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PRS, which predict complex traits on the basis of genetic 
data, are of burgeoning interest to the clinical community, as 
researchers demonstrate their growing power to improve clini-

cal care, genetic studies of a wide range of phenotypes increase in 
size and power, and genotyping costs plummet to less than US$50. 
Many earlier criticisms of limited predictive power are now rec-
ognized to have been chiefly an issue of insufficient sample size, 
which is no longer the case for many outcomes1. For example, PRS 
alone already predict the risk of breast cancer, prostate cancer and 
type 1 diabetes in individuals of European descent more accurately 
than current clinical models2–4. Additionally, integrated models of 
PRS together with other lifestyle and clinical factors have enabled 
clinicians to more accurately quantify the risk of heart attack for 
patients; consequently, they have more effectively targeted the 
decrease in low-density-lipoprotein cholesterol, and by exten-
sion heart attack, by prescribing statins to patients at the greatest 
overall risk of cardiovascular disease5–9. Promisingly, the return of 
genetic risk of complex disease to at-risk patients does not sub-
stantially induce self-reported negative behavior or psychological 
function, and some potentially positive behavioral changes have 
been detected10. Although we share enthusiasm about the potential 
of PRS to improve health outcomes through their eventual routine 
implementation as clinical biomarkers, we consider the consistent 
observation that they currently have far greater predictive value in 
individuals of recent European descent than of other ancestries to 
be the major ethical and scientific challenge surrounding clinical 
translation and, at present, the most critical limitation to genetics in 
precision medicine. The scientific basis of this imbalance has been 
demonstrated theoretically, in simulations and empirically across 
many traits and diseases11–22.

All studies to date using well-powered genome-wide association 
studies (GWAS) to assess the predictive value of PRS across a range 
of traits and populations have made a consistent observation: PRS 
predict individual risk far more accurately in Europeans than non-
Europeans15,16,18–24. Rather than being attributable to chance or biol-
ogy, this consequence is predictable, given that the genetic discovery 
efforts to date heavily underrepresent non-European populations 
globally. The correlation between true and genetically predicted 
phenotypes decays with genetic divergence from the makeup of the 
discovery GWAS; therefore, the accuracy of polygenic scores in dif-
ferent populations is highly dependent on the representation of the 
study population in the largest existing ‘training’ GWAS. Here, we 
document study biases that underrepresent non-European popu-
lations in current GWAS and explain the fundamental concepts 
contributing to decreased phenotypic variance explained with 
increasing genetic divergence from populations included in GWAS.

Predictable basis of disparities in PRS accuracy
The poor generalizability of genetic studies across populations 
arises from the overwhelming abundance of European-descent 
studies and the dearth of well-powered studies in globally diverse 
populations25–28. According to the GWAS catalog, ~79% of all 
GWAS participants are of European descent despite making up only 
16% of the global population (Fig. 1). This imbalance is especially 
problematic, because previous studies have shown that studies on 
Hispanic/Latino individuals and African Americans contribute an 
outsized number of associations relative to studies of similar sizes 
in Europeans27. More concerningly, the fraction of non-European 
individuals in GWAS has stagnated or declined since late 2014 
(Fig. 1), thus suggesting the absence of a trajectory to correct this 
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imbalance. These numbers provide a composite metric of study 
availability, accessibility and use—cohorts that have been included 
in numerous GWAS are represented multiple times, and cohorts of 
European descent may be disproportionately included. However, 
whereas the average sample sizes of GWAS in Europeans continue 
to grow, those for other populations have stagnated and remain sev-
eral fold smaller (Supplementary Fig. 1).

The relative sample compositions of GWAS result in highly pre-
dictable disparities in prediction accuracy; population genetics the-
ory predicts that the accuracy of genetic-risk prediction will decay 
with increasing genetic divergence between the original GWAS 
sample and the target of prediction, a function of population his-
tory13,14. This pattern can be attributed to several statistical obser-
vations: (i) GWAS favor the discovery of genetic variants that are 
common in the study population; (ii) linkage disequilibrium (LD) 
differentiates marginal effect-size estimates for polygenic traits 
across populations, even when the causal variants are the same; and 
(iii) the environment and demography differ across populations. 
Notably, the first two phenomena substantially degrade prediction 
performance across populations even in the absence of biological, 
environmental or diagnostic differences, whereas the environment 
and demography may together drive differential forces of natural 
selection that in turn drive differences in causal genetic architec-
ture. (We define the causal genetic architecture as the true effects 
of variants that affect a phenotype that would be identified in a 
population of infinite sample size. Unlike effect-size estimates, true 
effects are typically modeled as invariant with respect to LD and 
allele frequency differences across populations.)

