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Dynamics of helicity transport and Taylor relaxation
P. H. Diamond and M. Malkov
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

~Received 6 November 2002; accepted 28 March 2003!

A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No
statistical closure approximations are invoked or detailed plasma model properties assumed.
Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including
traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling
of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived.
Some basic properties of intermittency in helicity transport are examined. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1576390#

I. INTRODUCTION

One of the most elegant ideas in plasma turbulence and
self-organization theory is the Taylor conjecture on turbulent
magnetic relaxation.1,2 Loosely put, the Taylor conjecture
states that the magnetic field configuration formed as the
end-state of a turbulent relaxation process is one for which
the magnetic energy is minimized subject to the constraint of
conservation ofglobal magnetic helicity* d3xAI •BI . Global
helicity is considered as the constraining quantity, as it is
assumed that turbulence, magnetic field line stochasticity and
the resulting coupling to small scale resistive damping to-
gether dissipate local magnetic helicity. The Taylor hypoth-
esis is quite successful in predicting the magnetic configura-
tion of reversed field pinch~RFP! plasmas, the profiles in
some other magnetic confinement devices and of many as-
trophysical plasmas, and has also spawned the idea of helic-
ity injection as a means for sustaining plasma currents. In-
deed, the conservation of helicity in the RFP has been
experimentally verified.3 Taylor’s proposal is referred to as a
conjecture, since no rigorous justification of the comparative
‘‘ruggedness’’ of global helicity relative to energy has yet
been given. However, there are at least three quite plausible
physical arguments which support the Taylor hypothesis.
These are:

~a! ‘‘Enhanced dissipation:’’ Turbulence and dissipation
drive magnetic reconnection, which destroys domains
of local magnetic helicity on all but the largest scale.
Thus, time asymptotically, global magnetic helicity is
the only surviving topological invariant.

~b! ‘‘Field line stochasticity:’’ During turbulent relaxation,
magnetic field lines become stochastic, so global mag-
netic connections develop. All regions of the plasma
are connected by any field line so, equivalently, there is
only one field line. Since magnetic helicity is calcu-
lated by volume integration over a region enclosed by a
magnetic surface, and all surfaces are destroyed, only
global magnetic helicity is relevant to a stochastic state.

~c! ‘‘Selective decay:’’ In 3D magnetohydrodynamic
~MHD! turbulence, energy cascades to small scale,
while magnetic helicity inverse cascades to large
scales. As a result, magnetic helicity accumulates on

the largest scales of the system, with minimal coupling
to dissipation. Thus, magnetic helicity is dynamically
rugged, while energy decays.4,5

Taken together,~a!, ~b!, and ~c! constitute a plausible argu-
ment for the Taylor conjecture.

Stated in terms of profiles, the essence of the Taylor
theory is that the radial profile of parallel current tends to
flatten, i.e., JI •BI /B2→constant, so that the system ‘‘self-
organizes’’ itself into a state with no available free energy for
kink-tearing modes, which are current gradient driven. Note
also that turbulence and magnetic field line stochasticity are
fundamental to the Taylor relaxation process, both as means
of justifying the comparative ruggedness of global magnetic
helicity, and as mechanisms for cross-field transport of cur-
rent by fluctuations, which is essential for ‘‘Tayloring’’ of the
current gradient.

The Taylor state is, of course, an idealization of the ac-
tual final state of the relaxation process. Resistive magnetic
diffusion leads to decay of the Taylor state, which in turn
triggers the reappearance of MHD instabilities and turbu-
lence. These then drive the system back toward the Taylor
state by current profile modification. Alternatively put, de-
parture from the Taylor state triggers adynamo, which then
returns the system to the Taylor configuration, thus turning
itself off.6 Note, in contrast to the solar dynamo, the dynamo
associated with the Taylor relaxation process hovers near
marginality, and is strongly coupled to fluctuation energetics.
External energy input is thus necessary to sustain the dy-
namo, which keeps the system in the vicinity of the Taylor
state. Indeed, the physical current profile is one determined
by a self-organization process involving energy input, turbu-
lence, dissipation, and transport, with eventual coupling to
lossy boundaries. Thus, the actual physical~i.e., RFP plasma!
configuration isdynamic, with finite turbulence levels main-
taining the current profile against dissipation. Also, nonsta-
tionary cyclic or ‘‘bursty’’ states are possible system attrac-
tors. Thus, the profile achieved via a Taylor relaxation
process may be loosely considered to be a type ofself-
organized criticality,7,8 and the Taylor state can be thought of
as an approximation to or idealization of the actual attractor
for the system. From that perspective, then, one expects there
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should be some universal properties, such as effective Rey-
nolds number scalings, etc., which characterize the dynamics
of the Taylor process. Finally, in the RFP, the fluctuations
driving the dynamo are not just turbulent eddys, but include
global m51 tearing modes.9,10 Nevertheless, strong nonlin-
ear interaction, generation of higherm’s, stochastization of
field lines and current profile flattening on account of trans-
port do occur in the vicinity of mode resonant surfaces
~wherekI •BI 50) in the core of the pinch. In this region, then,
the RFP relaxation process certainly exhibits the properties
of a sand-pile or self-organized criticality alluded to above.
This issue is discussed further in the conclusion.

