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Dynamics of helicity transport and Taylor relaxation

P. H. Diamond and M. Malkov
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

(Received 6 November 2002; accepted 28 March 2003

A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No
statistical closure approximations are invoked or detailed plasma model properties assumed.
Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including
traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling
of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived.
Some basic properties of intermittency in helicity transport are examined20@3 American
Institute of Physics.[DOI: 10.1063/1.1576390

I. INTRODUCTION the largest scales of the system, with minimal coupling
to dissipation. Thus, magnetic helicity is dynamically

One of the most elegant ideas in plasma turbulence and rugged, while energy decads.

self-organization theory is the Taylor conjecture on turbulent
. . '2 .

magnetic relaxatior: Loosely put, the Taylor conjecture t,ran together(a), (b), and(c) constitute a plausible argu-

states that the magnetic field configuration formed as th?nent for the Taylor conjecture

end-state of a turbulent r_el_axatlon process is one for which  gioaq in terms of profiles, the essence of the Taylor

- X - 3 {heory is that the radial profile of parallel current tends to
conservation ofglobal magnetic helicityf d°xA-B. Global flatten, i.e.,J-B/B2—constant, so that the system “self-
helicity is considered as the constraining quantity, as it is T ’

dth bul i field I hastici organizes” itself into a state with no available free energy for
assume t attur u'ence, magnetic fie ||f1e.stoc aSt',C'ty an%nk-tearing modes, which are current gradient driven. Note
the resulting coupling to small scale resistive damping to

‘also that turbulence and magnetic field line stochasticity are

gether dissipate local magnetic helicity. The Taylor hypOth'fundamental to the Taylor relaxation process, both as means

esis is quite successful in predicting the magnetic configura- . ... . : :
tion of reversed field pincliRFP plasmas, the profiles in of justifying the comparative ruggedness of global magnetic

) : . helicity, and as mechanisms for cross-field transport of cur-
some other magnetic confinement devices and of many a

trophysical plasmas, and has also spawned the idea of heli?gi?:ebgt fél:;:juigg?ns, which is essential for “Tayloring” of the

ity injection as a means for sustaining plasma currents. In- The Taylor state is, of course, an idealization of the ac-

deed, the conservation of helicity in the RFP has been . . o .
experimentally verified.Taylor's proposal is referred to as a tual final state of the relaxation process. Resistive magnetic
' diffusion leads to decay of the Taylor state, which in turn

conjecture, since no rigoroqs.justifica.\tion of the comparative[riggers the reappearance of MHD instabilities and turbu-
‘ruggedness” of global helicity relative to energy has yet ,ence. These then drive the system back toward the Taylor

been given. However, there are at least three quite pIaUSIbﬁate by current profile modification. Alternatively put, de-

_;l)_?és;gillr:.rguments which support the Taylor hypOtheSIS'parture from the Taylor state triggersdgname which then

returns the system to the Taylor configuration, thus turning
(@ “Enhanced dissipation:” Turbulence and dissipation itself off.? Note, in contrast to the solar dynamo, the dynamo
drive magnetic reconnection, which destroys domainsassociated with the Taylor relaxation process hovers near
of local magnetic helicity on all but the largest scale. marginality, and is strongly coupled to fluctuation energetics.
Thus, time asymptotically, global magnetic helicity is External energy input is thus necessary to sustain the dy-
the only surviving topological invariant. namo, which keeps the system in the vicinity of the Taylor
(b) “Field line stochasticity:” During turbulent relaxation, state. Indeed, the physical current profile is one determined
magnetic field lines become stochastic, so global magby a self-organization process involving energy input, turbu-
netic connections develop. All regions of the plasmalence, dissipation, and transport, with eventual coupling to
are connected by any field line so, equivalently, there idossy boundaries. Thus, the actual physical, RFP plasma
only one field line. Since magnetic helicity is calcu- configuration isdynamic with finite turbulence levels main-
lated by volume integration over a region enclosed by aaining the current profile against dissipation. Also, nonsta-
magnetic surface, and all surfaces are destroyed, onlionary cyclic or “bursty” states are possible system attrac-
global magnetic helicity is relevant to a stochastic statetors. Thus, the profile achieved via a Taylor relaxation
(c) “Selective decay:” In 3D magnetohydrodynamic process may be loosely considered to be a typeseaif-
(MHD) turbulence, energy cascades to small scaleprganized criticality’® and the Taylor state can be thought of
while magnetic helicity inverse cascades to largeas an approximation to or idealization of the actual attractor
scales. As a result, magnetic helicity accumulates orior the system. From that perspective, then, one expects there
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should be some universal properties, such as effective Retate(i.e., a flat current profile As we seek the mean current
nolds number scalings, etc., which characterize the dynamigsrofile, averaging Eq(2) over poloidal and toroidal direc-
of the Taylor process. Finally, in the RFP, the fluctuationstions gives

driving the dynamo are not just turbulent eddys, but include

global m=1 tearing modes:'® Nevertheless, strong nonlin- — 2 (ALY, BANT= 10(dy). &)
ear interaction, generation of highers, stochastization of c ot

field lines and current profile flattening on account of tranSere v, = 1/r (3/96). Now, using Ampee’s law and observ-

port do occur in the vicinity of mode resonant surfacesing that in a strongly magnetized system, mean field mag-
(wherek-B=0) in the core of the pinch. In this region, then, petic helicityH is given by

the RFP relaxation process certainly exhibits the properties
of a sand-pile or self-organized criticality alluded to above.
This issue is discussed further in the conclusion.