Common variant discoveries and low-hanging fruit. First, the 
power to discover an association in a genetic study depends on the 
effect size and the frequency of the variant29. As a result of this depen-
dence, the most significant associations tend to be more common in 
the populations in which they are discovered than elsewhere13,30. For 
example, GWAS-catalog variants are more common on average in 
European populations than in East Asian and African populations 
(Fig. 2b), an observation not representative of genomic variants at 
large. Understudied populations offer low-hanging fruit for genetic 
discovery, because variants that are common in these groups but 
rare or absent in European populations could not be discovered 
with even very large European sample sizes. Some examples include 
SLC16A11 and HNF1A associations with type 2 diabetes in Latino 
populations, as well as APOL1 associations with end-stage kidney 
disease and associations with prostate cancer in African-descent  

populations31–34. If causal genetic variants are assumed to have 
an equal effect across all populations—an assumption with some 
empirical support that offers the best-case scenario for transferabil-
ity35–40—Eurocentric GWAS biases would result in risk-associated 
variants being disproportionately common in European popula-
tions, and consequently accounting for a larger fraction of the 
phenotypic variance therein13. Furthermore, imputation reference 
panels share the same study biases as in GWAS41, thus creating chal-
lenges for imputing sites that are rare in European populations but 
common elsewhere when the catalog of non-European haplotypes 
is substantially smaller. These issues are insurmountable through 
statistical methods alone13, but they motivate substantial invest-
ments in more diverse populations to produce similar-sized GWAS 
of biomedical phenotypes in other populations.

Linkage disequilibrium. Second, LD, the correlation structure of 
the genome, varies across populations, owing to demographic his-
tory (Fig. 2a,c–e). These LD differences in turn drive differences in 
effect-size estimates (that is, predictors) from GWAS across popula-
tions in proportion to LD between tagging and causal SNP pairs, 
even when causal effects are the same35,37–40 (Supplementary Note). 
Differences in effect-size estimates due to LD differences may typi-
cally be small for most regions of the genome (Fig. 2c–e), but PRS 
sum across these effects, also aggregating these population differ-
ences. Although causal effects would ideally be used rather than 
correlated effect-size estimates to calculate PRS, fine-mapping most 
variants to a single locus to solve issues of low generalizability may 
not be feasible, even with very large GWAS. This infeasibility is 
because complex traits are highly polygenic, and consequently most 
of the predictive power comes from small effects that do not meet 
genome-wide significance and/or cannot be fine-mapped, even in 
many of the best-powered GWAS to date42.

Complexities of history, selection and the environment. Finally, 
other cohort considerations may further worsen prediction-accu-
racy differences across populations in less predictable ways. GWAS 
ancestry biases and LD differences across populations are extremely 
challenging to address, but these issues actually make many favor-
able assumptions that all causal loci have the same effect and are 
under equivalent selective pressure in all populations. In contrast, 
other effects on polygenic adaptation or risk scores, such as long-
standing environmental differences across global populations 
that have resulted in differing responses of natural selection, can 
affect populations differently, depending on their unique histories. 
Additionally, residual uncorrected population stratification may 
affect risk-prediction accuracy across populations, but the magni-
tude of its effect is currently unclear. These effects are particularly 
challenging to disentangle, as has clearly been demonstrated for 
height, for which evidence of polygenic adaptation and/or its rela-
tive magnitude is under question43,44. Comparisons of geographi-
cally stratified phenotypes, such as height, across populations with 
highly divergent genetic backgrounds make environmental differ-
ences, such as differences in resource abundance during develop-
ment across continents, especially prone to confounding from 
correlated environmental and genetic divergence43,44. This residual 
stratification can lead to over-predicted differences across geo-
graphical space45.

Regarding stratification, most PRS methods do not explicitly 
address recent admixture, and none consider recently admixed 
individuals’ unique local mosaics of ancestry; thus, further meth-
odological development is needed. Additionally, comparing PRS 
across environmentally stratified cohorts, such as in some bio-
banks with healthy-volunteer effects versus disease-study datasets 
or hospital-based cohorts, requires careful consideration of techni-
cal differences, collider bias and variability in baseline health sta-
tus among studies. Differences in definitions of clinical phenotypes 
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Fig. 1 | Ancestry of GWAS participants over time, as compared with the 
global population. Cumulative data, as reported by the GWAS catalog76. 
Individuals whose ancestry is ‘not reported’ are not shown.
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and heterogeneity of sub-phenotypes among countries must also be 
considered.

