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ABSTRACT

We continue to investigate the possibility that interstellar turbulence is caused by nonlinear interactions
among shear Alfvén waves. Here, as in Paper I, we restrict attention to the symmetric case where the
oppositely directed waves carry equal energy fluxes. This precludes application to the solar wind in which the
outward flux significantly exceeds the ingoing one. All our detailed calculations are carried out for an incom-
pressible magnetized fluid. In incompressible magnetohydrodynamics (MHD), nonlinear interactions only
occur between oppositely direct waves. Paper I contains a detailed derivation of the inertial range spectrum
for the weak turbulence of shear Alfvén waves. As energy cascades to high perpendicular wavenumbers, inter-
actions become so strong that the assumption of weakness is no longer valid. Here, we present a theory for
the strong turbulence of shear Alfvén waves. It has the following main characteristics. (1) The inertial-range
energy spectrum exhibits a critical balance beween linear wave periods and nonlinear turnover timescales. (2)
The “eddies” are elongated in the direction of the field on small spatial scales; the parallel and perpendicular
components of the wave vector, k, and k,, are related by k, ~ k33L~1/3, where L is the outer scale of the
turbulence. (3) The “one-dimensional ” energy spectrum is proportional to k| 3>—an anisotropic Kolmogorov
energy spectrum. Shear Alfvénic turbulence mixes specific entropy as a passive contaminant. This gives rise to
an electron density power spectrum whose form mimics the energy spectrum of the turbulence. Radio-wave
scattering by these electron density fluctuations produces anisotropic scatter-broadened images. Damping by
ion-neutral collisions restricts Alfvénic turbulence to highly ionized regions of the interstellar medium. We
expect negligible generation of compressive MHD waves by shear Alfvén waves belonging to the critically
balanced cascade. Viscous and collisionless damping are also unimportant in the interstellar medium (ISM).
Our calculations support the general picture of interstellar turbulence advanced by Higdon.

Subject headings: ISM: general — MHD — turbulence

1. INTRODUCTION .

This paper is concerned with strong turbulence due to nonlinear interactions among shear Alfvén waves in an incompressible,
magnetized fluid. An earlier paper (Sridhar & Goldreich 1994, hereafter Paper I) offers a detailed analysis of weak shear Alfvénic
turbulence. The principal results of Paper I are

1. Resonant 3-wave interactions among Alfvén waves are empty. The Iroshnikov-Kraichnan (Iroshnikov 1963; Kraichnan 1965)
theory of incompressible MHD turbulence is based on resonant 3-wave interactions; consequently it is incorrect.

2. Resonant 4-wave interactions among shear Alfvén waves forbid transfer of energy to smaller spatial scales along directions
parallel to the mean magnetic field. As energy cascades to large perpendicular wavenumbers, the 4-wave interactions strengthen;
this limits the inertial range of the weak 4-wave energy spectrum since weak turbulence theory becomes inapplicable.

In §2 we show that the strengthening of the weak 4-wave energy cascade requires inclusion of nonlinear “frequency
renormalization ” in the 4-wave kinetic equation. The renormalized kinetic equation allows for some transfer of energy to smaller
spatial scales in the direction of the mean magnetic field which weakens the interactions. Based on arguments for both strengthening
and weakening of the interactions, we propose that strong shear Alfvénic turbulence is a critically balanced cascade, and deduce the
expected inertial-range energy spectrum. A kinetic equation for strong shear Alfvénic turbulence is derived in § 3. In § 4 we prove
that the critically balanced energy spectrum is a stationary solution of this kinetic equation whose energy flux is directed towards
large wavenumbers. Damping of shear Alfvén waves, due to collisions between ions and neutrals, by viscous damping, and by
generation of other wave modes, is examined in § 5. The electron density fluctuation spectrum produced by turbulent mixing, and
its implications for radio wave scattering are briefly covered in § 6. In § 7 we discuss applications to the real ISM, and the possible
role of compressibility. We conclude in § 8 by relating our results to those obtained earlier by Montgomery & Turner (1981),
Montgomery (1982), Montgomery, Brown, & Matthaeus (1987), and Higdon (1984).
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2. STRONG ALFVENIC TURBULENCE; HEURISTICS
The equations governing the time evolution of an incompressible, magnetized fluid are
0,b=V x (v x b) + xkV?b,
ov=—@ - Vo+ (b V)b—Vp+yV, )]
Vev=V:5=0,

where, v is the velocity field, b = B/(4np)*/? is the magnetic field in velocity units, p is the ratio of the total (mechanical plus magnetic)
pressure to the density, x is the magnetic diffusivity, and y is the kinematic viscosity. As in Paper I, we assume that the only role of
magnetic diffusivity and viscosity is to provide a sink for energy on small spatial scales. In the considerations below, we drop these

“dissipative terms. The undisturbed fluid is in static equilibrium with a uniform magnetic field B, = B,Z. The Alfvén velocity

V. = By/(4np)'. A weak excitation of shear Alfvén waves initiates a weak 4-wave cascade. As energy cascades to large perpendicu-
lar wavenumbers (k,), the interactions between waves strengthen, ultimately invalidating the assumption of a weak cascade. The
arguments are briefly summarized below:

Let v, be the perturbation in the amplitude of velocity and magnetic fields on parallel and perpendicular spatial scales 4, ~ k; !
and 4 Ly k11, respectively. Since we consider only shear Alfvén waves, the velocity and magnetic field perturbations are perpendlcu-
lar to £. The strength of this perturbation can be characterized by a nonlinearity parameter

kyv,

. 2
A )
For an isotropic excitation on spatial scale L, we have ky.~ k, ~ L™, If the excitation is weak, v; < V,, 1mply1ng that {; < 1. Such

an excitation will undergo a wegk 4-wave energy cascade to larger k., while k, remains of the order of L™!. The ratio of the cascade
time to the wave period is :

C).N

N~irtn (?) (k L)~ | 3

The increase in {; as the cascade proceeds to larger k, is just a restatement of the growing strength of the interactions. When{, ~ 1,
the 4-wave perturbation analysis is invalid.