Here, we develop a simple geda_nken model based on fe magnetidelicity densityevolution equation is
synergy between a general formulation of Taylor relaxation
IH(H) c ey
Bg ve

H= f d3x(A,)By, (4)

and continuum models of sandpile relaxatidt? The basic
idea exploits the observation that the simplest form of the 5t
helicity density flux which dissipates magnetic energy is dif-

fusion of current, i.e.T'y=—DVJ,."*1® Employing ideas

from continuum models of avalanche dynamics, one can usg, . . n=C2pold. HereFHz(—c/BOVyf;ﬁH) is the mag-

simple symmetry consiraints to consfrain the formlgf, netic helicity density flux. This equation obviously has the

and so derive an equatlc_)n for dewatlons_ about the_Taleform of an advection equation for magnetic helicity density
state, as well as the scalings of the effective magnetic Rey.

Id berwithout postulating Fick's law for the st "H=ABy. Note that radial transport and turbulent mixing
nolds numberwithout postufating Fick's faw for the SWUC- ., sy e magnetic helicityp to the net flux thru the system
ture of the flux. Moreover, no statistical closure theory is

boundary, so that resistive dissipation is the only helicity

u.t|I|zed. T_hus, the model encompasses hyperresistive dlﬁuéink. Finally, one can short-circuit the derivation of this para-
sion, but is far more general.

The remainder of this paper is organized as follows. Ingraph by noting that Eq(®) follows directly (in reduced

. o . ) - "'MHD)® from the flux equation.
Sec. Il, a simple model of helicity transport is derived using Now, following Boozert” one can ask what the form of
symmetry principles. Analogies with avalanche phenomen?he ’ ’

are discussed. In Sec. lll, solutions in radius and time of th?n magnetic helicity density flukyy must be to dissipate
partial differential equation derived in Sec. Il are analyzed agnetic energy. Multiplying Ed3) by (J)/Bo and inte-

. . : ‘grating by parts gives
Both solitary pulse solutions and modulational wave solu-g gboyp g

tions are found. In Sec. 1V, the basic turbulence scaling prop- 7J T B 3 5

erties of the system are discussed. The renormalized re- EEM_I d XB_O‘;r<J>—_f d*x7(J)°, (6)
sponse function and self-similarity exponents are calculated. ) i _

Superdiffusive pulse propagation is indicated. In Sec. V, baWhereEy is mean field magnetic energy. Thus, takifig
sic properties of intermittency in helicity transport are dis- = — 47 (Ji) givesd;Ey <0, corresponding to dissipation of

cussed. Section VI contains a discussion and conclusions. Magnetic energy. This observation is consistent with the no-
tion of Taylor relaxation as being a process of current-

gradient flattening, and supports the idea of a “hyper-
resistivity” (i.e., diffusion of current as constituting a
possible analytical representation of the Taylor relaxation
process. It is interesting to note, however, that the hyper-
resistivity is just the smoothest of an infinite series of opera-
tors which dissipateE,,. For example, if one take$'y
=wd;(J)), then

J
+(9r :E<H>+(9rFH

= nBodX(A), (5)

II. A SIMPLE MODEL OF TAYLOR RELAXATION
DYNAMICS

Starting from Ohm'’s law,

vXB
E+
- C

= 770‘_]! (1)

where 7, is the collisional resistivity, and taking/|B|- (E
+ (v XB)/c=75yd) we can write

—————N-V¢—VAXN-Vo=1J,. 2

For simplicity, assume a locally stror, alongn, soV;

J
EEM:_I dBXM(3r2<Ju>)2—f 7{(J2dx. (7)

Thus, any odd derivative df),) dissipate<€,,, as does any
combination of an odd derivative and an even powed,of
i.e., a(J))?ar(J,), etc. More generally, we can observe that
since(J)) rayior= cONSt(i.e., flat current profilg one can write
the helicity flux which dissipates magnetic energy as

=n-V+6B, -V/|By| and 6B, =VA,xn. Further, take the
mean inhomogeneity in the radial direction, orthogonal to
By. Thus, this gedanken problem corresponds loosely to thatvhere 6J; is the excursion from the Taylor state. As MHD
of determining the profileJ,(r) in a RFP and, more specifi- tearing type turbulence is expected to be the agent of relax-
cally, to the characterization of the deviation from the Tayloration, we in turn expedd =D[ 8J,], i.e., the strength of the

Ly=—-DV({JI)—(I)r)=—D38J, (8)
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current diffusion process should itself be proportional to the J, ~
deviation from the Taylor stat&hus, we expedt',~ 5Jf, at
least,so that the actual magnetic helicity flux is nonlinear in
4J, . Indeed, we shall soon see that hyper-resistive diffusion
is by no means the most general form of the flux.