Differences in environmental exposure, gene–gene interactions, 
gene–environment interactions, historical population-size dynam-
ics, statistical noise, some potential causal effect differences and/or 
other factors further limit the generalizability of PRS in an unpre-
dictable, trait-specific fashion46–49. Complex traits do not behave in 
a genetically deterministic manner: some environmental factors 
dwarf individual genetic effects, thus creating outsized issues of 
comparability across globally diverse populations. Among psychi-
atric disorders, for example, schizophrenia has a nearly identical 
genetic basis across East Asians and Europeans (rg = 0.98) (ref. 40),  
whereas the substantially different rates of alcohol-use disorder 
across populations are partially explained by differences in avail-
ability and genetic differences affecting alcohol metabolism50. 
Although nonlinear genetic factors explain little variation in com-
plex traits beyond a purely additive model51, some unrecognized 
nonlinearities and gene–gene interactions can also induce chal-
lenges to genetic-risk prediction, because pairwise interactions 
are likely to vary more across populations than individual SNPs. 
Mathematically, this scenario can simplistically be considered in 
terms of a two-SNP model, in which the sum of two SNP effects 
is likely to explain more phenotypic variance than the product of 
the same SNPs. Some machine-learning approaches may thus mod-
estly improve PRS accuracy beyond current approaches for some 
phenotypes52, but improvement is most likely for atypical traits with 
simpler architectures, known interactions and poor prediction gen-
eralizability across populations, such as skin pigmentation53.

Limited generalizability of PRS across diverse populations
To date, multi-ancestral work has been slow in most disease areas54, 
thus limiting even the opportunity to assess PRS in non-European 
cohorts. Nonetheless, some previous work has assessed prediction 
accuracy across diverse populations in several traits and diseases 
for which GWAS summary statistics are available and has identified 

large disparities across populations (Supplementary Note). These 
disparities are not simply methodological issues, because various 
approaches (for example, pruning and thresholding versus LDPred) 
and accuracy metrics (R2 for quantitative traits and various pseudo-
R2 metrics for binary traits) illustrate this consistently poorer per-
formance in populations distinct from discovery samples across a 
range of polygenic traits (Supplementary Table 1). These assess-
ments are becoming increasingly feasible with the growth and pub-
lic availability of global biobanks as well as diversifying priorities 
from funding agencies55,56. We assessed how prediction accuracy 
decayed across globally diverse populations for 17 anthropometric 
and blood-panel traits in the UK Biobank (UKBB) when European-
derived summary statistics were used (Supplementary Note). In 
agreement with findings from previous studies, we found that the 
genetic prediction accuracy was far lower for other populations 
than for European populations: 1.6-fold lower in Hispanic/Latino 
Americans, 1.6-fold lower in South Asians, 2.0-fold lower in East 
Asians and 4.5-fold lower in Africans, on average (Fig. 3).

Prioritizing diversity shows early promise for PRS
Early diversifying GWAS efforts have been especially productive 
in addressing questions surrounding risk prediction. Rather than 
varying the prediction target dataset, some GWAS in diverse popu-
lations have increased the scale of non-European summary statistics 
and also varied the study dataset in multi-ancestral PRS studies23,24,40. 
These studies have shown that even when non-European cohorts 
are only a fraction of the size of the largest European study, they are 
likely to have disproportionate value for predicting polygenic traits 
in other individuals of similar ancestry.

Given this background, we performed a systematic evaluation 
of polygenic prediction accuracy across 17 quantitative anthropo-
metric and blood-panel traits and five disease endpoints in British 
and Japanese individuals23,57,58 by performing GWAS with the exact 
same sample sizes in each population. We symmetrically demon-
strate that prediction accuracy is consistently higher with GWAS 
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summary statistics from ancestry-matched summary statistics  
(Fig. 4 and Supplementary Figs. 2–6). Keeping in mind the issues of 
comparability described above, we note that BioBank Japan (BBJ) 
is a hospital-based disease-ascertained cohort, whereas UKBB is a 
healthier-than-average59 population-based cohort; thus, differences 
in the observed heritability among these cohorts (rather than among 
populations) due to differences in phenotype precision are likely to 
explain the lower prediction accuracy from the BBJ GWAS summary 
statistics for anthropometric and blood-panel traits but the higher 
prediction accuracy for five ascertained diseases (Supplementary 
Table 2). Indeed, other East Asian studies have estimated higher 
heritability for some quantitative traits than BBJ by using the same 
methods, such as for height (h2 = 0.48 ± 0.04 in Chinese women60). 
Some statistical fluctuations in the relative differences in prediction 
accuracy across populations are likely to be driven by differences 
in heritability measured in each population and/or trans-ances-
tral genetic correlation (that is, of common variant effect sizes at 
SNPs common in two populations, Supplementary Figs. 7–10 and 
Supplementary Tables 2–5). These trans-ancestral correlation esti-
mates indicated that the effect sizes were mostly highly correlated 
across ancestries, and values for a few traits were somewhat lower 
than excepted (for example, height and body-mass index, with ρge = 
0.69 and 0.75, respectively). The prediction accuracy was far lower 
in individuals of African descent in the UKBB (Supplementary 
Figs. 4 and 11) when GWAS summary statistics from individuals of 
either European or Japanese ancestry were used, in agreement with 
decreased prediction accuracy with increasing genetic divergence 
(Figs. 3 and 4). These population studies demonstrate the power 
and utility of increasingly diverse GWAS for prediction, especially 
in populations of non-European descent.

