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Abstract

While fine-grained object recognition is an important

problem in computer vision, current models are unlikely

to accurately classify objects in the wild. These fully su-

pervised models need additional annotated images to clas-

sify objects in every new scenario, a task that is infeasi-

ble. However, sources such as e-commerce websites and

field guides provide annotated images for many classes. In

this work, we study fine-grained domain adaptation as a

step towards overcoming the dataset shift between easily

acquired annotated images and the real world. Adaptation

has not been studied in the fine-grained setting where anno-

tations such as attributes could be used to increase perfor-

mance. Our work uses an attribute based multi-task adap-

tation loss to increase accuracy from a baseline of 4.1% to

19.1% in the semi-supervised adaptation case. Prior do-

main adaptation works have been benchmarked on small

datasets such as [46] with a total of 795 images for some

domains, or simplistic datasets such as [41] consisting of

digits. We perform experiments on a subset of a new chal-

lenging fine-grained dataset consisting of 1, 095, 021 im-

ages of 2, 657 car categories drawn from e-commerce web-

sites and Google Street View.

1. Introduction

The ultimate goal of image recognition is to recognize

all objects in the world, as they appear in their natural envi-

ronments. An even more difficult task, fine-grained recog-

nition, aims to distinguish between objects in the same cat-

egory (e.g. different bird species or car brands). Current

state-of-the-art fine-grained classification methods [2, 5, 8,

33] focus on fully supervised learning regimes: a setting

where human annotated images are available for all object

categories of interest. To enable these methods, datasets

have been proposed to train models recognizing all cate-

gories and scenes [15, 35, 54], or focus on the fine-grained

recognition task [51, 30, 52, 42, 34].

Training 
 Images

Real World  
Scenarios

Figure 1. We aim to recognize fine-grained objects in the real

world without requiring large amounts of expensive expert anno-

tated images. Instead, we propose training fine-grained models

using cheaper annotated data such as field guides or e-commerce

web sources (see top row). We adapt the learned models to our

task using only a sparse set of annotations in the real world.

Models trained on these datasets are capable of outper-

forming humans when evaluated on benchmark tasks such

as [15, 44]. However, this evaluation paradigm ignores a

key challenge towards the development of real world ob-

ject classification models. Namely, fixed datasets such as

ImageNet or Birds offer a sparse and biased sample of the

world [48]. Thus, to achieve comparable performance in

real-world settings, fully supervised models trained with

these datasets need additional annotated data from each new

scenario. However, collecting images capturing all possible

appearances of an object in a constantly changing real world

environment is infeasible. The large number of possible im-

ages makes it prohibitively expensive to obtain labeled ex-

amples for every object category in the real world. More-

over, this annotation burden is amplified when we consider

recognition for fine-grained categories. In this setting, only

experts are able to provide our algorithms with labeled data.

Fortunately, freely available sources of paired images

and category labels exist for many objects we may want

to recognize. For example, images and annotations from a

field guide can be used to train a model recognizing various

bird species in the wild (Fig. 1 (top row)). Similarly, an-

notated car images on e-commerce websites can be used to

train a model distinguishing between different types of cars
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in unstructured urban environments (Fig. 1 (middle row)).

However, images from these sources have different statis-

tics from those we may encounter in the real world. And

this statistical difference can cause significant degradation

of model performance [48, 46, 4].

In this work, we study fine-grained domain adaptation

as a step towards overcoming the dataset shift between eas-

ily acquired annotated images and the real world. To our

knowledge, adaptation has not been studied in the fine-

grained setting where it is especially expensive to obtain

image annotations. In this scenario, many of our categories

may be related to one another in some known hierarchical

way. For example, multiple distinct car varieties may share

the same body type or the same make.

