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Inertial-Range Spectrum of
Hydromagnetic Turbulence

RoBERT H. KRAICHNAN

Peterborough, New Hampshire
(Received 3 March 1965)

HIS note suggests that Kolmogorov’s concept of
independence of widely separated wavenumbers
in the inertial range of turbulence should be modified
for the hydromagnetic case. When the magnetic
energy in sub-inertial wavenumbers exceeds the
total energy in the inertial range, the predicted
asymptotic inertial-range energy spectrum is pro-
portional to k~%/%, instead of k™%, and displays
exact equipartition between magnetic and kinetic
energy. Generalized Lagrangian functions for hydro-
magnetic flow are introduced to provide a suitable
basis for quantitative turbulence approximations.
The proposed formalism permits following the fate
of given Alfvén wavefronts as well as that of given
fluid particles.
Let the hydromagnetic equations in Elsasser's
symmetrized form be

aJ
<a+vv%

=»VW+rVz—-Vp, V-w=0, (1)
a
<a+wvﬁ
=, V2 +v.Vw — Vp, V-z=0, (2
where
w=u-+Db, z=u—b, @)

ve = 3+ @rwo) ), v = 3 — (nuo)),

v(x, {) is the Eulerian velocity field, (4xup)'”* b(x, t)
is the induction field, p(x, ¢) is total kinematic
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pressure, » is kinematic viscosity, u is susceptibility,
p is fluid density, and ¢ is conductivity."

These equations show an essential difference be-
tween the dynamical effects of uniform velocity and
magnetic fields. Suppose that pre-existing fields
u(x, t) and b(x, t) are augmented by switching on a
constant and uniform velocity field @. The effect
is to replace 9/dt in both (1) and (2) by the sub-
stantial derivative 9/dt + G-V. This expresses the
fact that in a coordinate system moving with @ the
dynamics of the pre-existing fields are unchanged.
If, instead, a uniform magnetic field p is switched
on, 3/dt in (1) is replaced by 4/9t — -V while
4/t in (2) is replaced by 6/6t + - V. There is no
coordinate system in which the dynamics are un-
changed. The pre-existing z and w fields are pro-
pagated as Alfvén waves in opposite directions
along the lines of force of the p field. The non-
linear terms in (1) and (2) represent a coupling
between the z and w waves. If the pre-existing
fields u(x, t) and b(x, ) are localized in a region of
space of dimension L, then in a time of order
L/lp|, the imposed uniform field separates the
initial excitation into noninteracting w and z waves
which propagate linearly.

Now consider homogeneous, isotropic hydromag-
netic turbulence. Let E(k) and F(k) be the kinetic
and magnetic energy-spectrum functions, so that
the root-mean-square values v, and b, of velocity
and magnetic field along any axis are given by

37 = f Bk dk, 35 = f Fo) de.  (4)
0 0

Assume that there exists an inertial range of wave-
numbers k such that: Almost all of the contribution
to 2 and b2 comes from wavenumbers below the
range; almost all of the dissipation into heat occurs
above the range; the total kinetic and magnetic
energies above any wavenumber % in the range
are each small compared to both »2 and b2; energy
cascade within the range is local in the sense that
there is negligible direct transfer of energy between
wavenumbers whose ratio is very large. The condi-
tions under which such a range can be produced will
not be examined here.

Kolmogorov’s inertial-range law for hydrodynamic
turbulence is based on an assumption that the action
of energy-range excitation on inertial-range excita-
tion is asymptotically a distortion-free convection
which does not affect energy transfer within the
inertial range.” That is, the energy-range excitation
acts, in this respect, as if it were a spatially uniform
velocity field. In the present hydromagnetic case,
it still may be argued plausibly that the action of
the energy range on the inertial range is equivalent
to that of spatially uniform fields. But, in contrast
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to a uniform velocity field, a uniform magnetic
field has a profound effect on energy transfer. The
propagation of the fluctuations in the z and w
fields in opposite directions disrupts phase relations
and thereby may be expected, on the average, to
decrease energy transfer. The picture of the inertial-
range dynamics implied here is of Alfvén waves with
inertial-range wavenumbers propagating through the
fluid at speeds of order b,, with the energy cascade
resulting from scattering between the w and z waves.