Although many other traits and diseases have been studied in 
multi-ancestral settings, few studies have reported comparable 
metrics of prediction accuracy across populations. Cardiovascular 
research, for example, has led the charge toward clinical translation 
of PRS1. This enthusiasm has been driven by observations that a 
polygenic burden of coronary artery disease–increasing SNPs can 
confer monogenic-equivalent risk of cardiovascular disease, and 
PRS improve clinical models for risk assessment and statin pre-
scription that can decrease coronary heart disease and improve the 

efficiency of healthcare delivery5–7. However, many of these studies 
were conducted exclusively in European-descent populations, and 
few studies have rigorously evaluated population-level applicabil-
ity to non-Europeans. Those existing findings indeed demonstrate 
a large decrease in predictive utility in non-European populations11, 
though often with comparisons of odds ratios among arbitrary 
breakpoints in the risk distribution that make comparisons across 
studies challenging. To better clarify how polygenic prediction 
might be deployed in a clinical setting with diverse populations, 
more systematic and thorough evaluations of the utility of PRS 
within and across populations for many complex traits are still 
needed. These evaluations would benefit from rigorous evaluation 
of polygenic prediction accuracy, especially for diverse non-Euro-
pean patients61–63.

Clinical use of PRS may uniquely exacerbate disparities
Our impetus for raising these statistical issues limiting the gener-
alizability of PRS across populations stems from our concerns that, 
although they are legitimately clinically promising for improving 
health outcomes for many biomedical phenotypes, they may have 
a larger potential to raise health disparities than other clinical fac-
tors for several reasons. Because they provide opportunities for 
improving health outcomes, they inevitably will and should be pur-
sued in the near term, but we caution that a concerted prioritiza-
tion to make GWAS summary statistics easily accessible for diverse 
populations and a variety of traits and diseases is imperative, even 
when they are a fraction of the size of the largest existing European 
datasets. Individual clinical tests, biomarkers and prescription-drug 
efficacy may vary across populations in their utility but be funda-
mentally informed by the same underlying biology64,65. Currently, 
guidelines state that as few as 120 individuals may be used to define 
reference intervals for clinical factors (though often smaller num-
bers from only one subpopulation are used), and there is no clear 
definition of who is ‘normal’64. Consequently, reference intervals for 
biomarkers can sometimes deviate considerably by reported ances-
try66–68. Defining ancestry-specific reference intervals is clearly an 
important problem that can provide fundamental interpretability 
gains with implications for some major health benefits (for example, 
the need for dialysis and the development of type 2 diabetes on the 
basis of ancestry-specific serum creatinine and hemoglobin A1C 
reference intervals, respectively)67. Therefore, some biomarkers or 
clinical tests scale directly with health outcomes independently of 
ancestry, and many others may have distributional differences by 
ancestry but be equally valid after centering with respect to a readily 
collected population reference.

In contrast, PRS are uniformly less useful in understudied popu-
lations, owing to differences in genomic variation and population 
history13,14. No analogous solution of defining ancestry-specific ref-
erence intervals would ameliorate the health-disparity implications 
for PRS or fundamentally aid in interpretability in non-European 
populations. Instead, as we and others have demonstrated, PRS are 
unique in that even with multi-ancestral population references, 
these scores are fundamentally less informative in populations more 
diverged from the GWAS study cohorts.