Here, we develop a simple gedanken model based on a
synergy between a general formulation of Taylor relaxation
and continuum models of sandpile relaxation.11,12 The basic
idea exploits the observation that the simplest form of the
helicity density flux which dissipates magnetic energy is dif-
fusion of current, i.e.,GH52D¹I Ji .13–15 Employing ideas
from continuum models of avalanche dynamics, one can use
simple symmetry constraints to constrain the form ofGH ,
and so derive an equation for deviations about the Taylor
state, as well as the scalings of the effective magnetic Rey-
nolds number,without postulating Fick’s law for the struc-
ture of the flux. Moreover, no statistical closure theory is
utilized. Thus, the model encompasses hyperresistive diffu-
sion, but is far more general.

The remainder of this paper is organized as follows. In
Sec. II, a simple model of helicity transport is derived using
symmetry principles. Analogies with avalanche phenomena
are discussed. In Sec. III, solutions in radius and time of the
partial differential equation derived in Sec. II are analyzed.
Both solitary pulse solutions and modulational wave solu-
tions are found. In Sec. IV, the basic turbulence scaling prop-
erties of the system are discussed. The renormalized re-
sponse function and self-similarity exponents are calculated.
Superdiffusive pulse propagation is indicated. In Sec. V, ba-
sic properties of intermittency in helicity transport are dis-
cussed. Section VI contains a discussion and conclusions.

II. A SIMPLE MODEL OF TAYLOR RELAXATION
DYNAMICS

Starting from Ohm’s law,

EI 1
vI 3BI

c
5h0JI , ~1!

whereh0 is the collisional resistivity, and takingBI /uBI u•(EI
1(vI 3BI )/c5h0JI ) we can write

2
1

c

]Ai

]t
2n̂•¹I f2¹I Ai3n̂•¹f5h0Ji . ~2!

For simplicity, assume a locally strongBI 0 along n̂, so ¹i

5n̂•¹1dBI '•¹I /uBI 0u and dB'5¹I Ai3n̂. Further, take the
mean inhomogeneity in the radial direction, orthogonal to
BI 0 . Thus, this gedanken problem corresponds loosely to that
of determining the profileJi(r ) in a RFP and, more specifi-
cally, to the characterization of the deviation from the Taylor

state~i.e., a flat current profile!. As we seek the mean current
profile, averaging Eq.~2! over poloidal and toroidal direc-
tions gives

2
1

c

]

]t
^Ai&1] r@^~¹yf̂ !Âi&#5h0^Ji&. ~3!

Here¹y51/r (]/]u). Now, using Ampe`re’s law and observ-
ing that in a strongly magnetized system, mean field mag-
netic helicityH is given by

H5E d3x^Ai&B0 , ~4!

the magnetichelicity densityevolution equation is

]^H&
]t

1] rF K 2
c

B0
¹yf̂HL G5

]

]t
^H&1] rGH

5hB0] r
2^Ai&, ~5!

whereh5c2h0/4p. Here GH5^2c/B0¹yf̂H& is the mag-
netic helicity density flux. This equation obviously has the
form of an advection equation for magnetic helicity density
H5AiB0 . Note that radial transport and turbulent mixing
conserve magnetic helicity~up to the net flux thru the system
boundary!, so that resistive dissipation is the only helicity
sink. Finally, one can short-circuit the derivation of this para-
graph by noting that Eq.~5! follows directly ~in reduced
MHD!16 from the flux equation.

Now, following Boozer,17 one can ask what the form of
the magnetic helicity density fluxGH must be to dissipate
magnetic energy. Multiplying Eq.~3! by ^Ji&/B0 and inte-
grating by parts gives

]

]t
EM2E d3x

GH

B0
] r^Ji&52E d3xh^Ji&2, ~6!

whereEM is mean field magnetic energy. Thus, takingGH

52m]r ^Ji& gives] tEM,0, corresponding to dissipation of
magnetic energy. This observation is consistent with the no-
tion of Taylor relaxation as being a process of current-
gradient flattening, and supports the idea of a ‘‘hyper-
resistivity’’ ~i.e., diffusion of current! as constituting a
possible analytical representation of the Taylor relaxation
process. It is interesting to note, however, that the hyper-
resistivity is just the smoothest of an infinite series of opera-
tors which dissipateEM . For example, if one takesGH

5m] r
3^Ji&, then

]

]t
EM52E d3xm~] r

2^Ji&!22E h^Ji&2d3x. ~7!