A small, but nonnegligible, {, is associated with a finite cascade time. We can include this effect in the kinetic equation (eqgs. [28]
and [29] of Paper I) by a nonlinear renormalization of the frequencies.! Viewed physically, the finite lifetimes of the waves give rise
to finite line widths (“frequency-time uncertainty relationship ”). So k, tends to increase from its initially small value of L™!; the
renormalized interaction permits a transfer of energy to smaller spatial scales along the parallel direction. The fractional change in
k, per nonlinear interaction time is Ak,/k, ~ N ™. As {, approaches unity from below, the growth rate of k, V, approaches that of
k, v;. Let us take stock of the arguments.

1. If{, is initially small, the excitation will undergo a weak 4-wave cascade, making {, grow in value.
2. Frequency renormalization allows for a transfer of energy to smaller spatial scales along the parallel direction.
3. As{, approaches unity from below, its growth ceases.

Each of these statements is based on weak, 4-wave couplings. Together, they lead us to conjecture that shear Alfvénic turbulence
might achieve a state in which {; ~ 1. In such a state, k, V, ~ k, v;; there is a balance between the Alfvén timescale (i.e., the linear
wave period) and the intrinsically nonlinear timescale at which energy is transferred to shorter scales. In this sense, the energy
cascade could be called a critically balanced cascade. We now estimate the energy spectrum of the critically balanced cascade.

Let energy be injected into the system roughly isotropically on spatial scale L. If the excitation is strong, v, ~ V,, implying{; ~ 1.
Then, the energy injected per unit mass, per unit time, on spatial scale L, is € ~ V3/L. Critical balance implies that the cascade time,

teas ~ (k, V,) 1. Assuming a scale-independent cascade rate € ~ v3/t.,,, we find that

k, ~ k33L~13 @
v, ~ Va(k, L)—lls . 6]

Equation (4) implies that the parallel and perpendicular spatial sizes of eddies are correlated. Since k, /k, ~ (k, L)'/, as the cascade
proceeds to larger &, , the eddies become highly elongated along the direction of the magnetic field. Defining the three-dimensional
energy spectrum, E(k,, k,), by

Y v?= jd*”kE(kL, k), (6)

eddies
we find that

vz k, L3
E(kJ_’ kz) ~ k10/3L1/3 f ki/?’ ? (7)

where f(u) is a positive, symmetric function of u that becomes negligibly small when |u| > 1. We assume that f has unit height and
width such that [*_ duf(u) ~ 1.

! Usually this is a higher order effect, but since the 4-wave kinetic equation conserves wave frequencies, we must include renormalization.
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3. A KINETIC EQUATION FOR STRONG ALFVENIC TURBULENCE

The dynamics of the critically balanced shear Alfvénic cascade is most conveniently formulated using Elsasser’s (1950) variables.
These may be defined as U = v + b and W = v — b. Dropping the dissipative terms, we can rewrite equations (1) as

oU=—(W-V)U—Vp,
oW=—-U-V)W-Vp, @®)
V- U=V-W=0.

In the undisturbed fluid (static, with a mean magnetic field), U= U, = V, and W = W, = — V. When the system is perturbed,
U=U, +uand W = W, + w, and equations (8) assume the form

ou—Vyo,u=—mw-*Vu—Vp,

ow+ Vyo,w=—(u-*V)w—Vp. )]
This is a particularly convenient way to write the dynamical equations of ideal, incompressible MHD: When w = 0,
O,u—V,0,u=—Vp. (10)

Since V+u =0, V2p = 0. The pressure at spatial infinity is uniform for localized disturbances; uniqueness of the selution to
Laplace’s equation implies that Vp = 0 everywhere. Therefore, (0, — V, d,)u = 0, with general solution u = u(x, y, z + V, t), describ-
ing a wave packet of arbitrary form traveling nondispersively in the negative z-direction. Similarly, whenu = 0, w = w(x, y,z — V, t)
is a wave packet of arbitrary form traveling nondispersively in the positive z-direction. Nontrivial interactions occur only when
there is overlap between the # and w wave packets. This led Kraichnan (1965) to conjecture that incompressible MHD turbulence
occurs as a result of “collisions ” between wave packets moving in opposite directions along the mean magnetic field. One of the few
general statements that can be made is that these collisions are elastic; the wave packets emerge from a collision with the same
energy they had before the collision. To see this, take dot products of equations (9) with u and w, respectively. Incompressibility
allows us to express the advective and pressure-gradient terms as total divergences. Hence only the time derivative terms survive an
integral over all space giving

d 2 133, i 2 43, _

7 u*d>x o w’d’x=0. (11)
The energy density is equal to (v* + b?)/2 = (u®> + w?)/4. Since either u or w is zero in each of the wave packets at times much earlier
to, or much after a collision, u%/4 is indeed the energy density in the downward traveling wave packet, and w?/4 is the energy density
in the upward traveling wave packet. This remarkable conservation law is related (see e.g. Moffatt 1978) to the conservation
(Woltjer 1958) of a topological invariant, namely, the cross helicity defined as

A =1 J(v - b)d3x
(12)
=% J‘(u2 — wid3x .

Therefore, separate conservation of the u and w energies is equivalent: to'th__e‘éonservation of both the total energy and the
cross-helicity. “ Collision-induced ” turbulence alters the shapes of oppositely moving wave packets while preserving their individual
energies. T

In equations (9), the role of p is (as in incompressible hydrodynamics) merely to ensure that ¥ and w stay divergence free. It is
straightforward to eliminate p by taking the divergence of equations (9), and working with the spatial Fourier transforms, &, and w,,
of w and w, respectively. The Fourier transformed equations are

. i o A~ .
(0, — i i, = — P stkl ke[, — k(k - @))(k = %,)0(ky + ky — k) ,
: (13)

o i L o N

(0, + i)Wy = — Py jd3k1 Py [y — k(k - %)k - @,)0(k, + by — k),

where caret (") stands for a unit vector, w, = V, k, is the linear frequency of the shear Alfvén and the pseudo-Alfvén waves,? and &,
stands for &, and so on. Both &, and W, are linear combinations of shear and pseudo-Alfvén waves. To study shear Alfvénic
turbulence it is helpful to project it, and W, onto é, = k, x %, the unit polarization vector of a shear Alfvén wave. The amplitudes, ¢,
and y,, of the upward and downward traveling shear Alfvén waves, respectively, are defined by

Wy = i¢kék P i = i‘//kék . (14)

2 In Paper 1, we defined w, = V, | k,| to be positive. In weak turbulence theory, interactions occur over many wave periods, with the result that w, can be
interpreted as the “energy” of a “quasi-particle” in k-space. For the critically balanced cascade we study in this paper, interactions are so strong that a “wave
packet ” lasts for at most a few wave periods; the “ quasi-particle ” interpretation is no longer useful. If we so wished, we could use only positive frequencies—the
results are identical to those we arrive at.
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Taking dot products of equations (13) with —ié,, we arrive at the following equations for the time evolution of the amplitudes:

1 s s .
(0 — i, = 87 stkl ko1 Py(8 - &)k - )0k, + k, — k),

(15)
. 1 A A X
(0, — iw )y = Py stkl ky 158, - e )k + é,)0(ky + ky — k) .