The clinical use and deployment of genetic-risk scores must 
be informed by the issues surrounding tests that currently would 
unequivocally provide much greater benefit to the subset of the 
world’s population that is already on the favored end of health dis-
parities. In contrast, predictions for African-descent populations, 
which already endure many of the largest health disparities globally, 
are often marginally better, if at all, than at random (Fig. 4f). This 
population is therefore least likely to benefit from improvements in 
precision healthcare delivery from PRS with existing data, owing to 
human population history and study biases. This phenomenon is a 
major concern globally and especially in the United States, which 
already leads other middle- and high-income countries in both real 
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and perceived health disparities69,70. Thus, we strongly urge that any 
discourse on clinical use of PRS include a careful, quantitative assess-
ment of potential unintentionally introduced effects of economic 
and health disparities on underrepresented populations, and that 
awareness be raised regarding how to eliminate these disparities.

How do we even the ledger?
What can be done? The single most important step toward parity 
in PRS accuracy is vastly increasing the diversity of participants 
included and analyzed in genetic studies, which would improve 
utility for all groups, most rapidly for underrepresented groups. 
Regulatory protections against genetic discrimination are necessary 
to accompany calls for more diverse studies; although some already 
exist in the United States, including for health insurance and employ-
ment opportunities via the Genetic Information Nondiscrimination 
Act, stronger protections in these and other areas globally will be 
particularly important for minorities and/or marginalized groups. 
An equal investment in GWAS across all major ancestries and 

global populations is the most obvious solution to generate a sub-
strate for equally informative risk scores but is not likely to occur 
any time soon without a dramatic priority shift, given the current 
imbalance and stalled diversifying progress over the past five years 
(Fig. 1 and Supplementary Fig. 1). Although acquiring sufficiently 
large sample sizes for PRS to be equally informative in all popula-
tions may be challenging or in some cases infeasible, some much-
needed efforts toward increasing diversity in genomics that support 
open sharing of GWAS summary data from multiple ancestries 
are underway. Examples include the All of Us Research Program, 
the Population Architecture using Genomics and Epidemiology 
(PAGE) Consortium and some disease-focused consortia, such as 
the T2D-GENES and Stanley Global initiatives on the genetics of 
type 2 diabetes and psychiatric disorders. Supporting data resources 
such as imputation panels, multi-ancestral genotyping arrays, gene 
expression datasets from genetically diverse individuals and other 
tools are necessary to similarly empower these diverse studies  
for all populations. The lack of supporting resources for diverse 
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pressure; WBC, white blood cell count. Each point shows the maximum R2 (that is, the best predictor) across five P-value thresholds, and lines correspond 
to 95% confidence intervals calculated via bootstrap. R2 values for all P-value thresholds tested are shown in Supplementary Figs. 2–6. Prediction accuracy 
tends to be higher in the UKBB for quantitative traits than in BBJ and vice versa for disease endpoints, probably because of concomitant phenotype 
precision and consequently observed heritability for these classes of traits (Supplementary Tables 2–4). Thalassemia and sickle cell disease are unlikely to 
explain a substantial fraction of the prediction accuracy differences for blood panels across populations, because few individuals have been diagnosed with 
these disorders via ICD-10 codes (that is, codes from the tenth revision of the International Statistical Classification of Diseases) (Supplementary Table 9).
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ancestries creates financial challenges for association studies with 
limited resources, thus, for example, raising questions about whether 
to genotype samples on GWAS arrays that may favor European 
allele frequencies versus sequence samples, and how dense an array 
to choose or how deeply to sequence71,72.

Additional leading global efforts also provide easy unified 
access linking genetic, clinical-record and national-registry data 
in more homogeneous continental ancestries, such as the UKBB, 
BBJ, China Kadoorie Biobank and Nordic efforts (for example, in 
Danish, Estonian, Finnish and other integrated biobanks). Notably, 
some of these biobanks such as UKBB have participants with con-
siderable global genetic diversity that enables multi-ancestral com-
parisons; although minorities from this cohort provide the largest 
deeply phenotyped GWAS cohorts for several ancestries, these 
individuals are often excluded in current statistical analyses in favor 
of the simplicity afforded by analyzing only the largest genetically 
homogeneous European-ancestry data. These considerations not-
withstanding, there are critical needs and challenges for expanding 
the scale of genetic studies of heritable traits in diverse populations; 
these challenges are especially apparent in Africa, where humans 
originated and have retained the most genetic diversity, because 
Africans are understudied but disproportionately informative for 
genetic analyses and evolutionary history27,73. The most notable 
investment here comes from the Human Heredity and Health in 
Africa (H3Africa) Initiative, increasing genomics research capacity 
in Africa through more than US$216 million in funding from the 
US National Institutes of Health and the Wellcome Trust (United 
Kingdom) for genetic research led by African investigators55,74. The 
increasing interest and scale of genetic studies in low- and middle-
income countries (LMICs) raises ethical and logistical consider-
ations about data generation, access, sharing, security and analysis, 
as well as clinical implementation, to ensure that these advances 
do not benefit only high-income countries. Frameworks such as 
the H3ABioNet, a pan-African bioinformatics network designed 
to build capacity to enable H3Africa researchers to analyze their 
data in Africa, provide cost-effective examples for training local 
scientists in LMICs75.