Thus, any odd derivative of̂Ji& dissipatesEM , as does any
combination of an odd derivative and an even power ofJi ,
i.e., a^Ji&2]r ^Ji&, etc. More generally, we can observe that
since^Ji&Taylor5const~i.e., flat current profile!, one can write
the helicity flux which dissipates magnetic energy as

GH52D¹~^Ji&2^Ji&T!52D] rdJi , ~8!

wheredJi is the excursion from the Taylor state. As MHD
tearing type turbulence is expected to be the agent of relax-
ation, we in turn expectD5D@dJi#, i.e., the strength of the

2323Phys. Plasmas, Vol. 10, No. 6, June 2003 Dynamics of helicity transport and Taylor relaxation



current diffusion process should itself be proportional to the
deviation from the Taylor state. Thus, we expectGH;dJi

2, at
least,so that the actual magnetic helicity flux is nonlinear in
dJi . Indeed, we shall soon see that hyper-resistive diffusion
is by no means the most general form of the flux.

From the above discussion, it seems that Taylor relax-
ation can profitably be viewed as similar to a running
sandpile,17,18 with local pile grain occupation density set by
magnetic helicity density, which is a conserved order param-
eter ~i.e., a locally conserved effective density!. Writing dH
for the deviation of the local magnetic helicity density from
the self-organized state, conservation of helicity gives

]

]t
dH1] rGH@dH#5hB0] r

2dAi1S8, ~9a!

or, equivalently,

]

]t
dAi1

1

B0
] rGH@dH#5h] r

2dAi1S. ~9b!

Here,GH is the helicity density flux driven by deviations of
the profile from the self-organized critical~SOC! state. It is
important to note that the self-organized state is, in principle,
not necessarily equal to the Taylor state, on account of re-
sistive dissipation, the helicity source termS ~which repre-
sents the external drive of the system! and boundary losses.
Indeed, the departure from the Taylor state profile is most
pronounced near the edge where the finite temperature gra-
dient and large resistivity force a departure from a flat cur-
rent profile. The key question is how to parametrizeG@dH#.
Since the SOC state is one defined by the current profile, we
ansatzGH@dH#→GH@dJi#, i.e., helicity flux as a function of
the deviation of the current profile from the SOC state.It is
important to note that hereafterdJi refers to the excursion
from the self-organized profile, which is close, but not iden-
tical to, the Taylor state profile. Note that by definition,GH

→0 for dJi→0. Thus, Eq.~9b! becomes

]

]t
dAi1

1

B0
] rGH@dJi#5h] r

2dAi1S. ~10!

Now, take the system to be bounded, so any helicity excess
which reaches the edge (r 5a) is lost, by expulsion thru the
boundary. In practice, this implies a finite current gradient
exists at the boundary, so that^Ji(r )& deviates from Taylor
there, and that a flux of helicity is transported thru the
boundary. Hence, one can expect excesses (dJi.0) to be
expelled from the system, while deficits (dJi,0) are ab-
sorbed, as depicted in Fig. 1. This is analogous to the case of
the sandpile, where bumps, i.e., local excesses beyond the
SOC profile, are expelled from the pile while local deficit
regions~i.e., voids! are absorbed. Note that the expressions
‘‘expulsion/absorption of bumps/voids’’ are simply alterna-
tive ways to express the tendency of the current profile to
regulate itself and relax to the self-organized state. Following
Hwa and Kardar, one can requireGH@dJi# to be joint reflec-
tion symmetric, i.e.,GH must remain invariant whendJi

→2dJi andx→2x, to ensure the expulsion of excess cur-

rent and the absorption of current deficits.19 This drastically
simplifies the form ofGH@dJi# by eliminating several classes
of terms, so that

GH@dJi#5(
i

l2i~dJi!
2i1(

p
D2p11~] rdJi!

2p111¯,

~11a!

where the ‘‘smoothest’’ approximation~i.e., that which is
dominant in the long wavelength, large scale limit! is

GH@dJi#5l~dJi!
21D] r~dJi!. ~11b!

Note that this corresponds to a constant diffusion of current
and a flux quadratically nonlinear indJi , as suggested ear-
lier. Thus, in the hydrodynamic limit, the simple model equa-
tion for excursions from the Taylor state is

]

]t
dAi1

]

]r H l

2
~] r

2dAi!
21D] r~] r

2dAi!J 5h] r
2dAi1S.

~12!