Next we derive the kinetic equation which governs the time evolution of the energy per mode in k-space. The critically balanced
spectrum (eq. [7]) emerges as a stationary solution which corresponds to a flux of energy to large k, . To derive the kinetic equation,
we begin with the energy density, # (in real space), defined by:

# = 30?45 = Rt + v, (16)

where angle brackets denote ensemble averages. Statistical spatial homogeneity allows us to define the power spectra, E;" and E
of the amplitudes of the upward/downward traveling waves by

(P P> = 256n°Ey ok — k') , ;
: YY) = 256n°E, ok — k) . (17

The energy density # = #* + # ~, where
H = Jd%E: H = Jd3kE,,‘ , (18)

from which it is clear that E; and E; are the energy densities per unit volume in k-space of upward/downward traveling waves,
respectively; for brevity we call them simply “energy per mode ”. Both s#* and s ~ are conserved energies. For future reference, we
note that the cross helicity " = (#* — 2 7)/2.

We begin by working out ,{¢, ¢ and 0¥, Y&

0P bt> = Pk 0, di> + {0, DED

1
= lloy — o)$ebt> + 55 fdakl Plo{ P12 $ENE, * 1)k - )3k + k, — k) 19

1 A AN A ’
+ 8 Jd3k1 Pl PTYE D@y - ek - 8,)5(ky + k, — K) .

Since 0,{¢, dF¥)> is proportional (see eq. [17]) to é(k — k'), we have w, = w,.; hence the first term on the right side is zero. A
third-order correlator appears in the integrands of the remaining two terms. The time evolution equation for this quantity involves a
fourth-order correlator, and so on. Such an infinite hierarchy of equations occurs quite commonly in problems concerning
turbulence and statistical physics. There really is no fundamental, yet tractable, solution to this problem. Some of the most popular
“closure ” approximations assume that the fourth-order correlator can be approximately expressed in terms of the second- and
third-order correlators, thereby limiting the infinite hierarchy to just two equations—one each for the second- and third-order
correlators. It is also a common procedure to further simplify, so as to arrive at just one equation for the second-order correlator.
We proceed by writing down the time evolution equation for the third-order correlator:

01, 9%) = —i(w; — w; — 03)P 1Y, ¢%) + # ‘(dsk4 d3k5{5(k4 + ks — k)Y, 0% Pahs )@y - éu)k, - é5)
+ 0ky + ks — k)XP103 Wy dsH(@; - E4)ky < é5) + O(ky + ks — k3)P Y, DFYENE; * €,)k; + é5)} . (20)

One of the simplest closures is the “ quasi-normal approximation” (Millionshtchikov 1941), wherein the fourth-order correlators
(occurring on the right side of eq. [20]) are treated as if ¢, and y, are Gaussian random variables. This allows the fourth-order
correlators to be expressed as sums of products of the second-order correlators (equivalently, the fourth-order cumulants are
assumed to vanish). We assume that the excitation is such that, initially, there is no correlation between the upward and downward
traveling waves. As time goes by, nonlinear interactions contribute to a nonzero, but small, value of {¢y>. To lowest order it is
consistent to neglect such terms. Setting

Y23 baths) = (Wa¥hs){d% a) = (256n°)E; E ok, + ks)o(ks — ky)
(P193Ys s> ~0, 21)
(s, dTYED > (Y Y3)<$19%> = (2567°)°E; E{ d(k, — ks)d(k, — ky),
we obtain the following approximate equation for the time evolution of the third-order correlator:
(256m5)2
8n3

(0 = 2iw)d1¥2 ¢3) = O(ky + ky — k3)(é, - &3)ks * &)E; (E{ — E3), 22
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where we have used d(k, + k, — k) to write (w; — w, — w;) = —2w,. Equations (17), (19), and (22) are equivalent to a single
integro-differential equation for E*(k), which depends on E~(k) as well as E*(k). A similar procedure leads to an integro-
differential equation for E~ (k). For Navier-Stokes turbulence, the quasi-normal approximation does, indeed, reproduce the Kolmo-
gorov inertial-range spectrum. But numerical integrations (Ogura 1963) of the “quasi-normally closed ” equations (which include
viscous damping that we neglect) of decaying turbulence develop negative energy spectra, pointing to a serious defect in the
quasi-normal approximation. The physical reason (Orszag 1970) is that discarding fourth-order cumulants (similar to eq. [21])
results in an overestimate of the growth of the third-order correlators. The simplest, yet physical, remedy is to implement the
“eddy-damped quasi-normal Markovian ” (EDQNM) approximation (see Orszag 1977; Lesieur 1990).

Now we adapt the EDQNM closure to the problem at hand. The first step is to include a linear damping term in equation (22); on
the left side, — 2iw, is replaced by —2iw, + 15, where 1~ (k) is an “eddy damping rate.” Then, we integrate over time treating E*
and E~ as time-independent quantities:

« (2567°)2 A e o
(DY, 8% = T8 Oky + ky — k3)(é, - é3)k; - €,)E; (Ef — E3)O5 (1), (23)
where
1 — exp [(iw, — n)t]
M — iy '

O (k, t)= J' ds exp [(, — 2iw)s — )] = (24
0

Substituting equations (23) and (24) in equation (19), we obtain a kinetic equation for E*(k, t). A similar derivation results in an
equation for E~(k, t).

O,Ef =38 fd3k1 d’k; 0k + k; — k)@, 8)%(k - &,)°E; (EY — E;') Re [@7(9)] - 25)

0.E; =8 fd3k1 Ak, ok, + ky — k)@, * &)*(k  8,)°E3 (Ey — E;) Re [O7 ()] . (26)
Having derived kinetic equations for both upward and downward traveling shear Alfvén waves, a few comments are in order.