Our contributions are two fold: first, we propose a new

multi-task adaptation approach which explicitly benefits

from these known cross-category relationships. Our model

consists of a multi-task adaptation objective which simul-

taneously learns and adapts recognition at the attribute and

category level. We first show that our objective effectively

regularizes the source training and hence improves the gen-

eralization of the source model to the target domain. Then,

for the task of semi-supervised adaptation (i.e. when cate-

gory labels are only available from a subset of the classes in

the target domain), we exploit the fact that labels will often

exist for all attributes. For example, while annotated target

images for a 1998 Honda Accord sedan may not be avail-

able, some images of other Hondas and sedans are likely

in our dataset. In this way, we are able to apply different

adaptation techniques at the class and attribute levels.

Our second contribution characterizes a large scale fine-

grained car dataset for domain adaptation. While this

dataset was introduced by [27] in the context of fine-grained

detection, it has not been used in adaptation. We perform

experiments on a subset of 170 out of 2, 657 classes (a total

of 71, 030 images) and show significantly improved perfor-

mance using our method. While visual domain adaptation

has been well studied [46, 3, 28, 49, 24], most approaches

focus on adapting between relatively small data sources

consisting of tens of object categories and hundreds of im-

ages in total [46, 20, 41]. The use of such small datasets in

developing adaptation algorithms makes it difficult to reli-

ably benchmark these algorithms. To our knowledge, our

work is the first to study this important problem on a large

scale, real-world dataset and in the fine-grained scenario.

2. Related Work

Fine-Grained object recognition. While fine-grained

image recognition is a well studied problem [2, 5, 8, 10, 11,

9, 16, 17, 19, 26], its real world applicability is hampered by

limited available data. Works such as [33] have used large-

scale noisy data to train state-of-the-art fine-grained recog-

nition models. However, these models are unlikely to gener-

alize to real world photos because they are trained with im-

ages derived from field guides or product shots. Similarly,

standard fine-grained datasets such as [51] and [6] are de-

rived from a single domain. Due to the large variation in ob-

ject appearance between the real world and these datasets,

models trained on these images are unlikely to generalize

well to real world objects.

Domain adaptation. Domain adaptation works enhance

the performance of models trained on one domain (such

as product shot images) and applied to a different domain

(such as real world photos). Since the theoretical frame-

work provided by [4], many computer vision works have

published algorithms for unsupervised domain adaptation:

i.e. a task where no labeled target images are available dur-

ing training [53, 39, 23, 1, 7, 50]. Most methods strive to

learn a classifier with domain invariant features [49, 25, 38]

. Long et al. relax the assumption of a single classifier for

both source and target images and instead use 2 classifiers

with a residual connection [39]. While these works focus

on unsupervised domain adaptation, [49] performs semi-

supervised adaptation, transferring knowledge from classes

with labeled target images to those without. To our knowl-

edge, there have been no studies of visual adaptation in the

fine-grained setting. Our work builds on [49]’s method to

show that attribute level softlabel transfer and domain con-

fusion significantly boost performance in this scenario.

Attributes, structured data and multitask learning.

Attributes have been used to improve object classification

in [47] and perform zero shot learning in [43, 37]. Kodirov

et al. [31] uses sparse coding and subspace alignment tech-

niques to perform zero shot learning when images are

sourced from multiple domains. We draw inspiration from

these works and leverage attributes to improve performance

in unsupervised and semi-supervised domain adaptation. In

contrast to [32]’s adaptation of user specified attributes, we

use labels shared between different fine-grained categories

to facilitate class level transfer. While prior works such

as [45, 21, 18] focus on attribute learning, our goal is to

improve adaptation using ground truth attribute labels.

Our method to enforce consistency between attribute and

class predictions is similar in spirit to a number of works ex-

ploiting label structure [14, 12]. [14] uses Hierarchy and Ex-

clusion (HEX) graphs to encapsulate semantic relations be-

tween pairs of labels. We use a KL divergence loss between

predicted label distributions instead of hard constraints.