Equation~12! constitutes a mesoscale model for fluctuations
near the SOC/Taylor state induced by drive~S! and
dJi-driven helicity flux. Here, ‘‘mesoscale’’ refers to the
range of scales between the reconnection layer size and the
system size. This range of scale sizes encompasses that of an
m51 tearing mode magnetic island width, in the case of the
RFP. This is the scale over which the current gradient is
irreversibly mixed. Note that Eq.~12! is manifestly scale
invariant, and that the parametersl andD can be chosen in
accord with different plasma models. An interesting generic
approach to determining them would be via Connor–Taylor
scaling analysis.20 Here the driveS can be taken to have the
form of a colored noise. By colored noise, we refer to noise
which is not white, i.e., noise which does not have a flat
spectral density. There is no loss of generality in postulating
a noisy source here, since Taylor relaxation tacitly presumes
the release of local frozen-in constraints via reconnection and
stochasticity. Indeed, one way of looking at the physical ori-
gin of the noise is that in the presence of the magnetic fluc-
tuations which drive relaxation, the local toroidal electric
field will naturally fluctuate as well.21 Thus, the characteriza-
tion of mesoscale dynamics near the Taylor state can be re-
duced to a problem of the ‘‘driven Burgers’’ genre.

FIG. 1. Bumps or excesses (dJi.0) above the SOC profile are expelled,
while voids or defects (dJi,0) are absorbed.
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Equation~12! may be viewed as an effective Ohm’s law
for Taylor relaxation, where the nonlinearityldJi(]/]r )dJi

is related to the familiar hyper-resistive diffusion flux with
D'ldJi , but more general. Noting thatdH5B0dAi , it is
also an equation for magnetic helicity density evolution and
transport in radius and time. The obvious structural similarity
between Eq.~12! and Burgers equation suggests that helicity
transport during Taylor relaxation is strongly intermittent,
and can exhibit nondiffusive scaling properties, symptomatic
of front propagation, helicity density ‘‘avalanches,’’ etc. In-
deed, Eq.~12! is surely the minimal possible model for the
study of intermittency in magnetic helicity transport, a sub-
ject of considerable interest in the context of nonlinear dy-
namo theory.

III. COHERENT NONLINEAR HELICITY TRANSPORT
PHENOMENA

In this section, the unforced solutions of Eq.~12! are
analyzed. The aim here is to understand the structure of the
basic nonlinear solutions. As in Burgers turbulence, it is
likely that the randomly forced state may be viewed as a
‘‘gas’’ of the coherent solutions, as Burgers turbulence may
be thought of as a ‘‘gas’’ of shocks.22,23Particular attention is
devoted to traveling wave solutions. These exist, and may be
either solitary pulses or modulational waves. Here we con-
sider the undriven limit of Eq.~12! by settingS50. For the
purposes of this section, it is convenient to rescale Eq.~12!
in such a way as to makeD5l/251, so the rescaled mag-
netic diffusion coefficienth will be denoted asm, dAi asu,
and r asx. The equation then reads

]u

]t
1~uxx

2 !x1uxxxx5muxx . ~13!

First, let us consider the case in which the magnetic field
perturbationux is spatially localized or periodic. More spe-
cific conditions will be given later. Suppose thatux decays
sufficiently rapidly asuxu→` so that the magnetic field per-
turbationux , as well asuxx , uxxx,L2. The same results will
be valid for the case of periodicux , i.e., x mod 2p. Differ-
entiating Eq.~13! with respect tox, multiplying the result by
ux and integrating by parts we obtain

1

2

]

]t E ux
2dx52E uxxx

2 dx2mE uxx
2 dx, ~14!

where the integrals are taken between2` and` in the case
ux,L2, or between 0 and 2p in the case of a 2p periodic
function ux . The right-hand side of this expression is nega-
tive definite and its absolute value can be shown to be larger
thana* dxux

2, with some constanta.0 that depends on the
functional space under consideration. For example, in the
case ofx mod 2p, one can showa.4p2/(4p21m). The
perturbation of the magnetic fieldux thus decays exponen-
tially as

E ux
2~ t !dx5e22atE ux

2~ t50!dx. ~15!

Thus, all spatially localized solutions decay asymptotically
in time.

Having demonstrated that all spatially localized solu-
tions for the magnetic field perturbations must decay due to
resistivity and hyper-resistivity, we now turn to the case in
which the magnetic field perturbation does not vanish at in-
finity. For this purpose, it is convenient to work with the
quantity proportional to the current density,w5uxx for
which Eq.~13! takes the following form:

]w

]t
1

]3

]x3
~w21wx!5mwxx . ~16!

An energy relation similar to Eq.~14! does not hold forw or
wx , so time-asymptotically nontrivial solutions are now pos-
sible. The simplest one can be obtained by setting] t5m
50. From this equation we obtain

]w

]x
1w25a2 ~17!

with a5const. Hence,

w5w0~x![a tanh~ax!. ~18!