3.1. Energy Conservation

It may be verified that equations (25) and (26) conserve the energies of the upward and downward traveling waves, # * and 5 ~,
defined in equation (18). By integrating over k, we obtain

oHt =8 Jd3k Ak, &3k, Sk, + ky — k)@, - 8)%(k - &,°E5 (E} — E;) Re [©5(1)] - 27)

Then interchanging k and —k;, and noting that k -+ é, = k, - &,, we find ,#* = —9,*, and thus 0, # ™" = 0. Therefore, both
the total energy as well as the cross-helicity are conserved by the kinetic equations.

3.2. Stationary, Symmetric Situations
In quasi-stationary situations, we may set
i

@i + o) ‘
This expression, when substituted into the kinetic equations (25) and (26), accounts for the frequency renormalization discussed
in§?2.

Because nonlinear interactions are limited to oppositely directed wave packets, each of the n* are properly viewed as functionals
of both of the E*. This peculiarity of Alfvénic turbulence restricts detailed application of the kinetic equations (25) and (26) to the

symmetric case, for which E; = E; = E,/2 and the cross-helicity 2" = (E; — E;)/2 = 0. Henceforth, we restrict attention to
stationary, symmetric solutions of the single kinetic equation

Re [Of ()] » T = Re [Of(0)] = (28)

OE =4 Jd% Ak 0k y + ky — k)@, * 8)*(k - &,°Eo(E, — E)T 5, (29)
where
_ Mk
T = ——’1’% G dwd (30)

3.3. Weak Turbulence

When the wave amplitudes are small, the kinetic equation (29) describes resonant 3-wave interactions. For incompressible Alfvénic
turbulence, such resonant interactions are null (Paper I). Let us see how this comes about. For consistency, the eddy damping
coefficient, n,, must be of order the rate at which energy is transferred into and out of mode k. Having chosen 7,, we test for
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consistency by schematically carrying out the integrations over d°k, and d°k,. In so doing we: treat the angular factors as being of
order unity; take advantage of the local nature of the interactions in k-space, and use a common value of k, for each of the three
modes; express the energy density in an eddy having A, ~ k; ! and A, ~ k[ ! in terms of the magnitude of its displacement vector &
as

k ki E,~of & (31)
Putting all these elements together, we arrive at
|0, Ex| S nk3 &2 Ey — Ey|, : (32)
where we have made use of the inequality
n
Tr<—.
i< (33)

To complete our estimate of | , E, |, we note that weak turbulence requires | V€ | < 1. Thus we arrive at the contradiction,
|0, E]l <n|Ey — Ey] . (34)

This confirms our contention that 3-wave resonant interactions are null.

3.4. Strong Turbulence

When the interactions are strong, the kinetic equations describe nonresonant 3-mode couplings. For investigating the inertial
range of statistically steady, strong Alfvénic turbulence, it suffices to choose the eddy damping rate as

n(k) = no kil k.| E(k, 9], (35

where 7, is a dimensionless constant of order.unity. This choice amounts to setting 5 equal to the eddy turn over rate or, in other
words, to assuming that eddies of each scale are critically damped by turbulent viscosity associated with slightly smaller eddies.
More general choices (Pouquet et al. 1975) are sometimes used for studying decaying turbulence, but we do not need them here.

Despite its deficiencies, the EDQNM closure provides a systematic procedure for deriving a kinetic equation for strong Alfvénic
turbulence. The restriction to 3-wave interactions is not as great a limitation as it may seem, since interactions of all orders are
expected to cantribute with equal strengths to the critically balanced cascade. Thus, 3-wave interactions are an adequate proxy for
those of all orders.

4. STATIONARY SOLUTIONS OF THE KINETIC EQUATION

Motivated by the energy spectrum (eq. [7]) for the critically balanced cascade, we look for stationary solutions of equation (29)
having the form

E, = Aq~“*"f(p/Aq") (36)
where ¢ =k, p = k,, and A4 and A are positive constants. The eddy damping coefficient from equation (35) reads
e =1oq’[1p|E(g, P)1'* . 37)

The properties of the function f are defined following equation (7). We do not attempt to further determine its form. Instead, we set
the more modest goal of seeking values of u and v that describe an inertial-range spectrum of strong shear Alfvénic turbulence.
Since, for this purpose, the relevant information about fis its “ width,” Ag" in p for a fixed g, it suffices to deal with a kinetic equation
for the dynamics in g-space. To this end, we define a p-integrated energy density (energy per unit area in g-space):

A
@) = f Eydp = ’:— (38)

Then integrating equation (29) over p, and noting that the dot products depend only on ¢, ¢, and ¢,, we arrive at the “reduced ”
kinetic equation

0,6(q) = fdqu d’q,0(q, + 4, — @)@, * &)°(q * 6:)%(6, — £,)G(q0) - (39

The new function G(q,) results from the integral over p,. It plays an essential role in determining the spectrum. We now derive
explicit expressions for the dot products in the integrand and then for G:

1. The dot products—Let 0, be the angle between ¢ and ¢,, and 6, the angle between ¢ and ¢,. Then

(é,+é)* =cos? 0, .
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We can use (g, + g, — q) to write

2
R . 94, \* ..
(g é)* =q*sin® 0, = <——1> sin 0, , g, =(q* + g3 — 299, cos 6,)'*.

Up)

2. The function G(g)—In the computations to follow, we omit the subscript “2” on both g and p. Then G is defined as

Glg) =4 jdp 7 (4, PE(g, D) . (40)
From equation (30),
-1 __In20]
T =12 b S bl
7= T el
with
| (104N -wa-w| @A)
IVAND L p/AG’
Defining constants

A2 24
O_l=7lo 12 ° 0y = 01’
2V, AY Vi

3/2 -1
[+ 0 o]

This is the expression for G(q) that appears in the reduced kinetic equation (eq. [39]). The other terms in the integrand of the
collision integral are either angular factors, or pure power-law functions of g, q,, or ¢,. Therefore, for a stationary solution to
equation (39), it is reasonable to expect G(g) to be a power-law function of . This is achieved when (4 — p — 2v) = 0, i.e., when

v=2—p2. : S @2)

1)

we obtain the following expression for G:

f © )

Gla) = o, g2 f at

Using this relation between u and v we eliminate v and write

where the new constant

G@) = x4, | 3
1©

© 3/2 :
o = AAo, J_wdé ¢ (1 +o C ) . . 44)

With the above considerations in effect, the reduced kinetic equation (eq [39]) can be written as

