations would be 
needed to calculate this correctly. 

5. Turbulence models 

5.].  "tr'l~e m '''4or e~,.L,':,.Ho~e 

Turbulence models are needed to predict the 
average mbdng behaviour in ~,ows ttat  are on 
average one- or two-dimensional. The approach to 
the ,,onstruction of tile turbulence model is guided 
by the experimental behaviour. The photog~aphs 
in figs. 4 and 5 clearly show bubbles of gas pene- 

trating the denser liquid. At any given time there 
appears to be a characteristic bubble size which 
increases as the mixed region develops. Instead of 
using closure laws for fluctuating quantities, as is 
done in many turbulence models, the present 
model is based on representing the dynamics of 
the observed structures in the mixed region (bub- 
bles of light fluid or drops of dense fluid). The 
need to model the motion of bubbles or drow in a 
pressure gradient suggests using the equations of 
multiphase flow. A simple two-phase flow model 
for Rayieigh-Taylor instability was described by 
You~gs [8]. Tile pre~,za: p~per considers the exten- 
sion to many fluids and the addition of extra 
physics. Two-fluid turbulence models have been 
widely used by Spalding and were applied to 
mixing of fluids by Rayleigh-Taylor instability 
in [17]. Andrews [18] has considered the extension 
of a simple two-fluid model for Rayleigh-Taylor 
instability to two dimensions. Alternative ap- 
proaches for the Richtmyer-Meshkov case are 
described in these proceedings by Besnard et al. 
[7!. 

The present multiphase flow ,ncdet represents 
the following effects: 
0) differentma acce!ere.fion induced by the pres- 

sure gradient on fluid fragments of different 
densities; 

(ii) drag between fluid fragments, proportional to 
velocity difference squared; 
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Fig. 13. Acceleration/deceleration experiments: (a) observed 
results, (b) turbulence model predictions. 

(iii) added mass; 
(iv) increase of length scale (bubble or drop ra- 

dius) in proportion to the width of the mixed 
region. 

However, these effects do not include all 
the important physics. Inter-fluid drag pro- 
vides a source of turbulence kinetic energy. This 
leads to mixing by turbulent diffusion which is 
needed to explain the late stage nftxing observed 
in the acceleration/deceleration experiments, fig. 
i31a~, it is well known - see for example Jones and 
Prosperetti [19] - that many simple multiphase flow 
models give rise to an ill-posed equation set. It is 
suggested here that the !nch~sion of turbulent dif- 
fusion terms should alleviate this problem, as well 
as impro~@.-, the rhys, cs. in some simple situa- 
tions it can be shown that the method of including 

turbulent diffusion terms described here gives rise 
to an equation set which has stable solutions. The 
analysis is given in the appendix. 

The extra effects included in the model are: 
(i) a turbulence kinetic energy equation; 
(ii) transport of mass by turbulent diffusion; 
(iii) transport of momentum by turbulent diffu- 

sion (Reynolds stress); 
(iv) length scale diffusion. 

For simplicity, the use of the model for 
one-dimensional planar incompressible flows is 
described. The model has been applied to one-di- 
mensional compressible flows. In the model the 
mean values of the volume fraction for fluid r 
( f  r), the density of fluid r (Or), the velocity of 
fluid r (Ur), the length scale (L) and the turbu- 
lence kinetic energy (k) are functions of distance 
(x)  and time (t). The model equations are as 
follows. 

Mass transport: 

~--7(Orfr) + (PrLUr) =0.  (4) 

Momentum transport: 

+ 

~p ~R 
= --fr"~ + EDrs + E M r s -  mr •X" 

.¥ S 

(5) 

Length scale: 

~t + UL-~- = S + DL-~ . (6) 

Turbulence kinetic energy: 

+ S A -{. 

(7) 

Many of the terms appearing in eqs. (4) to (7) 
require further explanation. ~ denote~ lhe mass 
weighted mean velocity. 
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Mr~ represents the added mass for fluid r due to 
fluid s. This is given by 

The source term in the length scale equation (6) 
is 

(D, ur 
M~, = - 0 . s p j ,  f~ o t  

D,.u,. ~u, a~t,. D--T- = --~i- + u ,  

D~U s ) 
Dt , where 

is the acceleration of fluid r and 

p,,=(/,p,+f~p,)l(/,+/~). 