Finally, some prior works have shown that learning mul-

tiple tasks can improve generalization for each task. For

example, [13] found that a multi-task network for segmenta-

tion improves object detection results as a bi-product. Sim-

ilarly, [22] showed that a machine learning to translate mul-

tiple languages performs better on each language. We ob-

serve similar results where a multi-task adaptation approach

using attributes improves class level performance.
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Figure 2. Our architecture for unsupervised and semi-supervised domain adaptation. Two CNNs based on [36] with shared weights

classify source and target images. The fc7 feature maps of labeled source and target images are input into independent softmax classifiers

classifying each attribute and fine-grained class of the image. Any unsupervised adaptive loss such as domain confusion (denoted as

UA) [49] can be used to further improve adaptation. When labeled target images are available, semi-supervised adaptive loss (denoted

as SSA) such as the soft label loss of [49] can be performed at the attribute, as well as fine-grained level. An attribute consistency loss

(denoted as ACL) encourages the fine-grained and attribute classifiers to predict consistent labels.

3. Multi-Task Domain Adaptation for Fine-

Grained Recognition

In the fine-grained classification setting, obtaining labels

for every single class is infeasible. However, classes often

share attributes. For instance, a Beagle and a Jack Rus-

sell terrier are both small dogs while a Bearded Collie and

Afghan Hound are both shaggy dogs. In the general object

classification setting, a taxonomic tree such as WordNet can

be used to group categories and obtain labels at multiple lev-

els in the hierarchy. Thus, while the target domain may not

have labels for every leaf node class, we are more likely to

have images annotated at higher levels in the hierarchy.

We leverage these additional annotations in a multi-task

objective, providing regularization and additional supervi-

sion. Specifically, we minimize a multi-task objective con-

sisting of softmax classification losses at the fine-grained

and attribute level. In our architecture shown in Fig. 2,

this is achieved by having multiple independent softmax

layers that perform attribute level, in addition to category

level, classification. We add an attribute consistency loss

to prevent the independent classifiers from predicting con-

flicting labels. Any unsupervised adaptive loss (denoted as

UA) in Fig. 2 can be used in conjunction with our method.

Similarly, when target labels are available for some classes,

any semi-supervised adaptive loss (denoted as SSA) can be

added at the class and attribute levels. Here, we apply our

method to [49] to evaluate its efficacy.

3.1. CNN Architecture for MultiTask Domain
Transfer

We give an overview of our architecture for semi-

supervised domain adaptation shown in Fig. 2. Our model is

trained using annotated source images for all classes, which

we denote as {xS , yS}, and labeled and unlabeled target im-

ages, {xT , yT }. xS , xT are source and target image samples

respectively and yS , yT are their associated labels. Our goal

is to train a model classifying images {xT } for fine-grained

categories with no labeled target images. We denote the

number of target images as NT and the number of labeled

target images as NTL. NTL = 0 and NTL = NT in the un-

supervised and fully supervised adaptation settings respec-

tively. Only a subset of the target images are labeled in the

semi-supervised adaptation setting resulting in NTL < NT .

In addition to class labels yS , yT , we also have attribute

level annotations ySa, yTa for source and target images re-

spectively. There are at least as many labeled source and

target images available for each attribute a, as each class c.

This implies that even when no labeled target images are

available for class c, there are labels for classes with similar

attributes to c. We optimize a multi-task loss with 3 compo-

nents: a softmax classification loss at the fine-grained and

attribute levels, an attribute consistency loss, and any unsu-

pervised or semisupervised adaptation loss.
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Figure 3. An attribute consistency loss between the fine-grained

and attribute classifiers encourages them to predict consistent re-

sults. For each of the i attributes Atti, fc8 scores from the fine-

grained classifier are converted to scores across attributes. We

minimize a KL divergence loss between the softmax of these at-

tribute scores and the softmax output of the attribute classifier

fc8Atti
.