2.2 : )
0,6 =0 fdqu d*q, (4, + 9. — 9) q%%,—;, cos? 0, sin” 0,(q;* —q7*) . (45)

Using the d-function to eliminate q,, and defining a new variable r = q,/q,

© cos? 6, sin® 6
—_ (2—-3pu/2) 3(4— 1 1
0,8(q) = aq"*™>* L drri(r™*—1) §d01 L+ 7% — 2r cos 0,24 ° (46)
The transformation r — 1/r converts the integral over the range (1, o) to an integral over the range (0, 1). Thus
t cos? 0, sin?
— 52302 3 _ Bu2-1 - 1 1
0,6(q) = aq? =342 L ar[r3 — rCr2=D~r — 1) §d(91 (157 — 2r cos )27 ° 47)
The angular integral is positive definite. Hence it is obvious that the stationary solutions are given by
u=2_8/3, or u=0. 48)

From the relation (eq. [42]) between pu and v, we determine that u = 8/3 implies v = 2/3. This corresponds to the inertial-range
spectrum of the critically balanced cascade (see eq. [7]). On the other hand, the 4 = 0 solution has equal energy per mode in g-space;
it corresponds to thermal equilibrium.
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We now proceed to define the energy flux in ¢g-space, and then show that, as expected, the u = 8/3 solution carries a positive flux
whereas the flux vanishes for the u = 0 solution. The energy density, £(q), and flux, §&, are related by the continuity equation,

0,6+V, [4#]=0. (49)
From equation (45), the rate of change of energy density at ¢ due to waves at ¢, is

2,2 2 in2
q*q% cos® 0, sin® 6, —u Y
- . 50
(@ + 42 — 2q4; cos G0 (41"~ 41 0

8g~q) =0

The positive term arises from the creation of waves at g due to the coalescence of ¢, and ¢, waves. The negative contribution is due
to the splitting of g waves into waves at g, and ¢,. The energy flux

2nqF(q) = J d*q f 4’964, - 9) - (51)
3 q'>q q1<q

From equations (50) and (51), it is evident that the u = 0 solutions have zero energy flux. We simplify the expression for the energy

flux by using the detailed balance property of the energy transfer rate, §(¢, — q) = — (¢ — ¢,), which follows from the symmetry of

the right-hand side of equation (50). Detailed balance implies

f d*q j d’q,8(4,~9)=0, (52)
q9>q q1>4q
which when added to the right-hand side of equation (51) yields
2nqF (q) = f d*q fdqutf(ql ~q). (53)
q'>q

Substituting equation (50) in equation (53), we arrive at an explicit formula for the energy flux:

® ! cos? 6, sin?
1 13(1—p/2) 3 (3u/2-1 - 1 1
dq q e L dr[r — it )](r #— 1) §d01 (1 + 7'2 _ 27’ cos 01)(2 +u/d)

To check the sign of the energy flux corresponding to the u = 8/3 solution, we cannot simply set 4 = 8/3 in the expression on the
right side of equation (54). If we did, then the ¢’ integral would be equal to L‘f dq'/q, giving a logarithmic ultraviolet divergence. On
the other hand, the integrand of the r integral would vanish, so we would be left with an indeterminate oo x O form. Instead, we
determine the sign of the flux by taking the limit u — 1 from above. Then both the ¢’ and r integrals are finite and positive, and so is
the energy flux.

2nqF(q) = 2no f (54)

q

5. ESTIMATES OF DAMPING
We consider three damping mechanisms, each of which drains energy from shear Alfvénic turbulence.

5.1. Ion-Neutral Damping

Consider Alfvén waves in a partially ionized medium. The magnetic force acts directly on the ionized component, and indirectly
on the neutral component through ion-neutral collisions. To the extent that the mean velocities of the two components differ, these
collisions dissipate the energy of the Alfvén waves as heat. Let us estimate the damping rate of the critically balanced cascade in a
partially ionized medium where the number density of ions is n;, the number density of neutrals is ny, and n, < n;. We use the
notation vy, for the (common) thermal speed of the ions and neutrals and assume that v, ~ V, in what follows. The mean (over the
thermal distribution) velocities of the ions and neutrals are denoted by »; and v,, respectively. The neutrals have mean free path
lo ~ (n;00) !, and collision frequency v, ~ (v/lo), Where g, is the ion-neutral cross section. The different physical regimes for the
collision process are characterized by the dimensionless parameters, II; and II,:

U, =lok,, =2 (55)
Yo
Deep in the inertial range of the critically balanced cascade, k, > k, ~ k3/3L~'/3, Hence
L _ (vw) ke (0w 13
e ( o) ke (S, s (56)

There are two limiting cases:

1. II, < 1.—Equation (56) implies I, < 1 as well. The neutrals move almost in step with the ions. The small mean slip velocity,
Vgip = Vg — ¥;,is of order
1 dv,

e (112 + 1), . (57)

Vgtip ~ —
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The term proportional to dv;/dt is unimportant; it contributes only a negligible correction to the dispersion relation. Wave damping
arises from the term proportional to »;. The damping time is of order the time between successive collisions of an ion with neutrals

multiplied by the large ratio v;/vg;,. Thus,
Va\(k:\ I,
outam~ () 2N e 9

Making use of equation (56), we may recast equation (58) in the more revealing form

) 13
Outaam ~ () 2)(2) " 1o k) (59)
no U'h L

2. I, » 1.—The neutrals found at a particular spatial location last collided with ions at locations more distinct than the
“perpendicular wavelength > of the shear Alfvén wave under consideration. Therefore, v, = 0, and the damping time is of order the
time between successive collisions of an ion with neutrals. Hence,

i\ Va\ k.
v ()G @

We may rewrite equation (60) in the more revealing form

X V l 1/3
Wy Lgamp ~ <n1;><v_‘:>(zo> (loky)?? . (61)

Asis ev1dent from equations (59) and (61), the critically balanced cascade i 1s most vulnerable to damping by ion-neutral collisions
atk, ~ Iy *. Its development to higher perpendicular wave number, k, 2 I5?, is only possible in environments for which the neutral
fraction, f = ngy/n;, is sufficiently small:

l
Serie ~ ( £> . (62)
Uth
Taking 6, ~ 107 1% cm? yields
-3
Iy ~ 1015<°":‘ ) cm . (63)
Then assuming V, ~ v, we arrive at
L\ n W3 .
Jarie ~ 7 x 10 2(;);) <cm_3> . (64)

The numerical estimate of f,;, implies that the interstellar electron density fluctuations responsible for pulsar scintillations arise in
highly ionized components of the interstellar medium.