(8) 

This is an extension to many fluids of one of the 
formulae for two-fluid flow analysed in [19]. The 
coefficient 0.5 is chosen to give the correct added 
mass for isolated spherical particles of fluid r 
surrounded by fluid s. 

D,~ denotes the drag on fluid r due to fluid s 
and is given by 

p,,Lf, 
O , , = - c t  L lu,- u,- wr+ Wsl 

x ( , , - , , -  w,+ w,). (9) 

The drag coefficient c t is obtained by matching 
experimental data, as will be explained in the next 
section, w r is the value of u r -  ~ expected if 
mixing is enth'ely due to turbulent diffusion. 
denotes the volume weighted mean velocity. In 
that case mass flow is given by 

with mean density p = Ef ,  Pr. This can be inter- 
preted as fluid r mass flux: 

whence 

D 

with D = turbulent diffusion coefficient. 
When the drag coefficient c 1 ~ c~, u , -  

w , -  w+ as requh'ed. 

/"+}: 
St. = E f f f ,  p, + p, (u s - u ,)  fff.~. (10) 

r > $  x 

The fluids are numbered r = 1, 2, 3,.. .  in order 
of increasing initial position. Then SL > 0 if the 
nuids are mixing and St < 0 if the fluids are 
de-mixing. 

For two fluids 

20 }t/2 
s ,  = pt + p2 (ul - u2). 

This form is chosen to give an approximately 
uniform length scale, proportional to the width of 
the mixed region. Eq. (10) is simply a plausible 
extension of the two-fluid formula. 

For the two-fluid case the advection velocity in 
the length scale equation is 

u , = a +  ( A - / x ) ( u x -  u,).  

This formulation, due to Andrews [18], trans- 
ports the length scale away from the centre of the 
mixed region and was found to improve the stabil- 
ity of the solution. For the multifluid case u L is 
obtained by a plausible extension of the two-fluid 
formula: 

The term - m  r OR/ax in the momentum trans- 
port equation, where mr=frpr /p  is the fluid r 
mass fraction, represents the effect of the Reynolds 
stress. The use of the mass fraction in this term 
will be explained later. As in turbulent diffusion 
models such as the (k, e) model, see for example 
Leith [20], the Reynolds stress in one-dimensional 
planar geometry is given by 



D.L Youngs / Mcdelling turbulent mixing by Rayleigh-Taylor instability 281 

with Travis et al. [22], may be obtained by setting 

i.Lt --- pkl /21t  ' 

I t = turbulence length scale. 

The turbulence kinetic energy equation (7) is 
also the same as that used in turbulent diffusion 
models. The dissipation rate is 

p!:3/2 
c = 0.09 it . 

The coefficient 0.09 is an appropriate value for 
turbulent shear flow models, see Launder and 
Spalding [21]. However, it should be pointed out 
that there are no experimental measurements of 
the dissipation of k in Rayleigh-Taylor mixing. 
The turbulent diffusion coefficients D and D k are 
the same as for turbulent shear flow [21], i.e. 
D =  2kl /21 t (mass diffusion)and D k = kl/21t (k-  
diffusion). In the length scale equation DL = 
2k l /E l t  is used. 

The source term in the turbulent kinetic equa- 
tion (7) is 

0fi 
S , =  E ( u ~ - U r ) ( M , , + . ~ ) - R ~ .  

r < s  

The turbulence length scale is assumed to be 
proportional to the fragment size L. Two model 
constants now remain which need to be chosen ~o 
fit data on Rayleigh-Taylor mixing. These are 

c~ = drag coefficient, determines the overall 
mixing rate, 

c 2 = l u l L  , determines the relative importance of 
turbulent diffusion and pressure gradient 
effects. 