3.2. Classification Loss

We start with a CNN following the architecture of [36],

taking {xS , yS} and {xT , yT } as inputs. We denote the

parameters of this classifier as θrep. Let each attribute a

have aK categories. We have Na attribute classifiers fan

parametrized by θan, n = 1...Na. These classifiers oper-

ate on the image feature map f(x, y; θrep) produced by our

CNN. Na is the number of attributes and x, y are an input

image and its associated label respectively. We minimize

Na softmax losses:

Lan
(x, y; θrep, θan

) = −

aK∑

ak=1

1[ya = ak] log pak (1)

where ya is the ground truth label for image x and attribute

a, and pa = [pa1, ...paK ] is the softmax of the activations of

attribute classifier fan
. I.e., p = softmax(θTan

f(x; θrep)).
In addition to attribute level softmax losses, we mini-

mize a softmax classification loss at the fine-grained level.

With K classes, and a fine-grained classifier parametrized

by θC operating on feature map f(x, y; θrep), we minimize

the loss:

LC(x, y; θrep, θC) = −

K∑

k=1

1[y = k] log pk (2)

Our final multi-task softmax loss is the weighted sum

of the attribute and fine-grained softmax losses. Omitting

parameters for simplicity of notation,

Lsoftmax =

Na∑

n=1

αnLan
+ αcLC (3)

3.3. Attribute Consistency Loss

While our attribute and class classifiers are indepen-

dently trained using ground truth labels, our pipeline so far

poses no restrictions on how these classifications are re-

lated to each other. That is, the fine-grained classifier can

output a class whose attributes are different from ones pre-

dicted by the attribute classifiers. However, we know that

the attributes of the fine-grained class should be the same

as those predicted by the independent attribute classifiers.

To enforce this structure, we add an attribute consistency

loss that penalizes differences between attributes predicted

by the fine-grained and attribute classifiers. We minimize a

symmetric version of the KL divergence between the distri-

bution of attributes predicted by attribute classifier an and

those inferred by the fine-grained class classifier. Our pro-

cedure is visualized in Fig. 3. For each attribute a, we first

convert scores across classes (fc8 output in [36]) to ones

across categories for that attribute. Let f = [f1, ...fk]
consist of scores for k classes. To obtain scores across

attribute categories, we average values in f belonging to

classes from the same attribute. Averaging, rather than sim-

ply adding, scores mitigates the effect of dataset bias where

some classes and attributes appear more frequently. We then

compute a softmax distribution across attribute categories

for attribute a, p̂a = [p̂a1, ..., p̂aK ] using the computed at-

tribute scores.

We define a consistency loss for each attribute a as the

symmetric version of the KL divergence between p̂a and pa:

Lconan
(x, θrep, θan

, θc) =
1

2
DKL(pa||p̂a)+

1

2
DKL(p̂a||pa)

(4)

DKL(pa||p̂a) =

aK∑

ak=1

pak log
pak

p̂ak
(5)

where attribute a has aK categories as defined in 3.2. Since

we are not trying to match a reference distribution and are

only minimizing the distance between two distributions, we

use a symmetric version of the KL divergence in our loss

instead of cross-entropy loss. Omitting parameters for sim-

plicity, the final consistency loss Lconsistency is a weighted

sum of the losses for each attribute:

Lconsistency =

Na∑

n=1

βan
Lconan

(6)

3.4. Augmenting Existing Adaptation Algorithms
with Attribute Loss

We can augment any existing adaptation algorithm with

our attribute based losses to perform adaptation at the at-

tribute as well as the class level. Here, we describe how we

apply our method to [49]. To use our method with [49],

we add the domain confusion and softlabel losses intro-

duced in [49]. The softlabel loss is only used in the semi-

supervised setting where labeled target images are available

for some classes. However, in addition to a softlabel loss

Lcsoft at the fine-grained level, we also minimize the soft-

label objective Lasoft for each attribute a. This allows us
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Figure 4. Histogram of GSV (left) and web (right) bounding box

sizes. While cars in GSV images are typically small (with an av-

erage size of 9, 117 pixels), those in web images are much larger,

occupying an average of 146, 848 pixels.