5.2. Viscous Damping‘

Shear Alfvén waves are resistant to damping in fully ionized plasmas. To linear order, and in the limit that the particles have
gyroradii much smaller than the wavelength, they are immune to collisionless damping. They do suffer collisional damping, but only
that associated with the small cross field components of the viscosity tensor. The dominant components of the shear tensor on scales
in the inertial range of the critically balanced cascade have magnitudes

sy~kyv, ~ KLY, (65)
where we assume v, ~ V,. Collisions between protons result in cross field components of the kinematic viscosity tensor being of
order

e2cin,

W A (66)

Uth

with In & ~ 20 denoting the Coulomb logarithm. In a collision-dominated fluid, viscosity cuts off the Kolmogorov inertial range at
an inner (viscous) scale, 1, of order

L
I, ~ Re34° 67)
where the Reynolds number
Re ~ % . (68)
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A numerical comparison of the inner scale so defined with the proton gyroradius,

m; Cvg,
PR —,
eB,

I n \8/L\Y4/ B -siaf T \-78
2107 () (= .
r; 0 (cm_3> <pc) <10_6 G) (104 K> (70)

This ratio is small compared to unity for almost all conceivable interstellar environments. Thus, as far as we can see, the cascade
might reach values of k| ! approaching the proton gyroradius.

(69)

yields

5.3. - Generation of Other Modes

At an early stage in this paper, we discard the pseudo-Alfvén wave by projecting the perturbed velocity and magnetic fields (eq.
[14]) onto the polarization vector of the shear Alfvén wave. A similar restriction is made in Paper 1. There it has the motivation that,
in high f plasmas, the slow magnetosonic wave (of which the pseudo-Alfvén wave is the incompressible limit) undergoes heavy
collisionless damping by resonant particles (Barnes 1966). Relying on Barnes’ damping to eliminate compressible MHD modes is
plausible when dealing with weak MHD turbulence, because the nonlinear interactions act over many wave periods. However, it is
not clear that Barnes’ damping works fast enough, to compete with the nonlinear interactions in cases of strong MHD turbulence.
Thus our restriction to shear Alfvén waves is no more than a guess. This guess seems appropriate for solar wind turbulence, but even
in this relatively well studied environment the dominance of shear Alfvén waves lacks a convincing explanation. Here we settle for
answering a simpler queéstion. Does the generation of pseudo-Alfvén waves divert a significant fraction of the energy from a
symmetric, critically balanced cascade of shear Alfvén waves? As shown below, the answer is a resounding no.

Let “S,” and “ P, ” denote shear and pseudo-Alfvén waves with wavevector k, respectively. Consider the process S; + S, = S;.
The rate at which energy is lost from the wave with wavevector k can be read off equation (29). By analogy, there is a similar
expression for the rate at which a shear Alfvén wave with wavevector k loses energy by the process

S, +S,—»P,. (71)
A detailed derivation, which we do not give here, confirms that
- i 0,E,=—-T,E,, (72)
where ‘
r,=4 Jd3k1 A3k, (ky + ky — k) f, - €)%k - &,)°T ,E, . (73)

The only difference between the above expression and the E, E, term in equation (29) is that (¢, * &,)> has been replaced by (f; * &,)?
where

hi=@ xk. (74)

is the unit polarization vector for the pseudo-Alfvén wave. This difference is crucial, as we are about to show.

For shear Alfvén waves undergoing a critically balanced cascade, each of the compensating interactions S, + S, - S; and
S; + S, « S, acts to modify the energy in mode k at a rate ~w,. The rate at which the generation of pseudo Alfvén waves drains
energy from the critically balanced cascade (eq. [71]) is estimated to be

£ .5 \2 2
T, ~ w,,(u) - (';(—‘> tan2 0, . (75)

€, "€ 1

We ignore the angular factor which is of order unity, and use the locality of interactions in k-space to set (k,,/k;)> ~ (k,/k)%. In the
inertial-range, k, ~ k3L~ '3 <k, so

kz 2 Wy,
o) ~ g 9
Deep in the inertial-range, k, L > 1, so the critically balanced cascade incurs only a negligible energy loss through the generation of
pseudo-Alfvén waves.

We are really interested in compressible MHD which supports, in addition to the incompressible shear Alfvén wave, two
compressible modes, the slow wave (the generalization of the pseudo-Alfvén mode) and the fast wave. The argument just outlined,
for ignoring production of pseudo-Alfvén waves by the critically balanced cascade, rests on the polarization properties of the modes;
for k,/k, < 1and ki/k, < 1,| f, * é| < 1. We expect this result to generalize to cover the production of slow waves in compressible
media. That leaves only the generation of fast waves to worry about. However, a simple argument suggests that the critically
balanced cascade is also immune to this potential problem. Comparing the dispersion relation for the fast wave, w? = {V3 + c2
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+ [(V} — ¢?)* + 4Vic? sin? 6]'2}k?/2, with that for the shear Alfvén wave, ® = k, V,, we see that shear Alfvén waves with
ki* < kS can only generate fast waves having k! ~ k{ ~ k$* < k%A, The restricted phase space for these fast waves limits the energy
lost in their generation to the same order as that lost in the generation of slow waves. We tentatively conclude that it is a consistent
procedure to ignore the fast and slow waves when studying the critically balanced cascade of shear Alfvén waves.

6. ELECTRON DENSITY FLUCTUATIONS AND SCATTERING OF RADIO WAVES

We propose that shear Alfvénic turbulence might achieve a self-regulated state in which there is rough balance between the linear
wave periods and the timescale for nonlinear interactions among the waves. There are some noteworthy features of the inertial-
range energy spectrum of the critically balanced cascade:

1. Unlike the weak 4-wave cascade, the critically balanced cascade allows for a slow growth of k, with increasing k, . The eddies
are elongated along the direction of the mean magnetic field with an aspect ratio k, /k, ~ (k, L)/3. Taking k] ! to be the diffractive
scale ~3 x 10® cm, and setting the outer scale L ~ pc, yields an aspect ratio ~ 103,

2. The “one-dimensional” energy spectrum, corresponding to the “three-dimensional” spectrum that has been defined in
equation (7), is proportional to kT *3. The critically balanced cascade produces an “ anisotropic Kolmogorov ” spectrum.