Put physically, this solution describes the interface between
two oppositely directed currents with strengths6a. The
magnetic field perturbation is given by

b~x![ux5 ln cosh~ax! ~19!

so that the behavior ofb(x) is linear at largeuxu, i.e., asb
;uxu. Of course, this is an inviscid solution, and the question
of how it is affected by dissipation naturally arises. One
simple way to understand how this solution is affected by the
hyper-resistive term on the right-hand side~RHS! of Eq. ~16!
is to use an ‘‘adiabatic’’ approximation for sufficiently small
m, i.e., one can assume that the solution in Eq.~17! preserves
its form w0(x,a) for mÞ0, but nowa is replaced bya(t).
The time dependence ofa(t) captures the effect of hyper-
resistive dissipation. By multiplying thex-derivative of
Eq. ~16! by w0x , we obtain ](*2`

1` w0x
2 dx)/]t

522m*2`
1` w0xx

2 dx, from which we formally obtaina(t)
5a0 /A11st. Heres5(16/15)a0

2m.
Traveling nonlinear wave solutions are of great interest,

as they embody the structure of the fundamental nonlinear
excitons of the system. In the analogous system described by
Burgers equation, the traveling wave solutions steepen into
shocks. Here, we will demonstrate the existence of both
soliton-like pulse solutions and of nonlinear modulation
waves. To study traveling wave solutions, it is convenient to
rescale Eq.~16! to the variables in which the hyperdiffusion
term appears with an arbitrary coefficientD, i.e.,

]w

]t
1

]3

]x3
~w21Dwx!5mwxx . ~20!

Let us consider the nondissipative casem5D50 and look
for a traveling wave solution of the formw5w(x2ct).
Equation~20! can then be integrated to the following ‘‘en-
ergy conservation’’ form, i.e.,

1

C
wx

22
1

3
w2

a3

6w2
52

a

2
. ~21!
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Herea is an arbitrary integration constant which is the value
of w at infinity, while the second integration constant that
appears during integration has been chosen so thatwx→0 as
w→a. The solution of Eq.~22! can be most easily under-
stood by examining Fig. 2, which shows the form of the
potential well in Eq.~21!, formed by the second and the third
terms on the RHS. It starts fromw5a at x52`, descends
to the minimumwmin52a/2 and returns tow5a at x5`.
This solution can be written explicitly in an ‘‘inverse’’ form
asx(w), where

x~w!56A2a

C F lnUA2w/3a11/311

A2w/3a11/321
U

23A2w/3a11/3G1x6 . ~22!

Here, the upper~lower! sign should be taken forw
.0(w,0). The integration constantsx6 are chosen in such
a way as to makex(w) continuous, namelyx250 andx1

52x(02). This representation of the solution covers the
half spacex.0. For negativex, the solution is symmetric so
w(2x)5w(x). Note thatw is a continuous function ofx but
w8(x) is infinite where w50, or more preciselyw(x)
.6Aux2x(0)u asx→x(0). It is thus clear thatdissipative
termsin Eq. ~20! must be included to obtain smooth behavior
at w50.

For an arbitrary choice of integration constants, the en-
ergy integral@Eq. ~21!# can be written in the following form:

S dw

dx D 2

1U~w!5E, ~23!

where

U52
C

3
w2

B

w2
. ~24!

The solutions can be expressed in terms of elliptic functions.
The particular solution considered above occurs whenC
.0 andB.0. For this case one can also construct periodic
solutions corresponding to the lower levels in the potential
well, with a singularity atw50, as shown in Fig. 2. This
solution behaves atw50 in the same way as the one de-
scribed above. In the caseC,0 andB,0, there exist regu-

lar periodic solutions that do not cross the singular pointw
50, as shown in Fig. 3. Note that other sign combinations of
the constantsB and C are equivalent to the previous, up to
flipping the sign ofw.

The physical properties of the traveling wave solutions
to Eq. ~12! merit some discussion. For the case whereC
.0 andB,0, two types of solution are possible~see Fig. 2!.
In the case corresponding to the highest possible energy in
the potential wellU, a ‘‘soliton’’ type solution is found. The
solution is a localized pulse, as is typical of solitary waves.
For lower energies in the well, a periodic, nonlinear wave
train is the solution. This structure is somewhat reminiscent
of a cnoidal wave, and may be thought of as arising from a
modulation or corrugation of a flat current profile. Here a
cnoidal wave is one with a wave form resembling that of the
elliptic function cn.24 It is interesting to speculate that such a
modulational pattern may be related to the well known ten-
dency of a current to form filaments. In the caseC.0, B
,0, as in Fig. 3, the solution is trapped in the well and thus
is periodic and regular everywhere.