From the above discussion, it seems that Taylor relax-
ation can profitably be viewed as similar to a running
sandpile!”*8 with local pile grain occupation density set by
magnetic helicity density, which is a conserved order param-
eter(i.e., a locally conserved effective densityVriting 5+
for the deviation of the local magnetic helicity density from
the self-organized state, conservation of helicity gives

SOC profile forJ, (r)

FIG. 1. Bumps or excesse$J,>0) above the SOC profile are expelled,

9 while voids or defects §3,<0) are absorbed.
St OH Ty H] = 7BodZ oA+ S, (93
or, equivalently, rent and the absorption of current defi¢itsThis drastically
P 1 simplifies the form of"y[ 6J,] by eliminating several classes
2 OAF 50, Tl SH]= ndf 6A+S. (op ~ Of terms, so that
0

_ 2i 2p+1
Here,I' is the helicity density flux driven by deviations of FH[&]H]_Z A2i(63) +% Dopr1(d,83)PT+--,
the profile from the self-organized critice6OQ state. It is (119
important to note that the self-organized state is, in principle, . , S S
not necessarily equal to the Taylor staten account of re- Wher'e thg smoothest” approximatiod.e., that WhICh 'S
sistive dissipation, the helicity source teisn(which repre- dominant in the long wavelength, large scale [t
sents the external drive of the sysfeamd boundary losses. Lyl 83,1=N\(83,)?+Dd,(83)). (11b
Indeed, the departure from the Taylor state profile is most
pronounced near the edge where the finite temperature grglote that this corresponds to a constant diffusion of current
dient and large resistivity force a departure from a flat cur-2nd a flux quadratically nonlinear i8J,, as suggested ear-
rent profile. The key question is how to parametiZ&H]. lier. Thus, in the hydrodynamic limit, the simple model equa-
Since the SOC state is one defined by the current profile, wlon for excursions from the Taylor state is
ansatd’y[ 6H]—T'y[ 8J,], i.e., helicity flux as a function of 9 (N
the deviation of the current profile from the SOC stdtes — 6A -+ — | = (926A) 2+ D3, (926A)) | = nd? oA+ S.
important to note that hereafte$J, refers to the excursion at or (2 12
from the self-organized profile, which is close, but not iden- (12
tical to, the Taylor state profileNote that by definition] Equation(12) constitutes a mesoscale model for fluctuations
—0 for J,—0. Thus, Eq.9b) becomes near the SOC/Taylor state induced by driv&) and
6J,-driven helicity flux. Here, “mesoscale” refers to the
range of scales between the reconnection layer size and the
system size. This range of scale sizes encompasses that of an
m=1 tearing mode magnetic island width, in the case of the
Now, take the system to be bounded, so any helicity excesRFP. This is the scale over which the current gradient is
which reaches the edge<a) is lost, by expulsion thru the irreversibly mixed. Note that Eq12) is manifestly scale
boundary. In practice, this implies a finite current gradientinvariant, and that the parametersand D can be chosen in
exists at the boundary, so th@l,(r)) deviates from Taylor accord with different plasma models. An interesting generic
there, and that a flux of helicity is transported thru theapproach to determining them would be via Connor—Taylor
boundary. Hence, one can expect exces#¥>0) to be scaling analysi€® Here the driveS can be taken to have the
expelled from the system, while deficit$J;<0) are ab- form of a colored noise. By colored noise, we refer to noise
sorbed, as depicted in Fig. 1. This is analogous to the case @fhich is not white, i.e., noise which does not have a flat
the sandpile, where bumps, i.e., local excesses beyond tlspectral density. There is no loss of generality in postulating
SOC profile, are expelled from the pile while local deficit a noisy source here, since Taylor relaxation tacitly presumes
regions(i.e., void9 are absorbed. Note that the expressionghe release of local frozen-in constraints via reconnection and
“expulsion/absorption of bumps/voids” are simply alterna- stochasticity. Indeed, one way of looking at the physical ori-
tive ways to express the tendency of the current profile t@in of the noise is that in the presence of the magnetic fluc-
regulate itself and relax to the self-organized state. Followinguations which drive relaxation, the local toroidal electric
Hwa and Kardar, one can requif[ 6J,] to be joint reflec-  field will naturally fluctuate as wefl* Thus, the characteriza-
tion symmetric, i.e.,I'y must remain invariant whedJ;,  tion of mesoscale dynamics near the Taylor state can be re-
— —8J;, andx— —X, to ensure the expulsion of excess cur-duced to a problem of the “driven Burgers” genre.