6.1. Electron Density Fluctuations

Our attempt to connect interstellar electron density fluctuations to Alfvénic turbulence is based on the relation between
turbulence and density variations in Earth’s atmosphere. Atmospheric refractivity fluctuations responsible for stellar scintillation
and seeing arise from the turbulent mixing of air parcels having different specific entropy. The entropy acts like a passive
contaminant; it does not affect the dynamics. The power spectrum of the fluctuations of a passive scalar assumes the form of the
energy spectrum of the turbulence (Lesieur 1990). For incompressible hydrodynamic turbulence, this means the one-dimensional
power spectrum is proportional to k~>/3. By virtue of its small Mach number, atmospheric turbulence is essentially incompressible.
This ensures that the dominant contributions to the density fluctuations are made by entropy fluctuations at constant pressure,
rather than by pressure fluctuations associated with the Reynolds stress.

The inertial range of the critically balanced cascade of shear Alfvén waves shares many of the characteristics of the inertial range
of atmospheric turbulence. The plasma pressure is constant to first-order in the perturbation strength, because the perturbed
magnetic field is orthogonal to the mean field. The velocity perturbations are slow in comparison to the speeds of the MHD waves.
Because its electrical conductivity is high, the plasma is tied to magnetic field lines, although it can stream along them. It is
reasonable to assume that specific entropy acts as a passive contaminant under mixing by shear Alfvén turbulence, and that its
power spectrum assumes the form of the energy spectrum of the turbulence. Then the electron density fluctuations reflect fluctua-
tions of specific entropy at constant plasma pressure. At constant pressure, small variations of specific entropy are directly
proportional to those of temperature. They are smoothed by thermal conduction. The cross-field thermal diffusivity is promoted by
collisions between protons, and has magnitude similar to that of the cross-field kinematic viscosity. Consequently, it is too small to
damp density fluctuations in the inertial range (cf. § 5).

6.2. Scattering of Radio Waves

Most work concerning the optics of scintillation assumes that the electron density fluctuations follow an isotropic Kolmogorov
law, where isotropy is assumed in the interests of simplicity (e.g., Rickett 1990; Narayan 1992). Our model not only accounts for the
slope of the ISM electron density spectrum, but also allows for anisotropy in the shapes of the scatter-broadened images.

The scattering of radio waves by highly elongated, aligned, density fluctuations is.analogous to the diffractions of light by a series
of parallel, thin slits. The dominant scattering is in directions perpendicular to the mean magnetic field. This is a plausible
explanation for the elongated, scatter-broadened images of some distant point sources (see, e.g., Rickett 1990; Wilkinson, Narayan,
& Spencer 1994; Frail et al. 1994). Of course, these images are much rounder than individual eddies, since they result from the
totality of scattering along the line of sight. Considerable averaging results from passage through even a single outer scale length of
the turbulence, since the magnetic field perturbations on this scale are of order unity.

Rather special environments are required to produce images of large aspect ratio. The prime example is the solar wind, where
near the Sun the magnetic field lines are drawn out almost radially. Images of 3C 279 close to the solar limb are elongated by 6:1
(Narayan, Anantharamaiah, & Cornwell 1989). However, we cannot claim these observations as unambiguous support, because the
electron density fluctuation spectrum in this region is flatter than our theory predicts. We suspect this results from a lack of
symmetry in the flux of Alfvén waves propagating toward and away from the Sun; the outward flux is known to exceed the inward
flux even at 1 AU. The critically balanced cascade is a steady state solution of the kinetic equations regardless of whether there is or
is not symmetry between the fluxes of oppesitely directed shear Alfvén waves. However, in the absence of symmetry, it is not the
unique solution corresponding to a positive flux of energy in k-space.

Future, high resolution, multifrequency observations offer the possibility of testing predictions our model makes for the frequency-
dependent properties of the scatter-broadened images.

7. DISCUSSION

Paper I presents a detailed analysis of weak shear Alfvénic turbulence in an incompressible magnetized fluid. It describes a
resonant 4-wave cascade which possesses a couple of remarkable properties. It does not transfer energy along k,, and the nonlinear
interactions strengthen with increasing k, thereby limiting the inertial range. The current paper addresses two obvious, related
questions. What happens to a weak cascade when the interaction strengths become of order unity? What is the nature of the
turbulence if the initial excitation is strong?
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The conjecture of a critically balanced shear Alfvénic cascade answers both questions. The turbulence self-regulates so that there is
an approximate balance between the (linear) wave period and the (nonlinear) eddy turnover time. By requiring a constant flux of
energy in k-space, we work out (phenomenologically) the inertial-range energy spectrum of the critically balanced cascade. Two
notse/xvorthy features are (1) The spectrum is anisotropic, k, ~ k3/*L~'/3; (2) The one dimensional energy spectrum is proportional to
kP

Rewriting the equations of incompressible MHD using Elsasser’s variables, we derive a kinetic equation describing the inter-
actions of oppositely moving (there is no interaction between waves moving in the same direction) shear Alfvén waves. We specialize
to the case where the spectra of oppositely traveling waves is identical; this corresponds to zero cross helicity. The “closure”
problem is handled by application of an EDQNM-type approximation. We prove that the critically balanced cascade is a
symmetric, stationary solution of the kinetic equation, and that it is associated with a positive flux of energy in k-space.

Wave damping due to ion-neutral collisions is most critical for waves whose perpendicular wavelengths are comparable to the
mean free path, [y, of the neutrals. It is only in highly ionized media that the critically balanced cascade escapes being truncated at
scales above l,. As the diffractive scintillation of pulsars is due to electron density fluctuations on scales much smaller than I,, we
conclude that it arises in highly ionized components of the ISM.

We evaluate and dismiss cross field, kinematic viscosity associated with collisions between protons as a significant mechanism for
terminating the critically balanced cascade. Unless ion-neutral collisions are significant, we see no reason why the inner scale of

- shear Alfvén turbulence should be much larger than the ion gyroradius.