The inquiring reader may, at this point, be perplexed by
the appearance of ‘‘soliton-like’’ solutions to a nondispersive
equation. In such a system, the familiar scenario of pulse
formation by the balance of nonlinear steepening with dis-
persion cannot be realized. However, the soliton-like solution
obtained here is quite different from conventional solitons,
such as those which occur in the Korteweg–de Vries~KdV!
~Ref. 25! system. In addition to the singularity~already men-
tioned!, the familiar relation of the amplitude and speed of
the pulse is absent. However, the pulse widthl is clearly
related to its speed and amplitude. This is evident by setting
a5C51 in Eq. ~21!, so w/a→w and AC/ax→x. Thus, l
;Aa/C, which is equivalent to KdV-type scaling for fixeda,
only. For fixed C, it is reciprocal to the KdV scaling (l
;a21/2). At the same time, the oft-quoted intuition that soli-
tons form via the balance of steepening and dispersion may
yet be applicable here. Indeed, countingw from its value at
infinity and definingf5a2w, we obtain the equation

]f

]t
12a

]3f

]x3
2

]3f2

]x3
50.

Note that a small, localized perturbationf;e,a spreads
linearly due to dispersion (;a), just as for KdV. For larger
e, the nonlinear term can come into play to limit the spread-
ing, thus allowing the formation of coherent, localized solu-
tions. Under what conditions, and precisely how this hap-
pens, remain unclear. A numerical study is clearly required,
and is ongoing. The results will be reported in a future pub-

FIG. 2. The form of the potentialU(w) in Eq. ~23! ~left panel! and two
types of bounded solutions~right panels!. One solution is of the soliton type
~upper right panel!, corresponding to the highest possible ‘‘energy’’ level in
the potential well. The family of periodic solutions corresponds to a con-
tinuum of all the remaining levels in the potential well.

FIG. 3. Potential well corresponding to Eq.~23! in the caseB, C,0 ~left
panel!. The solutionw(x) is periodic and regular everywhere~right panel!.
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lication. Of course, as in the KdV theory, the soliton solution
cannot be obtained at any finite order in perturbation theory.

At a more general level, the considerations of this sec-
tion clearly indicate that traveling waves of helicity density
can develop during Taylor relaxation. Such waves transport
helicity nondiffusively, at a speedC determined by the struc-
ture of U(w). While the analysis here applies only to the
limit where D, h→0, it nevertheless strongly suggests that
such phenomena can be expected to occur in regimes of large
effective magnetic Reynolds number.

IV. SCALING PROPERTIES OF TURBULENT HELICITY
TRANSPORT

In this section, we determine the structure and scaling
exponents of the turbulent helicity density flux and the effec-
tive ‘‘magnetic Reynolds number’’ of the relaxation process
by applying standard methods of turbulence closure theory to
Eq. ~12!. This study is analogous to those of the noisy Bur-
gers equation for sandpile fluctuations. The aims here are to
understand the structure of the turbulent dissipation~i.e., the
effective eddy viscosity! which arises in Eq.~12!, and to
determine the scaling exponents of the turbulent response. To
this end, we must explore the infrared behavior of the dissi-
pation coefficient.26 Writing Eq. ~12! in Fourier variables
gives

2 ivA
v
k 1~h0k21Dk4!Ak

v

1 ik
l

2 (
k8,v8

k82A2k8
2v8

~k1k8!2A k81k
v81v

5Sk,v . ~25!

The d and sub-i have been dropped for notational conve-
nience, thusA

v
k 5dA

v
ik. Equation~25! is closed by extracting

the phase coherent part of the nonlinearity via substitution

for A
v1v8
k1k8 asA

v1v8
k1k8
(2)

, where

A k1k8
v1v8

~2!
5L k1k8

v1v8
S 2

il

2
~k1k8!k82Ak8

v8
k2Ak

v
D , ~26a!

L k1k8
v1v8

21
52 i ~v1v8!1h0~k1k8!21D~k1k8!4

1d k1k8
v1v8

. ~26b!

Here d
v1v8
k1k8 refers to the propagator renormalization. The

renormalizedA
v
k equation is then

2 ivAk
v
1k

l2

4 (
k8
v8

~k1k8!3k82uAk8
v8

u2L k1k8
v1v8

k2Ak
v

1~h0k21Dk4!Ak
v
5Sk,v . ~27a!

Taking the long wavelength, hydrodynamic limit, and noting
parity forces cancellation of thek83 contribution then gives

2 ivAk
v
1k4DTAk

v
1~h0k21Dk4!Ak

v
5Sk

v
, ~27b!

where

DT5
3l2

4 (
k8
v8

~k82!3uAk8
v8

u2L k8
v8

~27c!

is the turbulent dissipation coefficient, itself a function of
fluctuation level. As expected, here the turbulent dissipation
has the form of hyper-resistive diffusion.Note that here, DT

is derived using simple dynamical arguments and symmetry
principles alone, and is a fundamentally model-independent
result.