d 1
— 6A+ = 8, T y[ 8,]= nd?6A,+S. (10)
at Bo
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Equation(12) may be viewed as an effective Ohm'’s law Having demonstrated that all spatially localized solu-
for Taylor relaxation, where the nonlineariyJ,(d/dr)8J;,  tions for the magnetic field perturbations must decay due to
is related to the familiar hyper-resistive diffusion flux with resistivity and hyper-resistivity, we now turn to the case in
D~\4J,, but more general. Noting thai/{=BydA,, itis  which the magnetic field perturbation does not vanish at in-
also an equation for magnetic helicity density evolution andinity. For this purpose, it is convenient to work with the
transport in radius and time. The obvious structural similarityquantity proportional to the current densitw=u,, for
between Eq(12) and Burgers equation suggests that helicitywhich Eq.(13) takes the following form:
transport during Taylor relaxation is strongly intermittent, 5
and can exhibit n_ondﬁfugnre scalln_g p“ropertles, syrﬂnptomatlc 5_W+ a_(W2+Wx):MWxx- (16)
of front propagation, helicity density “avalanches,” etc. In- at  ox8
deed, Eq(12) is surely the minimal possible model for the

study of intermittency in magnetic helicity transport, a sub-AN €nergy relation similar to Eq14) does not hold fow or

ject of considerable interest in the context of nonlinear dy-Wx, SO time-asymptotically nontrivial solutions are now pos-
namo theory. sible. The simplest one can be obtained by settipg u

=0. From this equation we obtain

IIl. COHERENT NONLINEAR HELICITY TRANSPORT wo,
PHENOMENA — Twi=a (17)

In this section, the unforced solutions of E3.2) are  with a=const. Hence,
analyzed. The aim here is to understand the structure of the
basic nonlinear solutions. As in Burgers turbulence, it is W=Wo(X)=atanhax). (18)

likely that the randomly forced state may be viewed as &y physically, this solution describes the interface between

“gas” of the coherent solutions, as Burgers turbulence may,,q oppositely directed currents with strengthsa. The
be thought of as a “gas” of shock&:?*Particular attention is magnetic field perturbation is given by

devoted to traveling wave solutions. These exist, and may be

either solitary pulses or modulational waves. Here we con-  b(x)=u,=In coshax) (19
sider the undriven limit of Eq(12) by settingS=0. For the
purposes of this section, it is convenient to rescale (E8).
in such a way as to makie =\/2=1, so the rescaled mag-
netic diffusion coefficienty will be denoted ag, A, asu,
andr asx. The equation then reads

so that the behavior df(x) is linear at larggx|, i.e., asb
~|x|. Of course, this is an inviscid solution, and the question
of how it is affected by dissipation naturally arises. One
simple way to understand how this solution is affected by the
hyper-resistive term on the right-hand si@RHS) of Eq. (16)
u 5 is to use an “adiabatic” approximation for sufficiently small
Fa (Ulex) xF U™ Ml (13 4 i.e., one can assume that the solution in @) preserves
) _ _ ) ~its form wy(x,a) for u+#0, but nowa is replaced bya(t).
First, let us consider the case in which the magnetic fieldrpe time dependence @f(t) captures the effect of hyper-
perturbationu, is spatially localized or periodic. More spe- (esistive dissipation. By multiplying the-derivative of
cific conditions will be given later. Suppose that decays Eq. (16 by wp, we obtain a(ffzwéxdx)/at

sufficiently rapidly agx|—c so that the magnetic field per- _ —2uf "2 w2 dx, from which we formally obtaina(t)

turbationu, , as well agl,,, Uy, L2 The same results will _ ao/ﬁ. Hereo— (16/15)24.

be valid for the case of periodig,, i.e.,xmod 2. Differ- Traveling nonlinear wave solutions are of great interest,

entiating Eq.(13) with respect toc, multiplying the result by 55 they embody the structure of the fundamental nonlinear

Uy and integrating by parts we obtain excitons of the system. In the analogous system described by
10 5 5 5 Burgers equation, the traveling wave solutions steepen into
35 dexz_f Uxxde—Mf UsdX, (14 shocks. Here, we will demonstrate the existence of both

. . soliton-like pulse solutions and of nonlinear modulation
Where2 the integrals are taken between and in the case  waves. To study traveling wave solutions, it is convenient to
uxCL*, or between 0 and2in the case of a & periodic  rescale Eq(16) to the variables in which the hyperdiffusion

function Uy. The right-hand side of this expression is nega-term appears with an arbitrary Coefficidht i_e_7
tive definite and its absolute value can be shown to be larger

thanaf dxuﬁ, with some constan#>0 that depends on the W
functional space under consideration. For example, in the 5t
case ofxmod 2w, one can showy>47%/(47%+ ). The

perturbation of the magnetic field, thus decays exponen- Let us consider the nondissipative caseD=0 and look

ag
+ — (W?+ DW,) = uWyy. (20)
ax3

tially as for a traveling wave solution of the fornw=w(x—ct).
Equation(20) can then be integrated to the following “en-
f u2(t)dx= 672atf u2(t=0)dx. (15  ergy conservation” form, i.e.,
. . . . 1 1 ad a
Thus, all spatially localized solutions decay asymptotically Wi Twe ——=— = (22)
in time cC™™ 37 w2 2
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W Uw)

R Y

soliton La/2 ’ |

periodic

solution j K FIG. 3. Potential well corresponding to E@3) in the caseB, C<0 (left
W pane). The solutionw(x) is periodic and regular everywhe¢eght pane).

FIG. 2. The form of the potentidl(w) in Eqg. (23) (left pane} and two o ) ) )
types of bounded solutior(sight panels. One solution is of the soliton type  lar periodic solutions that do not cross the singular paint
(upper right pane] corresponding to the highest possible “energy” level in =0, as shown in Fig. 3. Note that other sign combinations of
the potential well. The_ f_amlly of pgrlodlc solut[ons corresponds to a con-,[he constant® and C are equivalent to the previous, up to
tinuum of all the remaining levels in the potential well. L. .

flipping the sign ofw.