(A) (B)

(C) (D)

Figure 5. The distribution of GSV images for each class (A), each

make (B), each model (C) and each body type (D) for the subset

of the car dataset used in our evaluation. While each fine-grained

class has less than 500 labeled images, some body types have close

to 12, 000 labeled GSV images (D).

to leverage attribute level annotations that exist for classes

with no labeled target images. Denoting the domain confu-

sion loss as Lconf , our final objective is a weighted sum of

Lcsoft, Lasoft, Lconf , Lsoftmax and Lconsistency .

4. Evaluation

We evaluate our multi-task adaptation algorithm on two

datasets, a recently proposed large scale car dataset [27] and

the office dataset [46] augmented with attributes taken from

the WordNet [40] hierarchy. To test the efficacy of our at-

tribute level adaptation approach, we modify an existing do-

main adaptation method, DC [49], by adding our attribute

level losses.

We use Caffe [29] in all of our experiments. Our source

only models are initialized with ImageNet weights using the

released CaffeNet model [29]. For experiments on the car

dataset, we use equal weights across all our losses and a

temperature of 2 while calculating softlabel losses. We set

the learning rate to 0.0001 for all experiments and will re-

lease our custom layers for optimizing KL divergence loss.

For experiments on the office dataset, we set all loss weights

Accuracy (%)

Train Test Class Make Model Body

S S 73.9 85.0 82.2 92.0
S T 8.5 36.2 18.2 59.7
T T 18.9 51.9 31.6 73.9
S+T T 27.9 56.4 41.1 75.8

Table 1. We quantify the amount of domain shift between the web

source domain (S) and GSV target domain (T). Training on source

and evaluating on target shows a significant performance drop.

Accuracies are shown for models trained at the fine-grained class,

make, model and body-type level. There are 170 fine-grained

classes, 89 models, 17 makes and 10 body-types in our dataset.

Model Adapt Attr Consist Acc (%)

Source CNN 9.28
Source CNN w/att X 10.80

Source CNN w/att+ACL X X 14.37
DC [49] X 14.98
DC [49] w/att+ACL X X X 19.05

Table 2. Cars→GSV Unsupervised Adaptation: We report

multi-class accuracy for all classes in the GSV validation set and

demonstrate the effectiveness of incorporating our attributes and

consistency loss into the baseline and adaptive methods.

Model Adapt Attr Consist Acc (%)

S+T CNN 4.12

S+T CNN w/att+ACL X X 7.45

DC [49] X 12.34

DC [49] w/att+ACL X X X 19.11

Table 3. Cars→GSV Semi-supervised Adaptation: We report

multi-class accuracy for the held-out unlabeled classes in the GSV

validation set and demonstrate the effectiveness of incorporating

our attributes and consistency loss into the baseline and adaptive

methods.

Model Adapt Attr Consist Acc (%)

Source CNN 60.9

Source CNN w/att X 59.5

Source CNN w/att+ACL X X 61.2

DC [49] X 61.1

DC [49] w/att+ACL X X X 62.4

Table 4. Amazon→Webcam Unsupervised Adaptation: We re-

port multi-class accuracy for the full Webcam dataset and demon-

strate the effectiveness of incorporating our attributes and consis-

tency loss into the baseline and adaptive methods.

to 1 except for domain confusion loss whose weight was set

to 0.1.
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Web

Make: Chrysler 
Model: Pt-Cruiser 
Body Type: Wagon 
Trims: Base, Limited, Touring 
Manufacturing Year: 2006-2009

Google Street View

Figure 6. Examples of web and GSV images for one type of car in our dataset. Web images are typically un-occluded with a high resolution

while GSV images are blurry and occluded.