The effective magnetic Reynolds number is simply the
ratio of relaxation-induced helicity transport to collisional
resistive dissipation, i.e.,

Rm;k4DT /h0k2;k2DT /h0 . ~28!

Following the convention of definingRm at large scales~note
this is a conservative estimate!, we haveRm;DT /L2h0 ,
whereL is the system size. Now, using Eq.~27! to relateAk,v

to Sk,v ~neglectingh0 andD, the collisional transport coef-
ficients!, DT may be written as

DT5
3

4
l2 (

k8,v8

~k82!3uSk8,v8u
2k84DT

@v821~DTk84!2#2
. ~29!

Assuming white noise for simplicity, thev8 integral may be
performed, yielding

DT
35(

kI 8
~3p/8!l2S0

2/k84. ~30!

S0
2 is the strength of the white noise. Here the remaining

integral overk is manifestly divergent ask→0, and must be
cut off at a scale corresponding tokmin . Clearly,kmin

21 should
be smaller than the scale of the phenomena being considered.
Otherwise, the coarse graining inherent to the renormaliza-
tion procedure is inappropriate. In this case, we may write

DT>~l2S0
2!1/3/kmin . ~31!

The strong infrared divergence ofDT which appears in Eq.
~31! is a ‘‘red flag’’ indicating the possibility of superdiffu-
sive or ballistic transport dynamics. This follows from the
implicit scale dependency ofDT ~i.e.,DT; l ), which appears
on account of the infrared divergence. Indeed, takingl 2

;DTt and noting from Eq.~31! that DT;kmin
21;l gives l

;(l2S0
2)1/3t, namely ballistic transport scaling. Such scaling

is also characteristic of transport in Burgers turbulence.
Given that Eq.~12! has traveling wave solutions, with the
form A(x2ct), it is by no means surprising to find ballistic
scaling appears in the turbulence analysis.

It is also possible to obtain a general scaling for the
effective magnetic Reynolds numberRm;DT /L2h0 . Taking
DT;(l2S0

2)1/3L ~i.e., equivalent to assumingkmin;L21)
gives Rm;(l2S0

2)1/3/Lh0 . Note that Rm scales with
(l2S0

2)1/3 but inverselywith L. This result gives a universal
scaling relation for the effective magnetic Reynolds number
in terms of system sizeL, coupling strengthl, excitation
strengthS0

2, and resistivityh0 . This result contradicts the
hypothesis of Colgate, which asserts that a single value of
Rm;100 is characteristic of most Taylor relaxation phenom-
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ena in astrophysical plasmas.27 The prediction given here is
definitely testable by numerical and physical experiments.

V. DISCUSSION AND CONCLUSION

In this paper, we have considered the dynamics of helic-
ity transport and Taylor relaxation. The principal results of
this paper are listed below.

~i! A dynamical description of Taylor relaxation for
magnetic configurations with two spatial symmetries~i.e.,
such as in a toroidal plasma! has been developed using he-
licity density flux invariance principles, alone. This approach
subsumes and supercedes the prevailing picture of Taylor
relaxation dynamics, based on hyper-resistive diffusion of
the parallel current, and is applicable to a wide variety of
plasma models.

~ii ! This description of the relaxation process predicts
fast, nondiffusive relaxation events, which correspond
loosely to avalanches of magnetic helicity density. This phe-
nomenon is manifested in the theory both by

~a! the prediction of coherent, soliton-like traveling wave
solutions to the zero-forcing, zero-dissipation prob-
lem;

~b! the prediction of ballistic helicity density transport
scalings for the forced, noisy problem; here, ballistic
scaling arises from the infrared divergence of the tur-
bulent hyper-resistivity.

~iii ! A universal structure for the parameter scaling of the
effective magnetic Reynolds number during Taylor relax-
ation ~with white noise! has been derived. The scaling pre-
diction is RM;(l2S0

2)1/3/Lh0 , wherel is the coupling co-
efficient, S0

2 is the noise strength, andL is the system size.
This result contradicts certain recent assertions by Colgate.

~iv! More generally, this description suggests that Taylor
relaxation is a generically strongly intermittent process, and
that a statistical approach~i.e., PDF calculation! is necessary.

Certain aspects of these points are discussed further be-
low.