The physical properties of the traveling wave solutions

Herea is an arbitrary integration constant which is the valueto EQ. (12) merit some discussion. For the case where

of w at infinity, while the second integration constant that™>0 andB<0, two types of solution are possitigee Fig. 2
appears during integration has been chosen sonthiat0 as N the case corresponding to the highest possible energy in
w—a. The solution of Eq(22) can be most easily under- the potential wellJ, a “soliton” type solution is found. The
stood by examining Fig. 2, which shows the form of thesolution is a localized pulse, as is typical of solitary waves.

potential well in Eq(21), formed by the second and the third For lower energies in the well, a periodic, nonlinear wave
terms on the RHS. It starts from=a at x= —», descends train is the solution. This structure is somewhat reminiscent

to the minimumw,,,,=—a/2 and returns tav=a atx=c.  Of a cnoidal wave, and may be thought of as arising from a
This solution can be written explicitly in an “inverse” form Mmodulation or corrugation of a flat current profile. Here a
asx(w), where cnoidal wave is one with a wave form resembling that of the

elliptic function cn?* It is interesting to speculate that such a

_ . ]2 | V2w/3a+1/3+1 modulational pattern may be related to the well known ten-
x(w)==x cl" ow/3a+ 1/3—1 dency of a current to form filaments. In the caSe-0, B
<0, as in Fig. 3, the solution is trapped in the well and thus
is periodic and regular everywhere.
—3V2w/3a+1/3| +x.. . (22) The inquiring reader may, at this point, be perplexed by

the appearance of “soliton-like” solutions to a nondispersive
Here, the upper(lower) sign should be taken fow  equation. In such a system, the familiar scenario of pulse
>0(w<0). The integration constants. are chosen in such formation by the balance of nonlinear steepening with dis-
a way as to make(w) continuous, namelx_=0 andx,  persion cannot be realized. However, the soliton-like solution
=2x(0—). This representation of the solution covers theobtained here is quite different from conventional solitons,
half spacex>0. For negative, the solution is symmetric SO such as those which occur in the Korteweg—de V(idV)
w(—x)=w(x). Note thatw is a continuous function of but  (Ref. 25 system. In addition to the singularitglready men-
w’(x) is infinite where w=0, or more preciselyw(x) tioned, the familiar relation of the amplitude and speed of
==+ [x—x(0)| asx—x(0). It is thus clear thatlissipative  the pulse is absent. However, the pulse witltls clearly
termsin Eq. (20) must be included to obtain smooth behavior related to its speed and amplitude. This is evident by setting
atw=0. a=C=1 in Eq.(21), sow/a—w and C/ax—x. Thus,|

For an arbitrary choice of integration constants, the en--/a/C, which is equivalent to KdV-type scaling for fixexl
ergy integralEq. (21)] can be written in the following form:  only. For fixed C, it is reciprocal to the KdV scalingl(

dw! 2 ~a %2, At the same time, the oft-quoted intuition that soli-
(d— +U(w)=E, (23 tons form via the balance of steepening and dispersion may
X yet be applicable here. Indeed, countingrom its value at
where infinity and defininggp=a—w, we obtain the equation
C B e P PP
U——EW—E. (29 E-anﬁ— PNE =0.

The solutions can be expressed in terms of elliptic functionsNote that a small, localized perturbatiet~ e<a spreads

The particular solution considered above occurs wi@n linearly due to dispersion~a), just as for KdV. For larger

>0 andB>0. For this case one can also construct periodice, the nonlinear term can come into play to limit the spread-
solutions corresponding to the lower levels in the potentiaing, thus allowing the formation of coherent, localized solu-
well, with a singularity atw=0, as shown in Fig. 2. This tions. Under what conditions, and precisely how this hap-
solution behaves awv=0 in the same way as the one de- pens, remain unclear. A numerical study is clearly required,
scribed above. In the case<0 andB<0, there exist regu- and is ongoing. The results will be reported in a future pub-
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lication. Of course, as in the KdV theory, the soliton solution 3\2
cannot be obtained at any finite order in perturbation theory. DT:TE (k'2)3|Ak'y|2|- K (279

At a more general level, the considerations of this sec- k/, ce
tion clearly indicate that traveling waves of helicity density ¢
can develop during Taylor relaxation. Such waves transporiis the turbulent dissipation coefficient, itself a function of
helicity nondiffusively, at a spee@ determined by the struc- fluctuation level. As expected, here the turbulent dissipation
ture of U(w). While the analysis here applies only to the has the form of hyper-resistive diffusioNote that hereD+
limit where D, %—0, it nevertheless strongly suggests thatis derived using simple dynamical arguments and symmetry
such phenomena can be expected to occur in regimes of largiinciples alone, and is a fundamentally model-independent

effective magnetic Reynolds number. result
The effective magnetic Reynolds number is simply the

ratio of relaxation-induced helicity transport to collisional
IV. SCALING PROPERTIES OF TURBULENT HELICITY resistive dissipation, i.e.,