A first conclusion is that there should be asymp-
totically exact equipartition of energy in the in-
ertial range, E(k) = F(k). The argument is as
follows: Since the two waves propagate in opposite
directions, any initial statistical correlation between
the w and z amplitudes for a given inertial-range
wave vector k is destroyed in a time of order
(bok)™*. Any persistent correlation must arise from
the scattering of the w and z waves. The distortions
which the scattering can produce in the time (bok) ™"
are measured by the ratios v,/b, and b,/b,, where,
say, v, = [KE(k)]'? b, = [kF(k)]'/*. By previous
assumption, these ratios are very small for inertial-
range k. Hence the w and z waves scatter only
weakly. They are nearly freely propagating and
nearly uncorrelated. Asymptotically, for an inertial
range of infinite extent, the correlation is zero. The
argument is completed by noting from (3) that un-
correlated w and z amplitudes for a given wave
vector imply equipartition for that wave vector.

In order to infer the form of the inertial-range
spectrum, it is necessary to estimate the magnitude
of the triple correlations. Consider a triad of wave-
numbers each of which are of order k. If the energy-
range excitation were absent, it would be expected
that the nonlinear interaction would build up
substantial triple correlations in the local dynamical
time (v:k)™'. With the energy-range excitation
present, however, (bk)™' is the effective time for
relaxation of the locally built-up phase correlations
through propagation. Since (bok)™" < (v:k)7%, it is
plausible that the resultant steady-state triple cor-
relation is « (bok) ™" and that, therefore,

e « (bok) ™, (5)

where ¢ is the total rate of energy-transfer per unit
mass from wavenumbers below %k to wavenumbers
above k. Because energy is conserved by the non-
linear interaction and a local cascade has been as-
sumed, e is independent of k. Moreover, the as-
sumption of local cascade suggests that, apart from
the dependence on b, ¢ depends only on the local
quantities k and E(k) = F(k). Then dimensional
analysis yields

e = A% [E0TK, (6)

or
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E(k) = F(k) = A(cb)% 7", )

where A is a numerical constant.

Equation (7) implies that the skewness factors
of the spatial derivatives of the fields approach zero
as the Reynolds numbers go to infinity. This is
another expression of the weakness of phase cor-
relations in the inertial range.

In a discussion of the dissipation range of hydro-
magnetic turbulence, Moffatt’ has suggested that
sufficiently strong turbulent magnetic excitation at
given wavenumbers can act to suppress turbulence
at higher wavenumbers. The inertial-range dynamics
suggested above represent an opposite situation.
There is no dissipation in the ranges considered. The
interaction between energy range and inertial range
is purely elastic and acts to spoil energy transfer
within the latter range. Consequently, there is a
pile-up of energy in the inertial range, and the
spectrum level there is higher than a pure Kolmo-
gorov cascade would give.

The direct-interaction closure approximation for
hydromagnetic turbulence*™® starts from the equa-
tions of motion and yields a quantitative description
of the energy-transfer process which agrees with the
qualitative picture above, except for one important
difference: The effective relaxation time for triple
correlations is given by (v7k)”", where

vy = (U?) + bg)%: (8)
and consequently the spectrum is given by
E(k) = F(k) = A"(ep)'k™, ©)

where the constant A’ is determined by the approxi-
mation.

In the pure hydrodynamic case, the relaxation
time (vok)~* for inertial-range phase correlations is
spurious and due to an inability of the direct-
interaction approximation properly to describe the
convection of small spatial scales by large spatial
scales.” This deficiency has been corrected by an
alteration of the approximation which, in effect,
permits following the relaxation of triple correlations
in Lagrangian instead of Eulerian coordinates.” The
resulting equations for hydrodynamic turbulence
give a —5/3 inertial range and yield a value of the
numerical coefficient that is consistent with experi-
ment.