The interstellar electron density spectrum is similar to the energy density spectrum of the critically balanced cascade. We argue
that this results from the mixing by shear Alfvén waves of plasma having a range of specific entropy. There is a close analogy with
the mixing by atmospheric turbulence of air parcels having different specific entropy. Based on this hypothesis, we expect the
electron density fluctuations to have long correlation lengths along the direction of the (local) magnetic field. Such structures scatter
radio waves anisotropically, and may be responsible for the anisotropic scatter-broadened images observed by VLBL

In both Paper I and the current manuscript, we ignore compressibility in the technical calculations of turbulent spectra. This is a
serious omission when contemplating applications to the ISM. Lack of appropriate calculations does not prevent us from address-
ing issues related to ISM electron density fluctuations. However, we are stymied by one point. We cannot explain why shear Alfvén
waves might be the dominant mode. This is observed to be the case in the interplanetary medium, but is not understood.

Damping of compressive modes may be the answer. Compressive modes are subject to viscous damping in the collisional limit.
They also suffer from collisionless damping. Both forms of damping can be severe in plasmas of moderate B. Collisional damping
arises from the longitudinal viscosity due to proton-proton scattering (Braginskii 1965). It acts most effectively on waves for which
kl; ~ 1, where I; ~ 10'*(n;/cm ™)~ ! cm is the proton mean free path. For these most vulnerable waves, the damping rate approaches
the wave frequency. The absorption of wave energy by resonant particles causes collisionless damping (Barnes 1966) which affects
both fast and slow modes of all wavelengths. Collisionless damping depends sensitively on the angle between k and B, for each of
the two modes. Its rate can approach the wave frequency. Collisional damping might cut off a turbulent cascade of compressive
waves near kl; ~ 1. Alternatively, collisionless damping might terminate the cascade at slightly shorter scales. However, it is unclear
whether either kind of damping proceeds fast enough to compete with the nonlinear transfer of energy in strong turbulence.

At least in an incompressible medium, the critically balanced cascade of shear Alfvén wave is self-consistent; it does not suffer
significant energy drain through the generation of pseudo-Alfvén waves, the only other wave mode. It is plausible, but unproved,
that this self-consistency carries over to the compressible case. Compressibility adds yet an additional complication, the steepening
of nonlinear Alfvén waves traveling in one direction (Cohen & Kulsrud 1974; Kennel et al. 1988). We are of the opinion that this is
not a serious effect, because energy transfer in the crtically balanced cascade takes place on the timescale of a wave period. We
expect wave steepening to occur over a much longer timescale, since the energy density in the inertial range is much smaller than the
energy density in the ambient magnetic field. Reasonable as this argument may be, it is no substitute for a theory of turbulence
appropriate to a compressible medium.

8. COMPARISON TO PREVIOUS WORK

Not surprisingly, plasmas confined by strong magnetic fields in tokamaks and pinches exhibit highly anisotropic turbulence.
Montgomery & Turner (1981) assume that a strong mean magnetic field suppresses field-aligned gradients of magnetic and velocity
perturbations. They conjecture that the anisotropic turbulence seen in laboratory experiments involves essentially perpendicular
field fluctuations; the perpendicular correlation lengths of these fluctuations are assumed to be much shorter than the parallel
correlation lengths. Montgomery (1982) argues that this anisotropic state should be described by the Strauss (1976) equations. It
must be noted that “critical balance” between parallel and perpendicular timescales is a key assumption in the derivation of the
Strauss equations. In this paper we provide a dynamical basis for the critically balanced state. We also derive the inertial range
spectrum (eq. [7]), as well as the relationship between parallel and perpendicular correlation lengths (eq. [4]). An alternate approach
starting from the Strauss equations should give identical results, although this is not discussed in Montgomery (1982). The
limitations of such an approach are that one effectively assumes what is to be derived.

Montgomery & Turner (1981) point out that the 3-wave resonance relations (cf. Paper I) allow only those interactions in which at
least one of the 3-waves has zero frequency. They view MHD turbulence as being quasi-two-dimensional with the dynamics
controlled by interactions among triplets of zero frequency modes. No estimates of timescales are provided in their paper. We
broadly agree with this part of Montgomery & Turner (1981) and also Montgomery (1982); the quasi-two-dimensional shear Alfvén
waves of the critically balanced cascade, after suitable nonlinear frequency renormalization, correspond to their zero frequency
modes. Montgomery & Turner (1981) go on to hypothesize the existence of an independent, more nearly isotropic cascade of Alfvén
waves. The analyses here and in Paper I contradict this conjecture. We find an initially isotropic spectrum of Alfvén waves to evolve
naturally into the nearly two-dimensional, critically balanced cascade. Further comparison between our papers and those of
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Montgomery & Turner (1981) and Montgomery (1982) is frustrated by the latters lack of detailed calculations, or even a form for the
inertial-range spectrum.

Higdon (1984) bases his work on Montgomery (1982). In retrospect, we consider his insight regarding interstellar turbulence as
nothing short of prophetic. However, he provides little in the way of relevant dynamics. Higdon argues that the ISM electron
density fluctuations are isobaric entropy fluctuations, and that these are mixed as passive contaminants by an underlying turbulent
cascade. He points out that, in directions perpendicular to the mean magnetic field, transport coefficients are drastically reduced,
thus allowing a turbulent cascade to reach the small scales responsible for diffractive scintillation. Our picture of interstellar
turbulence shares many of these features. However, it also advances a detailed model for shear Alfvénic turbulence whose inertial-
range energy spectrum matches the power spectrum of the ISM electron density fluctuations.

Montgomery, Brown & Matthaeus (1987) propose that magnetic pressure fluctuations lead directly to a power spectrum of
density fluctuations. If b, is the perturbation of the mean magnetic field, B,, to leading order, the pressure perturbation is
(By * b,)/4r. Density variations being proportional to pressure variations, one obtains a power spectrum of density fluctuations that
has the same form as the power spectrum of the magnetic field fluctuations. No dynamics for the magnetic field fluctuations is given;
the one-dimensional spectrum is simply assumed to be proportional to k™53, For this model to work, (B, * b,) must be nonzero.
This is true for the compressive magnetosonic modes but not for shear Alfvén waves. An assessment of the relevance of this
mechanism to the ISM must await calculations of the inertial range energy spectra appropriate to the compressive MHD modes.
Moreover, it must be demonstrated that turbulent cascades involving compressive waves can survive dissipation.

Our research was supported in part by NSF grant 89-13664 and NASA grant NAGW 2372. In addition, we have benefited from
the counsel of many colleagues including Roger Blandford, Russell Kulsrud, Alice Quillen, Sharadini Rath, & Yanqin Wu. Lengthy
discussions with Robert Kraichnan were of particular value.
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