TRANSPORT
Rm~k*D+/ 5ok?~k?D+/ 75. (28)

In this section, we determine the structure and scalingi: ) ) o
exponents of the turbulent helicity density flux and the effec--0llowing the convention of defining,, at large scaleéénote
tive “magnetic Reynolds number” of the relaxation processthis 1S @ conservative estimateve haveRy~Dr/L*7,,
by applying standard methods of turbulence closure theory t§/hereL is the system size. Now, using H7) to relateA ,,
Eq. (12). This study is analogous to those of the noisy Bur-0 Sk (neglectingzo andD, the collisional transport coef-
gers equation for sandpile fluctuations. The aims here are icients, Dr may be written as
understand the structure of the turbulent dissipatian, the 3 (K'2)3[S, .,|2%k'*D
effective eddy viscosity which arises in Eq(12), and to Di=-A2 > i T (29)
determine the scaling exponents of the turbulent response. To 4 o [w'3+(D7k'H?)?

this end, we must explore the infrared behavior of the dissiA . hit ise for simplicitv. the’ int | b
pation coefficienf® Writing Eq. (12) in Fourier variables ssuming white noise for simplicity, the' integral may be
performed, yielding

gives
—iwA+ (7ok®+ DK?)Ax D3=2, (3m/8)\2SY/K'4. (30)
I_(I
A
+ik§ Z K'2A - (k+ kl)zAk’+k:Sk‘w. (25 Sg is the strength of the white noise. Here the remaining
K\ - o't integral overk is manifestly divergent ak— 0, and must be

The & and subt have been dropped for notational conve-cut off at a scale corresponding kgy,. Clearly, k. should

nience, thush, = 5A,,. Equation(25) is closed by extracting be smaller than the scale of the phenomena being considered.
Otherwise, the coarse graining inherent to the renormaliza-

the phase coherent part of the nonlinearity via substitution:; o . : .
2) tion procedure is inappropriate. In this case, we may write
for Acv asAcik , where

NN D= (A2S3) YK pmin. (30)
A(kzlkf =Lk | — &(k+ K" )k 2AK K2Ax |, (263  The strong infrared divergence B which appears in Eq.
ote  ote 2 o @ (31) is a “red flag” indicating the possibility of superdiffu-
-1 , 2 4 sive or ballistic transport dynamics. This follows from the
L k! = (0t ")+ 7o(k+k)*+D(k+k’) implicit scale dependency @+ (i.e.,Dt~1), which appears
ote on account of the infrared divergence. Indeed, takifg
+duri . (26  ~Dy7 and noting from Eq.(31) that Dt~k i~I gives |
ot ~(\?S3)r, namely ballistic transport scaling. Such scaling

Here d.« refers to the propagator renormalization. Theis also characteristic of transport in Burgers turbulence.
Given that Eqg.(12) has traveling wave solutions, with the
form A(x—ct), it is by no means surprising to find ballistic
scaling appears in the turbulence analysis.

ke K2AK It is also possible to obtain a general scaling for the

oo’ ¢ effective magnetic Reynolds numbg,~D+/L27,. Taking
Dr~(\2S5)YAL (i.e., equivalent to assumingm,~L %)

+(nok®+ Dk Ak=S,, . (279  gives Ry~(\%2S3)¥3/L7n,. Note that R, scales with
_ ¢ S ~ (\2S5)Y" but inverselywith L. This result gives a universal
Taking the long wavelength, hydrodynamic limit, and noting gcajing relation for the effective magnetic Reynolds number
parity forces cancellation of the’® contribution then gives in terms of system siz&, coupling strength\, excitation
— i wAk+K*D7AK+ (70k?+ Dk*) Ak =Sk, (27b) strengthSé, and resistivityg. This result contradicts the
© © o o hypothesis of Colgate, which asserts that a single value of
where Ry~ 100 is characteristic of most Taylor relaxation phenom-

w+o’

renormalizedA, equation is then

}\2
—iwAk-I—kZE (k+k")3k2|Aw|?L
[0} kr o'

’
w
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ena in astrophysical plasm&sThe prediction given here is pdf of &J,, will ultimately be both necessary and
definitely testable by numerical and physical experiments. illuminating?®
It is appropriate to comment on the relationship between
the “sandpile model” of relaxation discussed here, and the
V. DISCUSSION AND CONCLUSION well-known model of RFP relaxation based on the induced
In this paper, we have considered the dynamics of heIic—EMF d_rlven by m=1 tearing mode;, which has re_ce|v_eo_l
ity transport and Taylor relaxation. The principal results of_eXtenSIVe theoretlcal_ and computational scrutiny. F|r;t, itis
this paper are listed below. important to emphasize that these two approachesars

(i) A dynamical description of Taylor relaxation for conflict or incompatible. This is because tine= 1 _mers are
magnetic configurations with two spatial symmetrige., ~ 9lobal, and thus produce a zone of reconnection in the core
such as in a toroidal plasiaas been developed using he- of the pinch, while at the same time driving ideal kink mo-
licity density flux invariance principles, alone. This approachtions in the MHD exterior, beyond the reversal surface. In
subsumes and supercedes the prevailing picture of Tayldhe core reconnection region, at the mode resonant surfaces
relaxation dynamics, based on hyper-resistive diffusion ofwhere k-Bo=0) the mean current profile flattens due to
the parallel current, and is applicable to a wide variety offeconnection-induced transport of current density. This pro-
plasma models. cess has been described by hyper-resistive diffusion of cur-