In order to check that turbulent diffusion effects 
have been incorporated in a plausible manne~ it is 
worthwhile examining a simple firnifing case, the 
drift-flux approximation for two-fluid mixing. This 
is valid when the inertial effects on the velocity 
separation u 1 - u  z are negligible and, following 

D~u~ D2u 2 
Dt  De " 

The added mass terms vanisk and equating the 
fluid accelerations gives 

1 0 p  Dxz 1 ~)R 
ax + + 

1 0 p  D21 
P2 OX + P---~f2 

1 OR 
a-;' 

with 

D12 = -- D21 

caof, f, 
L [ U l -  I'/2 "1- W 1 -- W21 

×(ua-u,_+ w2), 

whence 

{ L [ P,. - P2 ~p [)1/2 
bl I -- bl 2"- S -~1 p2 ~X q" Wi - W2 

= pressure diffusk~n t e ~  

+ gradient diffusion term, 

3p 
S = s i g n { ( # l - P 2 )  ~-~)- 

A plausible result is obtained. Velocity separa- 
tion is due to a combination of pressure diffusion 
and gradient diffusion effects. As a result of using 
the mass fraction m r in the Reynolds stress term 
in eq. (5), the Reynolds stress terms cancel and the 
velocity separation due to turbulent diffusion is, as 
required, given by the wx - w 2 term. 

There is one major omission in the present 
model. In many of the applications, such as the 
ICF implosion referred ~o h~ the i~troduction, the 
fluids involved will be qaiscible and, as a result of 
the presence of small scale eddies in the turbulent 
mixing zone, will to some extent mix at a molecu- 
lar or atomic level. This will have many effects. 
The density differences on which the pressure gra- 
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dient acts will be reduced. Mixing at a molecular 
level will inhibit the de-nfixing which will occur if 
the acceleration changes from the unstable to the 
stable direction. It is planned to model these ef- 
fects by an exchange of mass between the fluids. 
However, the model would need to be calibrated 
against experiment and there is at present no 
observed data on the degree of molecular or fine- 
scale mixing in Rayleigh-Taylor unstable flows. 

5.2. Application of the model 

The observed growth rate, eq. (2) with et = 0.06, 
may be matched by adjusting c 1 or c~. Three 
possible ways are: 
(a) no mass diffusion (D = 0) 

cl -- 6.83 - 2.3 #,-+ 0s ' c2 = 0.075; 

(b~ some mass diffusion ( D -  2kl/21t) 

c~ -- 11.5 - 3.5 0r + 0s ' c2=0"075; 

(c) large amount of mass diffusion ( D -  2U/21,) 

c 1 --" 23.2 - 6.3 ~--~p~ , c: = 0.15. 

Results obtained for the acceleration/decelera- 
tion experiments, described in section 4, ere showp 
in fig. 13. The coefficient set (a) (no mass diffu- 
sion) gives too much de-mixing and no late time 
growth of the mixed region. For the coefficient set 
(c) (large amount of mass diffusion) there is little 
de-mixing and too much late time growth. The 
coefficient set (b) (with the intermediate amouat 
of mass diffusion) agrees reasonably well with the 
observed data. This shows that the model is able 
to give the correct quafitative behaviour for these 
experiments. However, it shouid be pointed out 
that the observed de-mixing may well have been 
affected by the fact that immiscible liquids were 
used. Also, the bchaviour of the model would be 
somewhat different if molecular mixing had been 
included as suggested in section 5.1. 

The model, with coefficient set (b), has been 
applied to two simple problems which correspond 
to some of the experimental situations. The initial 
geometries for the two problems are as follows: 

(a) Two fluid problem 

fluid 1 :0  < x < 100 mm p = 1 mg/mm3; 

fluid 2:100 m m <  x < 200 mm p = 3 m g / m m  3. 

The initial pressure gradient is chosen to give an 
acceleration of 

1 0p 
P 0x = g = 0.5 m m / m s  2 

which corresponds to that attained in some of the 
rocket-driven experiments. The problem has been 
calculated on a one-dimensional compressible La- 
grangian code with boundary conditions p = 400 
kPa (left-hand boundary) and p = 200 kPa (fight- 
hand boundary). The equation of state used for 
both fluids is p = ( ~ ) p c .  The fluids are almost 
incompressible and the undisturbed region moves 
with acceleration close to g. 

(b) Three fluid problem 
This is ~he two fluid proble~ with an intermedi- 

ate layer added: 

fluid 1 :0  < x < 100 mm p = 1 rag/ram3; 

fluid 2:100 mm < x < 110 mm p = ¢3 n.g/mm3; 

fluid 3:110 m m <  x < 210 mm p = 3 m g / m m  3. 