Model Adapt Attr Consist Acc (%)

S+T CNN 45.5

S+T CNN w/att+ACL X X 45.3

DC [49] X 47.0

DC [49] w/att+ACL X X X 51.8

Table 5. Amazon→Webcam Semi-supervised Adaptation: We

report multi-class accuracy for the held-out unlabeled classes in

the Webcam dataset and demonstrate the effectiveness of incor-

porating our attributes and consistency loss into the baseline and

adaptive methods.

4.1. Large scale car dataset

The car dataset introduced in [27] consists of 1, 095, 021
images of 2, 657 categories of cars from 4 sources:

craigslist.com, cars.com, edmunds.com and Google Street

View. We refer to images from craigslist.com, cars.com and

edmunds.com as web images and those from Google Street

View as GSV images. As shown in Fig. 6, cars in web

images are large and typically un-occluded whereas those

in GSV are small, blurry and occluded. The difference in

image size is apparent in Fig. 4 which shows a histogram

of bounding box sizes in GSV and web images. These

large variations in pose, viewpoint, occlusion and resolution

make this dataset ideal for a study of domain adaptation, es-

pecially in the fine-grained setting. In addition to the cate-

gory labels, each class is accompanied by metadata such as

the make, model body type, and manufacturing country of

the car.

4.2. Quantifying Domain Shift on the Car Dataset

In any adaptation experiment, it is crucial to first under-

stand the nature of the discrepancy between the different

sources of data. Following the standard set by [46], we

quantify this shift in the car dataset by training a sequence

of models and evaluating both within and across domains.

We perform all of our experiments on a subset consisting

of 170 of the most common classes in the dataset, partic-

Figure 7. The difference in accuracy per class between our models

and baselines on the car dataset. 66% of all fine-grained categories

see a gain in accuracy in the unsupervised setting (left). Similarly,

in the semi-supervised setting, our model improves classification

accuracy on 75% of the held-out classes (right).

ularly those with at least 100 target images per class. This

ensures that we have enough images to reliably evaluate our

algorithm.

In particular, we train a source only model and find that

while accuracy is relatively high when evaluating within the

source web domain (73.9%), performance catastrophically

drops when evaluating within the GSV target domain. To

aid in analyzing our semi-supervised domain adaptation ex-

periments, we train a target only model using all available

GSV labels. This model serves as an oracle for our adapta-

tion experiments which use a reduced set of labeled images.

As shown in Tab. 1, the target only model significantly out-

performs our source only model indicating a large shift be-

tween the two domains. Finally, we train a joint fully su-

pervised source and target model to test whether web and

GSV data are complementary. Indeed, the joint model out-

performs even the fully supervised target only model. This

indicates that annotated images from the source domain will

be a useful resource to train models classifying target im-

ages. Thus, in the next set of experiments, we evaluate our

adaptation solutions.

For each of these experiments, we train models using

fine-grained class as well as make, model and body type

labels. There are 10 body types, 17 makes and 89 models in

the subset of the dataset used for our experiments.
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Make: Dodge 

Model: Grand Caravan 

Body Type: Minivan 

Trims: se, sxt 

Manufacturing Year: 2008-2010

Make: Nissan 

Model: Pathfinder 

Body Type: SUV 

Trims: se, le, sv 

Manufacturing Year: 2005-2012

Make: Ford 

Model: F-150 

Body Type: Extended Cab 

Trims: xlt 

Manufacturing Year: 1994-1997

Classes with Highest Improvement in Accuracy

Make: Pontiac 

Model: Grand AM 

Body Type: Sedan 

Trims: se, se1, se2 

Manufacturing Year: 1999-2005

Make: Oldsmobile 

Model: Alero 

Body Type: Sedan 

Trims: gx, gls, gl2 

Manufacturing Year:1999-2004

Make: Toyota 

Model: Tacoma 

Body Type: Double Cab 

Trims: prerunner, v6 

Manufacturing Year: 2005-2011

Classes with Highest Drop in Accuracy

Figure 8. Example images for classes resulting in the highest ac-

curacy gain with our method (top), and the highest accuracy drop

with our method (bottom) on the car dataset. The class with the

highest accuracy gain is the 2008-2010 Dodge Grand Caravan

while the 2005-2011 Toyota Tacoma sees the highest accuracy

loss.