(i) This description of the relaxation process predictsrent density driven by then=1 perturbations, and thus in
fast, nondiffusive relaxation events, which correspondprinciple, is indeed contained with the structure of the “sand-
loosely to avalanches of magnetic helicity density. This phepile model” discussed here. Note also that the magnetic sto-
nomenon is manifested in the theory both by chasticity which follows from the island overlap and recon-
(8 the prediction of coherent, soliton-like traveling wave Nection in the core naturally provides the elements of

solutions to the Zero-forcing, Zero-dissipation prob-irreversibility and randomness tacitly assumed by our sand-
lem; pile model. Moreover, the resonant nonlinear interaction of
(b)  the prediction of ballistic helicity density transport m=1 modes generates localized current perturbations corre-
scalings for the forced, noisy problem; here, ballisticsponding tom=2. Thus, the core of the RFP is in a state of
scaling arises from the infrared divergence of the tur-strong MHD turbulence. On the other hand, the “kinking” in
bulent hyper-resistivity. the exterior region of the tearing modes is intrinsically a
reversibleprocess, and thus it contained within the sand-

(ii ) A universal structure for the parameter scaling of thepile model paradigm. It should be noted that since observed
effective magnetic Reynolds number during Taylor relax-RFP current profiles often deviate markedly from the predic-
ation (with white nois¢ has been derived. The scaling pre- tions of the Taylor theory beyond the reversal surface, it is
diction is Ry~ (\*S5)"¥L o, where\ is the coupling co-  far from clear what the role these exterior dynamics actually
efficient, S5 is the noise strength, aridis the system size. pjay in the relaxation process. Finally, we note that the “ki-
This _result contradicts certain recent assertions by Colgatenetic dynamo® model based on the concept of

(iv) More generally, this description suggests that Taylormicroturbulence-induced diffusion of current, is clearly en-
relaxat|on_|s.a generically strongly |nterm_|tte.nt process, a“qirely consistent with the local flux picture adopted in the
that a statistical approache., PDF calculationis necessary. sandpile mode. Of course, it is possible that the kinetic dy-

Certain aspects of these points are discussed further bﬁémo and then=1 driven dynamo can coexist. In that case

low. a unified description using the sandpile model is certainly

One of the most striking results obtained here is thefeasible
similarity between Eq(12), which describes the Taylor re- '

i ' - It is appropriate to mention some possible experimental
laxation of the current profile on mesoscales, and the familiar . . : :
observables of a SOC-like relaxation process in a RFP. First,

Burgers equation. It is well known that Burgers turbulence is Id naturall £ 10 ob i
strongly intermittent, a property which is a consequence of e would naturally expect 10 observe propagating excesses

the fact that in the Burgers equation, negative sIopeéublObSnor avalanches) and voids in the radial profile of the

[ﬂx(Vf)<0] steepen to form shock fronts, while positive parallel current. The PDF of current gradient fluctuations

slope ramps dx(V2)>0] smooth ou® A related (but more should be strongly non-Gaussian, as well. Second, it would
complicatedl type Xof asymmetry is manifested in EQ.2) be interesting to examine the relationship between large cur-

namely thatdA, perturbations will be amplified in regions €Nt transport events and sawtooth crashes observed in the
with X9,(83,)><0 but will be reduced or smoothed where RFP*"**A possible precursor to large crashes might be an
\d,(83,)?>0. Thus, Taylor relaxation is likely to exhibit in- increase in the frequency of occurrence of small current ava-
termittency rooted in thdocal slopeof 637, and thus be lanches.

concentrated in localized structures, akin to shocks in Bur- At a practical level, the prediction of fast, non-diffusive
gers turbulence. As in Burgers turbulence, the pdf of differ-relaxation events may have implications for feedback control
ences or, “jumps” indJ; is likely to be strongly asymmetric. of RFP current profiles, as in PPCBSuch events evolve on
While validation of this speculation awaits numerical solu-a space—time trajectory different from that of a simple diffu-
tion of Eq. (12) with noisy forcing, it seems clear that a sion processef.e., due to hyper-resistivily PPCD control
statistical approach to the problem focused on computing thevops should be designed with this possibility in mind, and



Phys. Plasmas, Vol. 10, No. 6, June 2003 Dynamics of helicity transport and Taylor relaxation 2329

not be based solely on the presumption that current profil€p. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L8%. 381 (1987.
evolution is diffusive. 8H. J. JensenSelf-Organized Criticality(Cambridge University Press,
While this paper has discussed Taylor relaxation dynam-,C2mpridge, 1988 p. 153.

o o : E.J.C , R. A. Nebel, and D. D. Schnack, Phys. FRE04305
ics in the familiar context of the RFP, it should be noted that (1983'aramana eneh an chnack, Phys. Fed

these ideas are potentially applicable to astrophysical plasnmi&. scheffel and D. D. Schnack, Phys. Rev. L8§, 322 (2000.
problems in general, and the heating of the solar corona, byT- Hwa and M. Kardar, Phys. Rev. 46, 7002(1992.