The equation of state, pressure on the right hand 
boundary and acceleration g are the same as for 
the two-fluid problem. 

Calculations have been carried out with an ini- 
tial mesh size ax  = 5 mm for problem (a) and 
Ax = 5 mm in fluids 1 and 3, Ax - 2.5 mm in the 
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Fig. 14. Turbulence model results for the two-fluid woblem at 
t = 60  ms. 

Fig. 15. Turbulence modcl results for the three-fluid problem 
at t = 60  ms. 

thin intermediate layer for problem (b). Plots of 
f , ,  L and k against x are shown in figs. 14 and 15. 
Fig. 16(b) shows a plot of 8, the width of the 
mixed region against gt 2, for problems (a) and (b). 

is defined as the distance between the points 
where ft  = 0.95 and fz =0.95 (problem (a)) or 
ft = 0.95 and f3 = 0.95 (problem (b)). For problem 
(a) 8 varies finearly with gt z. However, the straight 
line does not pass through the origin. Extrapolat- 
ing back to t = 0 gives ~--1.2 Ax at t = 0. This 
~,~ight overshoot is due to numerical diffusion in 
the solution of the "~olume fraction transport 
equation. The method used for volume fraction 
transport is derived from the high-order mono- 
tonic advection method of van Leer [13]. If first 
~rder, upwind differencing had been used the nu- 
merical error would have been far greater. 

Tbe effect of the intermediate layer on the 
growth rate of the mixed region agrees well with 
the experimental results shown in fig. 16(a). 

6 .  C o n c l u s i o n s  

Direct numerical simulation gives insight into 
the way fluids mix by Rayleigh-Taylor instability 
in idealised situations. Simple laboratory experi- 

process indicated by numerical simulation and 
have provided good estimates of the growth rate 
of the turbulent nfixing zone at a wide range of 
density ratios. 

In order to make predictions for real applica- 
tions an empirical model of the mixing processes 
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pated into heat and the extent to which the fluids 
mix at a molecular level. Several research labora- 
tories are at present investigating the mixing of 
gases of different densities in shock tube experi- 
ments. The data obtained from these experiments 
will play an essenti~ role in validating the model 
in compressible situations. 

Appendix 

Stability of the model equations 

It is well known (see for example Jones and 
Prosperetti [19]) that the multiphase flow equa- 
tions, described in section 5.1, with turbulent 
diffusion effects omitted, give rise to vnstable solu- 
tions. By using the sa,:~e type of perturbation 
analysis as described in t19], it is shown here that 
tll¢ addition of turbulent diffusion terms removes 
the problem in a simple two-fluid case. Reynolds 
stress terms, which have negligible effect on the 
one-dimensional incompressible problems consid- 
ered here, are omitted as they complicate the 
analysis. The equations considered are: 
Volume fraction: 

Fig. 16. Width of mixed region versus scaled acceleration dis- 
tance for two-fluid and three-fluid experiments: (a) observed 
results, (b) turbulence model predictions. 

0t + ( f r " r )  = 0" (A.1) 

needs to be devised. It has been shown that the 
multiphase flow equations with turbulent diffusion 
terms added provide a suitable framework for 
such a model. The equations model the mixing of 
fluids arising from the action of a pressure gradi- 
ent on fluid fragments of different densities, as 
well as mixing by gradient diffusion. The empirical 
model needs to be calibrated against observed 
data. The experimental results obtained so far 
provide a good basis. However, there are some 
gaps in the measurements such as the proportion 
of the turbulence kinetic energy which is dissi- 

Acceleration: 

Drur Op 
f~o, Dt - - £ - ~  + Mr, + Dr, + Long, (A.2) 

VVIUl r = I ,  2 - - -  ~ ~tnu S ,-¢- r. 
The added mass terms are 

Dlul D2uz ) 
MI2 = -- M21 = --caflf2P DI Dt ' 

where c a = 0.5 is the added mass coefficient, and 
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the drag terms are with 

D12 = _ D21 

- L ul - u2 + fafz Ox 

X u x - u  2 + / l f 2  Ox " 

Elimination of the pressure gradient from the 
two acceleration equations (A.2) gives 