The prerequisite data for dramatically increasing diversity also 
exist in several large-scale publicly funded datasets such as the 
Million Veterans Project and Trans-Omics for Precision Medicine 
(TOPMed), but with problematic data access issues in which even 
GWAS summary data within and across populations are not pub-
licly shared. Existing GWAS consortia also must carefully consider 
the granularity of the summary statistics that they release, because 
finer-scale continental ancestries and phenotypes in large multi-
ancestral projects enable ancestry-matched analyses that are not 
possible with a single set of summary statistics. Although an under-
standable patient-privacy balance must be struck when sharing 
individual-level data, GWAS summary statistics from all publicly 
funded and as many privately funded projects as possible should 
be made easily and publicly accessible to improve global health out-
comes. Efforts to unify the phenotype definitions, normalization 
approaches and GWAS methods among studies will also improve 
comparability.

To enable progress toward parity, open data-sharing standards 
must critically be adopted for all ancestries and for genetic stud-
ies of all sample sizes, not just the largest European results. Locally 
appropriate and secure genetic-data-sharing techniques as well as 
equitable technology availability must be adopted widely in South 
America, Asia and Africa, as they are in Europe and North America, 
to ensure the achievement of maximum value from the existing and 
ongoing efforts being developed to help counter the current imbal-
ance. Simultaneously, ethical considerations require that research 
capacity be increased in LMICs with simultaneous growth of 
diverse population studies to balance the benefits of these studies 
to scientists and patients globally versus locally, thereby ensuring 

that everyone benefits. Methodological improvements to PRS by 
appropriately accounting for population allele frequency, LD and/or 
admixture differences are underway and may help considerably but 
will not by themselves bring equality. All these efforts are important  
and should be prioritized not just for risk prediction but more gen-
erally to maximize the use and applicability of genetics to provide 
information on the biology of disease. Given the acute recent atten-
tion paid to clinical use of PRS, we believe that it is paramount to 
recognize their potential to improve health outcomes for all indi-
viduals and many complex diseases. Simultaneously, the field must 
address the disparity in utility in an ethically thoughtful and sci-
entifically rigorous fashion, lest genetic technologies inadvertently 
contribute to, rather than decrease, existing health disparities.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.

Received: 11 October 2018; Accepted: 7 February 2019;  
Published online: 29 March 2019

References
	1.	 Knowles, J. W. & Ashley, E. A. Cardiovascular disease: the rise of the genetic 

risk score. PLoS Med. 15, e1002546–e1002547 (2018).
	2.	 Maas, P. et al. Breast cancer risk from modifiable and nonmodifiable risk 

factors among white women in the United States. JAMA Oncol. 2, 
1295–1302 (2016).

	3.	 Schumacher, F. R. et al. Association analyses of more than 140,000 men 
identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50,  
928–936 (2018).

	4.	 Sharp, S. A. et al. Development and standardization of an improved type 1 
diabetes genetic risk score for use in newborn screening and incident 
diagnosis. Diabetes Care 42, 200–207 (2019).

	5.	 Khera, A. V. et al. Genome-wide polygenic scores for common diseases 
identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 
50, 1219–1224 (2018).

	6.	 Kullo, I. J. et al. Incorporating a genetic risk score into coronary heart disease 
risk estimates: effect on low-density lipoprotein cholesterol levels (the 
MI-GENES Clinical Trial). Circulation 133, 1181–1188 (2016).

	7.	 Natarajan, P. et al. Polygenic risk score identifies subgroup with higher 
burden of atherosclerosis and greater relative benefit from statin therapy in 
the primary prevention setting. Circulation 135, 2091–2101 (2017).

	8.	 Paquette, M. et al. Polygenic risk score predicts prevalence of cardiovascular 
disease in patients with familial hypercholesterolemia. J. Clin. Lipidol. 11, 
725–732.e5 (2017).

	9.	 Tikkanen, E., Havulinna, A. S., Palotie, A., Salomaa, V. & Ripatti, S. Genetic 
risk prediction and a 2-stage risk screening strategy for coronary heart 
disease. Arterioscler. Thromb. Vasc. Biol. 33, 2261–2266 (2013).