The altered approximation can be extended to
the hydromagnetic case so as to remove the similarly
spurious appearance of v instead of b, in (9). The
Lagrangian alteration is called for if v, > b,. More-
over, for v, 3> b,, there may be situations in which
a two-piece inertial range occurs: Ifirst, a hydro-
dynamic range where E(k) « k™°° and F(k)/E(k)
increases from very small values as k increases;
second, an equipartition range obeying the —3/2
law. In this case, the Lagrangian alteration would
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yield the correct behavior while the unaltered
direct-interaction approximation would yield —3/2
dependencies in both ranges.

A straightforward extension of Ref. 7 to the
hydromagnetic case would be based on the functions
u(x, t|r) and b(x, ¢ | r) defined by

u®,t ] =ulx, 8, b t|=D>bx,i),
[(6/0t + u(x, §)-Vu@x, t|r) = 0,
[8/0t + u(x, §)-VIbx, ¢t [r) = 0.

These functions give the velocity and magnetic
fields measured at time r at a point which moves
with the fluid and which passes through x at time ¢.
They encompass both the Eulerian and Lagrangian
functions as usually defined (cf. Ref. 7).

A more appropriate basis for the hydromagnetic
case may turn out to be the functions w*(x, t|r),
z°(x,t|7), w (x,t]|r), and z (x, ¢t | r) defined by

(10)

(11)

Wi, t] ) = wx, t] ) = wix, 0,

(12)
zh(x, t |8 =27 (x, ¢ |t = z(x, 1),
[0/0t + w(x, 1)-VIw'(x, ¢ |7r) =0, (13)
[0/0t + w(x, 1)-V]z*(x, ¢t |r) =0,
[8/0t + z(x, )-VIw (x, ¢ |7) =0, (14)

[8/0t + z(x, 1) V]z (x, ¢t |r) = 0.

These functions give the values of the fields meas-
ured at time r at points which pass through x at
time ¢ but which move, relative to the fluid, along
the lines of foree and with the local Alfvén speed.
The plus and minus signs correspond to relative
motion parallel and antiparallel to the local magnetic
field direction. The functions u(x, ¢|r) and b(x, t|r)
provide a means of following the history of a given
fluid element at it is carried about by the flow.
The functions w*(x, tlr), z"(x, t|r), w (%, {|r), and
z7(x, t|r) permit tracing what happens to a given
Alfvén wavefront as it simultaneously propagates
along the field lines and is convected by the flow.
They may prove useful in stability analysis and in
other nonturbulent flow problems, as well as in the
turbulence problem.

This work was supported by the Fluid Dynamics
Branch, Office of Naval Research, under Contract
Nonr 4307(00).
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AN interesting phenomenon in fluid dynamies is
the generation of water waves by wind. The
properties of wind-generated waves, and the mecha-
nism for their growth have been investigated by
workers in many fields from civil engineering to
oceanography. It has been found that a wavy
surface may be described statistically in part by the
spectral energy function ®(f), where f denotes the
frequency. ®(f) represents the Fourier transform of
the caleulated autocorrelation function for water
waves. The average potential energy E contained in
the train of waves is proportional to the variance
o” of the surface:

Bao = ag)d. )

Thus, ®(f) denotes that part of the total potential
energy which corresponds to waves of frequency f.

For a particular frequency band df, with center
frequency f, ® increases with wind speed V, and
fetch F up to a certain value. As the wind speed and
fetch continue to increase, the high-frequency region
of ® tends to approach an equilibrium distribution.
Phillips,’ on dimensional grounds, found that the
equilibrium range for gravity waves has the form

@« g'f, @
where g is the gravitational acceleration. On the
other hand, Hicks® has suggested that the spectrum
for “pure” capillary waves, which should depend
only on the ratio of the surface tension T to the
mass density p and the frequency, can be described
as

&« (/01 )

Spectral measurements of waves on lakes and on
the ocean have produced considerable evidence for
the existence of the equilibrium range for gravity
waves. However, to the authors’ knowledge, no
data have given direct verification for the §7'/* range
in capillary waves. The spectra of Cox, as calculated
by Hicks,” suggest that high frequency components
differ from the behavior predicted by Eq. (2), but
these measurements appear to be inconclusive.
Spectra showing equilibrium behavior are fre-
quently found for ocean waves at moderate condi-
tions of wind speed and fetch. The equilibrium