Dxux D2u2 
( o, + c.o ) o ,  ( o~ + c.p ) Dt 

¢1o[ 
= ( P l - - P 2 ) g - -  T u l -  u2 + 

( O ,l) 
X u l - u 2 +  flf2 Ox " 

AA Ox 

(A.3) 

A gravitational force, g, chosen so that ( 0 1 -  
P2)g > 0, is added so that a non-trivial uniform 
steady-state solution exists with 

f~=fa  °, 

A=~, 
Ul __ U2 __ lgO_ gO = P! -- P2 gL 

Cl p 

A r = w + ku °, 

p* = o, + c~o °, 

Elimination of f~ and ~, gives the following 
equation for o~: 

p ,  A2¢O t~.d2¢0 1--alJ2 + V2~'x2J1 

2ic ,  oOlu o - uOl 
- T ¢ ~.o ~.oXlA,ji+Azlf) 

_ k 2 2 q O ° l u ° -  u°l DO=0.  
L 

The solution to eqs. (A.1) and (A.2) is stable if 
Im(~o) >__ 0. After some algebraic manipulation, it 
is found that this is satisfied for any value of k if, 

1 
D O > ~ LI u° - uOlfOf2 °. (A.4) 

For the steady-state probiem, the turbulence 
kinetic equation gives 

S = ~  k 

where fo, fo,  u o and u ° are constants. The length 
scale L is also assumed to be constant. A small 
perturbation to the solution is considered: 

f r =  frO + ~ e iO't+kx), 

tl r -- blot + ~r ei(wt+kx) 

i.e. 

o 0 0 0.09pOk3/2 c'P fi'fz~ [u o_  u°13= 
L " c2L 

whence 

Substitution in eqs. (A.1) and (A.3), with terms 
^ ^ 

linear in f, and u, only being retained, gives 

^ O^ 
All1 + kf~ u~ = O, 

^ 

A 2 f 2 + k f ~ u 2 = O ,  

p~iAlUl -- P2 IA2u2 

2qP° ( 
- L lu ° - u ° l  ~ - ~ 2 "  

i kD°j~ ) 
f? /o  , 

DO= 2kl/2lt 

= 2c2k t /2L  

roe0 1/3 
( C1C2Jlj2 ) ,H~I ' -  H~,L. 

= 2c2 0.09 

Hence condition (A.4) is satisfied for all f o if 

c,c 2 > (0.09)'/4/(4¢2) = 0.1. 
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The preferred coefficient set (b) of section 5.2 
has q c  2 = 0.86 for small density differences and 
ctc 2 = 0.60 for large density differences. Hence for 
the simple situation considered here the turbu- 
lence model has stable solutions. 

It is interesting to compare the results obtained 
here with the methods used by other authors to 
obtain an equation set with stable solutions. Two- 
pressure models have been widely used for this 
purpose; see, for example, Stuhmiller [23], Hancox 
et al. [24] and Ransom and Hicks [25]. In such 
models each fluid has its own pressure, Pr, and the 
pressure gradient term on the fight-hand side of 
eq. (A.2) is modified as follows: 

3p .3p~ a L (A.5) 
- L - g ; - - "  - - f f  - ( P ,  - P ) a x . 

/3 denotes the interface pressure. In the present 
model, if the turbulent diffusion term is treated as 
a small correction, the drag on fluid 1 becomes 

c AAo 
Dt2- L lua-u21(ul-u2) 

2q0 
L l u l -  u21D 3x " 

Then if the limiting value (A.4) is used for D, 
the effect is to add the term 

aL 
-oAf,.(u -u2)2Ox 

to the fight-hand side of (A.2). As in the two-pres- 
sure models a term proportional to the volume 
fraction gradient is introduced. The result ob- 
tained is similar to the two-pressure model given 
in [23, 24] for bubbly or droplet flow (fl small) 
which uses 

Pl =P2 =P,  

P -- P -" Cp02(~/1 -- U2) 2' 

where Cp = dynamic pressure coefficient. 

The pressure difference is derived by consider- 
ing the flow past a sphere. 

Hence the inclusion of turbulent diffusion terms 
as described in section 5.1, although obtained by 
very different physical reasoning, bears a strong 
resemblance to two-pressure models. 
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