	10.	Frieser, M. J., Wilson, S. & Vrieze, S. Behavioral impact of return of genetic 
test results for complex disease: systematic review and meta-analysis. Health 
Psychol. 37, 1134–1144 (2018).

	11.	Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary 
disease. N. Engl. J. Med. 375, 2349–2358 (2016).

	12.	Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, 
biology and clinical translation. Nat. Rev. Genet. 18, 331–344 (2017).

	13.	Martin, A. R. et al. Human demographic history impacts genetic risk 
prediction across diverse populations. Am. J. Hum. Genet. 100,  
635–649 (2017).

	14.	Scutari, M., Mackay, I. & Balding, D. Using genetic distance to infer the 
accuracy of genomic prediction. PLoS Genet. 12, e1006288 (2016).

	15.	Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy 
of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).

	16.	Ware, E. B. et al. Heterogeneity in polygenic scores for common human traits. 
Preprint at https://www.biorxiv.org/content/10.1101/106062v1 (2017).

	17.	Curtis, D. Polygenic risk score for schizophrenia is more strongly associated 
with ancestry than with schizophrenia. Psychiatr. Genet. 28, 85–89 (2018).

	18.	Schizophrenia Working Group of the Psychiatric Genomics Consortium. 
Biological insights from 108 schizophrenia-associated genetic loci. Nature 
511, 421–427 (2014).

	19.	Belsky, D. W. et al. Development and evaluation of a genetic risk score for 
obesity. Biodemography Soc. Biol. 59, 85–100 (2013).

	20.	Domingue, B. W., Belsky, D., Conley, D., Harris, K. M. & Boardman, J. D. 
Polygenic influence on educational attainment: new evidence from The 
National Longitudinal Study of Adolescent to Adult Health. AERA Open 1, 
1–13 (2015).

Nature Genetics | VOL 51 | APRIL 2019 | 584–591 | www.nature.com/naturegenetics 589

https://www.biorxiv.org/content/10.1101/106062v1
http://www.nature.com/naturegenetics


Perspective NaTuRE GEnETicS

	21.	Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide 
association study of educational attainment in 1.1 million individuals. Nat. 
Genet. 50, 1112–1121 (2018).

	22.	Vassos, E. et al. An examination of polygenic score risk prediction in 
individuals with first-episode psychosis. Biol. Psychiatry 81, 470–477 (2017).

	23.	Akiyama, M. et al. Genome-wide association study identifies 112 new  
loci for body mass index in the Japanese population. Nat. Genet. 49, 
1458–1467 (2017).

	24.	Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility 
loci for schizophrenia. Nat. Genet. 49, 1576–1583 (2017).

	25.	Need, A. C. & Goldstein, D. B. Next generation disparities in human 
genomics: concerns and remedies. Trends Genet. 25, 489–494 (2009).

	26.	Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 
161–164 (2016).

	27.	Morales, J. et al. A standardized framework for representation of ancestry 
data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. 
Genome Biol. 19, 21 (2018).

	28.	Rosenberg, N. A. et al. Genome-wide association studies in diverse 
populations. Nat. Rev. Genet. 11, 356–366 (2010).

	29.	Sham, P. C., Cherny, S. S., Purcell, S. & Hewitt, J. K. Power of linkage versus 
association analysis of quantitative traits, by use of variance-components 
models, for sibship data. Am. J. Hum. Genet. 66, 1616–1630 (2000).

	30.	1000 Genomes Project Consortium. et al. A global reference for human 
genetic variation. Nature 526, 68–74 (2015).

	31.	Williams, A. L. et al. Sequence variants in SLC16A11 are a common risk 
factor for type 2 diabetes in Mexico. Nature 506, 97–101 (2014).

	32.	Estrada, K. et al. Association of a low-frequency variant in HNF1A with type 
2 diabetes in a Latino population. JAMA 311, 2305–2314 (2014).

	33.	Haiman, C. A. et al. Genome-wide association study of prostate cancer in 
men of African ancestry identifies a susceptibility locus at 17q21. Nat. Genet. 
43, 570–573 (2011).

	34.	Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney 
disease in African Americans. Science 329, 841–845 (2010).

	35.	Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for 
inflammatory bowel disease and highlight shared genetic risk across 
populations. Nat. Genet. 47, 979–986 (2015).

	36.	Carlson, C. S. et al. Generalization and dilution of association results from 
European GWAS in populations of non-European ancestry: the PAGE study. 
PLoS Biol. 11, e1001661 (2013).

	37.	Easton, D. F. et al. Genome-wide association study identifies novel breast 
cancer susceptibility loci. Nature 447, 1087–1093 (2007).