. . . . 2| i
relaxation and reconnection of coronal loops, in particular. I, H- Diamond and T. S. Hahm, Phys. Plasi#a8640(1995.

. . . , .. A. Battacharjee and E. Hameiri, Phys. Rev. L&f, 206 (1986.
this vein, Lu and Hamilton have expanded Parker’s originaksa 1 goozer, J. Plasma Phy85, 133 (1986.

concepts of magnetic nonequilibifaand self-organization of g, Kim and P. H. Diamond, Astrophys. 556, 1052 (2007.
nanoflare events into a cascade model of coronal heatingin. R. Strauss, Phys. Fluidsd, 134 (1976.
which is structurally similar to cellular automata models fa- P~ H- Diamond and M. Malkov, Phys. Scr.,TB8, 63 (2002.

18 H
. . 37 . D. E. Newman, B. A. Carreras, P. H. Diamond, and T. S. Hahm, Phys.
miliar from the study of sandpile model$3’ Quite recently, Plasmas3, 1858 (1992,

Liu et al. have advanced a continuum-limit version of the 1°1 Hwa and M. Kardar, Phys. Rev. 45, 7002(1992.

Lu—Hamilton cascade mod& The key effect of Livet al.is ~ ?°3. Connor and J. B. Taylor, Nucl. Fusidf, 1047 (1977).

nonlinear hyper-resistive diffusion, which is clearly related’,M- G- Rusbridge, Nucl. FusioB2, 1201 (1982.

to the physics_ of both Taylor requation in ge.neral, and thi&g\l? 2;2?7""5&?;?35_’*{’ﬂt‘hh_ﬂgﬂiifgéélﬂgéz.

theory in particular. Further detailed comparisons and con#g_ \whitham,Linear and Nonlinear Wave8niley, New York, 1974, p.
trasts between our theory and that of ldétal. are ongoing 467.

and will be discussed in a future publication. 5G. B. Whitham Linear and Nonlinear Wave@Viley, New York, 1974, p.
636.
26D, Forster, D. R. Nelson, and M. Stephen, Phys. Re¥6A732 (1977).
ACKNOWLEDGMENTS

273, Colgate(private communication, 2002

. . N . 287 Chekhlov and Y. Yakhot, Phys. Rev. 2, 5681 (1995.
This work was stimulated by a fascinating conversationsg’ | Itoh, K. Itoh, and S. Toda, Phys. Rev. Lei8, 215001(2002.

of the authors with Stirling Colgate, Roald Sagdeev, andva. R. jacobson and R. W. Moses, Phys. Rev. L%2}.2041(1984).
Eun-jin Kim. We are indeed grateful for this discussion. We='P. W. Fontana, D. J. Den Hartog, G. Fiksel, and S. C. Prager, Phys. Rev.
also thank Marshall Rosenbluth, Han-li Liu, Steve Tobias,,, ett 85 566(2000.

. . D. L. Brower, W. X. Ding, S. D. Terry, J. K. Anderson, T. M. Biewer, B.
Pa\”d HtheS’ Edgar Knobloch, a,nd Annick Pquuet for E. Chapman, D. Craig, C. B. Forest, S. C. Prager, and J. S. Sarff, Phys.
interesting questions and conversations, and Sadri Benkaddaey, [ ett.88, 185005(2002.

for advice on the style of presentation. 3B, E. Chapman, J. K. Anderson, T. M. Biewer, D. L. Brower, S. Castillo,
This research was Supported by D.O.E. Grant No. DE- P. K. Chattopadhyay, C.-S. Chlang, D. Cralg, D. J. Den Hartog, G. Fiksel,
FGO03-88ER53275 P. W. Fontana, C. B. Forest, S. Gerhardt, A. K. Hansen, D. Holly, Y. Jiang,

N. E. Lanier, S. C. Prager, J. C. Reardon, and J. S. Sarff, Phys. Rev. Lett.
87, 205001(2001.

1J. B. Taylor, Phys. Rev. LetB3, 1139(1974). 34E. N. Parker, Astrophys. 264, 642 (1983.

2). B. Taylor, Rev. Mod. Phy$8, 741 (1986. 35E. N. Parker, Astrophys. B30, 474 (1988.

3H. Ji, S. Prager, and J. S. Sarff, Phys. Rev. L24£.2945(1995. 36E. T. Lu and R. J. Hamilton, Astrophys. J. Le380, L89 (1991).

4W. H. Mattheus and D. C. Montgomery, Ann. N.Y. Acad. S8%7, 203 S7E. T. Lu, R. J. Hamilton, J. M. McTiernan, and K. R. Bromund, Astrophys.
(1980. J. 412 841(1993.

SA. Pouquet, U. Frisch, and J. Leorat, J. Fluid Me@#, 321 (1976. 38H.-L. Liu, P. Charbonneau, A. Pouquet, T. J. Bogdan, and S. W. McIntosh,

6H. A. B. Bodin and A. A. Newton, Nucl. Fusiofi0, 1255(1980. Phys. Rev. B66, 056111(2002.