4.3. MultiTask Adaptation on the Car Dataset

A real world domain adaptation pipeline should leverage

the availability of labeled target images for popular fine-

grained objects, to improve classification performance on

classes whose labels are difficult to obtain. With this mo-

tivation, we partition the target data into labeled and un-

labeled sets to perform semi-supervised domain adaptation

experiments. We first sort the fine-grained classes by the

number of target images they have. We then use images for

the top 50% of target classes (85 classes) with the highest

number of labels in conjunction with source images for all

classes as labeled training data. Our test data comprises

of images for the 50% of classes with the least number

of labels. Thus, no labeled target images from the held-

out classes are used in training the models used in semi-

supervised adaptation experiments.

Table 2 shows classification accuracies for various base-

line methods as well as our architecture. Our baselines are

source only and DC [49] adaptive models. We also compare

our full model to one without attribute consistency loss. In

all cases, our attribute level adaptation mechanism drasti-

cally improves performance. For example, in the unsuper-

vised adaptation scenario, we see a ∼ 10% gain. To en-

sure that our attribute loss indeed aids adaptation and does

not solely improve the baseline classifier, we also train a

CNN that solely incorporates non-adaptation based compo-

nents of our loss: i.e, Lsoftmax and Lconsistency . While at-

tributes indeed improve the baseline model (accuracy jumps

from 9.28% to 14.37%), they also improve adaptation. For

example, domain confusion increases accuracy by ∼ 5%
without attributes but this improvement jumps to ∼ 10%
with attributes.

We see similar gains with our method in the semi-

supervised adaptation setting. Training with a labeled sub-

set of GSV classes in addition to web images generally re-

duces performance on the held-out GSV classes; the model

overfits to the labeled GSV classes and becomes less gener-

alizable. While domain confusion and softlabel loss com-

bat this problem, we see the most significant improvement

when these methods are used in conjunction with attribute

level transfer: accuracy increases from 12.34% to 19.11%.

This confirms our intuition that using attribute labels helps

our classifier learn domain invariant features.

4.4. MultiTask Adaptation on the Office Dataset

While our attribute level adaptation approach is most

suitable in the fine-grained setting, we also tested its effi-

cacy on the office dataset [46] since there are no other fine-

grained adaptation datasets. The office dataset consists of

31 classes of objects found around the office (such as back-

packs, computers, desk lamps and scissors). For each of

these objects, images are available from 3 domains: Ama-

zon, WebCam and DSLR. While this dataset, introduced in

2010, is still the standard adaptation benchmark used today,

its size is much smaller than the car dataset used in our ex-

periments. For example, the WebCam domain consists of

785 images in total (across 31 classes).

Since the office dataset does not have attribute level an-

notations, we use class labels with varying degrees of gran-

ularity to evaluate our multi-Task adaptation approach. We

annotate each image with the class name of its parent’s,

grandparent’s and great grand parent’s node in the WordNet

hierarchy [40]. Thus, each image has 3 labels consisting of

3, 7 and 19 categories respectively in addition to its class

label. We use these additional labels in place of attributes

in our multi-task adaptation approach. Our source domain

is Amazon and the target is WebCam.

Tab. 4 and Tab. 5 show our results for the unsupervised

and semi-supervised scenarios respectively. Augmenting

both baselines with our multi-task adaptation approach im-

proves performance in the unsupervised as well as semi-

supervised settings. This shows that our multi-task ap-

proach is not simply limited to attributes, and can be used

in any scenario with a hierarchy of labels.

Nevertheless, our method’s performance gain on the of-

fice dataset is much less than on cars. While car attributes

are visually informative, WordNet labels might not be. For

example, bike and backpack both share the node “con-
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tainer” although their visual appearance is very different.