One of the most striking results obtained here is the
similarity between Eq.~12!, which describes the Taylor re-
laxation of the current profile on mesoscales, and the familiar
Burgers equation. It is well known that Burgers turbulence is
strongly intermittent, a property which is a consequence of
the fact that in the Burgers equation, negative slopes
@]x(Vx

2),0# steepen to form shock fronts, while positive
slope ramps@]x(Vx

2).0# smooth out.28 A related~but more
complicated! type of asymmetry is manifested in Eq.~12!,
namely thatdAi perturbations will be amplified in regions
with l] r(dJi)2,0 but will be reduced or smoothed where
l] r(dJi)2.0. Thus, Taylor relaxation is likely to exhibit in-
termittency rooted in thelocal slopeof dJi

2, and thus be
concentrated in localized structures, akin to shocks in Bur-
gers turbulence. As in Burgers turbulence, the pdf of differ-
ences or, ‘‘jumps’’ indJi is likely to be strongly asymmetric.
While validation of this speculation awaits numerical solu-
tion of Eq. ~12! with noisy forcing, it seems clear that a
statistical approach to the problem focused on computing the

pdf of dJi , will ultimately be both necessary and
illuminating.29

It is appropriate to comment on the relationship between
the ‘‘sandpile model’’ of relaxation discussed here, and the
well-known model of RFP relaxation based on the induced
EMF driven by m51 tearing modes, which has received
extensive theoretical and computational scrutiny. First, it is
important to emphasize that these two approaches arenot in
conflict or incompatible. This is because them51 modes are
global, and thus produce a zone of reconnection in the core
of the pinch, while at the same time driving ideal kink mo-
tions in the MHD exterior, beyond the reversal surface. In
the core reconnection region, at the mode resonant surfaces
~where kI •BI 050) the mean current profile flattens due to
reconnection-induced transport of current density. This pro-
cess has been described by hyper-resistive diffusion of cur-
rent density driven by them51 perturbations, and thus in
principle, is indeed contained with the structure of the ‘‘sand-
pile model’’ discussed here. Note also that the magnetic sto-
chasticity which follows from the island overlap and recon-
nection in the core naturally provides the elements of
irreversibility and randomness tacitly assumed by our sand-
pile model. Moreover, the resonant nonlinear interaction of
m51 modes generates localized current perturbations corre-
sponding tom>2. Thus, the core of the RFP is in a state of
strong MHD turbulence. On the other hand, the ‘‘kinking’’ in
the exterior region of the tearing modes is intrinsically a
reversibleprocess, and thus isnot contained within the sand-
pile model paradigm. It should be noted that since observed
RFP current profiles often deviate markedly from the predic-
tions of the Taylor theory beyond the reversal surface, it is
far from clear what the role these exterior dynamics actually
play in the relaxation process. Finally, we note that the ‘‘ki-
netic dynamo’’30 model based on the concept of
microturbulence-induced diffusion of current, is clearly en-
tirely consistent with the local flux picture adopted in the
sandpile mode. Of course, it is possible that the kinetic dy-
namo and them51 driven dynamo can coexist. In that case,
a unified description using the sandpile model is certainly
feasible.

It is appropriate to mention some possible experimental
observables of a SOC-like relaxation process in a RFP. First,
one would naturally expect to observe propagating excesses
~‘‘blobs’’ or avalanches!! and voids in the radial profile of the
parallel current. The PDF of current gradient fluctuations
should be strongly non-Gaussian, as well. Second, it would
be interesting to examine the relationship between large cur-
rent transport events and sawtooth crashes observed in the
RFP.31,32 A possible precursor to large crashes might be an
increase in the frequency of occurrence of small current ava-
lanches.

At a practical level, the prediction of fast, non-diffusive
relaxation events may have implications for feedback control
of RFP current profiles, as in PPCD.33 Such events evolve on
a space–time trajectory different from that of a simple diffu-
sion processes~i.e., due to hyper-resistivity!. PPCD control
loops should be designed with this possibility in mind, and
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not be based solely on the presumption that current profile
evolution is diffusive.

While this paper has discussed Taylor relaxation dynam-
ics in the familiar context of the RFP, it should be noted that
these ideas are potentially applicable to astrophysical plasma
problems in general, and the heating of the solar corona, by
relaxation and reconnection of coronal loops, in particular. In
this vein, Lu and Hamilton have expanded Parker’s original
concepts of magnetic nonequilibria34 and self-organization of
nanoflare events35 into a cascade model of coronal heating
which is structurally similar to cellular automata models fa-
miliar from the study of sandpile models.36,37 Quite recently,
Liu et al. have advanced a continuum-limit version of the
Lu–Hamilton cascade model.38 The key effect of Liuet al. is
nonlinear hyper-resistive diffusion, which is clearly related
to the physics of both Taylor relaxation in general, and this
theory in particular. Further detailed comparisons and con-
trasts between our theory and that of Liuet al. are ongoing
and will be discussed in a future publication.
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