Our future work plans to explore additional methods for ob-

taining visually distinctive attribute labels.

4.5. Analysis

Our model results in a significant increase in perfor-

mance on most fine-grained categories. As shown in Fig. 7,

75% of held-out categories see a gain in accuracy over [49].

Similarly, in the unsupervised setting, our model improves

performance on 66% of the target classes. There is no

change in accuracy on 14% and 16% of classes while 10%
and 18% of classes see a performance drop in the two

regimes respectively.

While, as shown in Fig. 5, there is a maximum of 500
labeled target images per fine-grained class, Figs. 5(B), (C),

and (D) show that some attributes have as many as 12, 000
labeled images. Although we do not use any target images

with fine-grained labels for our 85 held out classes as train-

ing data, there are classes in the training data with shared

attributes as the test data. Thus, we expect our method

to improve accuracy on classes with many attribute labels.

Fig. 8 top shows example images for the top 3 classes with

an accuracy gain in the semi-supervised setting on the car

dataset. These classes have body type minivan, extended

cab and SUV: 3 out of the top 4 body types with the highest

number of labeled target training images.

Conversely, the class resulting in the highest accuracy

loss with our method is a crew cab: there are only 57 labeled

GSV images of crew cabs in our training set. Surprisingly,

2 out of the 3 classes with the highest accuracy loss are

sedans. Although sedans have the most number of labeled

GSV images in our training set (and thus expected to see an

accuracy gain), one of these 2 classes has 243 source train-

ing images. Fig. 10 plots relative accuracy gain (compared

to [49]) vs. the number of labeled source training examples

per class. Our approach results in higher accuracy gain on

classes with few labeled training data. We measure a corre-

lation of −0.29 between the number of labels per class and

the accuracy gain.

Finally, Fig. 9 shows example images in the GSV test

set and their corresponding nearest neighbors in the training

set in the unsupervised setting. For each example image,

we compute its feature activations using a baseline model

trained with [49], and our multi-task approach. We retrieve

images in the training set whose fc7 activations minimize

the ||L2|| distance to fc7 activations of the example image.

While our attribute based classifier retrieves images in the

same class as the target image, the baseline adapted model

returns a nearest neighbor in the wrong class.

5. Conclusion

We have presented a multi-task CNN architecture for

semi-supervised domain adaptation. Our pipeline leverages

Target Example Nearest Neighbor (Ours)Nearest Neighbor (DC)

Make: Toyota 

Model: Rav4 

Body Type: SUV 

Trims: base, sport 

Year: 2006-2008

Make: Honda 

Model: Civic 

Body Type: Sedan 

Trims: gx, hybrid 

Year: 2006-2008

Make: Toyota 

Model: Sienna 

Body Type: Minivan 

Trims: le,xle 

Year: 2006-2010

Make: Jeep 

Model: Liberty 

Body Type: SUV 

Trims: sport, limited 

Year: 2004-2005

Figure 9. Source training images nearest to example target images

according to [49] and our multi-task model. Nearest neighbors

are computed with ||L2|| distance in the feature activation space.

First column is the test example, second column shows results of

models trained with [49] to compute the feature activations, and

the last column shows results retrieved by our model.

Figure 10. The number of labeled images per class vs our relative

accuracy gain on the target held-out classes. We see an increase in

accuracy gain with decreasing labeled training data.

the fact that fine-grained classes share attributes which can

help transfer knowledge from classes seen in training to

those that are not. We evaluated our method on a subset of

a large-scale fine-grained dataset consisting of ∼ 1M im-

ages and 2, 657 car categories. The large number of labeled

images from multiple domains makes this dataset ideal for

adaptation studies. We also evaluated on the standard of-

fice dataset using additional labels from WordNet. In the

future, we plan to refine our methodology for incorporating

attributes in adaptation, and perform hierarchical adaptation

in settings where attribute labels are not available.
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