	38.	DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. 
et al. Genome-wide trans-ancestry meta-analysis provides insight into the 
genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46,  
234–244 (2014).

	39.	Waters, K. M. et al. Consistent association of type 2 diabetes risk variants 
found in europeans in diverse racial and ethnic groups. PLoS Genet. 6, 
e1001078–e1001079 (2010).

	40.	Lam, M. et al. Comparative genetic architectures of schizophrenia in East 
Asian and European populations. Preprint at https://www.biorxiv.org/
content/10.1101/445874v2 (2018).

	41.	McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype 
imputation. Nat. Genet. 48, 1279–1283 (2016).

	42.	Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-
variant resolution. Nature 547, 173–178 (2017).

	43.	Sohail, M. et al. Signals of polygenic adaptation on height have been 
overestimated due to uncorrected population structure in genome-wide 
association studies. Preprint at https://www.biorxiv.org/
content/10.1101/355057v3 (2018).

	44.	Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK 
Biobank. Preprint at https://www.biorxiv.org/content/10.1101/354951v4 (2018).

	45.	Kerminen, S. et al. Geographic variation and bias in polygenic scores of 
complex diseases and traits in Finland. Preprint at https://www.biorxiv.org/
content/10.1101/485441v1 (2018).

	46.	Novembre, J. & Barton, N. H. Tread lightly interpreting polygenic tests of 
selection. Genetics 208, 1351–1355 (2018).

	47.	Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. 
Estimating the mutation load in human genomes. Nat. Rev. Genet. 16, 
333–343 (2015).

	48.	Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes 
Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation 
estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

	49.	Galinsky, K. J. et al. Estimating cross-population genetic correlations of causal 
effect sizes. Genet. Epidemiol. 43, 180–188 (2019).

	50.	Li, D., Zhao, H. & Gelernter, J. Strong protective effect of the aldehyde 
dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism  
and alcohol-induced medical diseases in Asians. Hum. Genet. 131, 
725–737 (2012).

	51.	Zhu, Z. et al. Dominance genetic variation contributes little to the  
missing heritability for human complex traits. Am. J. Hum. Genet. 96, 
377–385 (2015).

	52.	Paré, G., Mao, S. & Deng, W. Q. A machine-learning heuristic to improve 
gene score prediction of polygenic traits. Sci. Rep. 7, 12665 (2017).

	53.	Martin, A. R. et al. An unexpectedly complex architecture for skin 
pigmentation in Africans. Cell 171, 1340–1353.e14 (2017).

	54.	Duncan, L. E. et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap 
with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 
666–673 (2018).

	55.	H3Africa Consortium. et al. Enabling the genomic revolution in Africa. 
Science 344, 1346–1348 (2014).

	56.	Hindorff, L. A. et al. Prioritizing diversity in human genomics research.  
Nat. Rev. Genet. 19, 175–185 (2018).

	57.	Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese 
population links cell types to complex human diseases. Nat. Genet. 50, 
390–400 (2018).

	58.	Howrigan, D. Details and Considerations of the UK Biobank GWAS.  
http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-
biobank-gwas (accessed 9 November 2017)

	59.	Fry, A. et al. Comparison of sociodemographic and health-related 
characteristics of UK Biobank participants with those of the general 
population. Am. J. Epidemiol. 186, 1026–1034 (2017).

	60.	Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal 
genetic associations, patterns of viral infections, and Chinese population 
history. Cell 175, 347–359.e14 (2018).

	61.	Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. 
Genet. 14, 507–515 (2013).

	62.	Wray, N. R. et al. Research review: polygenic methods and their application 
to psychiatric traits. J. Child Psychol. Psychiatry 55, 1068–1087 (2014).

	63.	Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical 
utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

	64.	Manrai, A. K., Patel, C. J. & Ioannidis, J. P. A. In the era of precision 
medicine and big data, who is normal? JAMA 319, 1981–1982 (2018).

	65.	Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets 
through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

	66.	Carroll, M. D., Kit, B. K., Lacher, D. A., Shero, S. T. & Mussolino, M. E. 
Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA 308, 
1545–1554 (2012).

	67.	Rappoport, N. et al. Comparing ethnicity-specific reference intervals  
for clinical laboratory tests from EHR data. J. Appl. Lab. Med. 3,  
366–377 (2018).

	68.	Lim, E., Miyamura, J. & Chen, J. J. Racial/ethnic-specific reference intervals 
for common laboratory tests: a comparison among Asians, Blacks, Hispanics, 
and White. Hawaii J. Med. Public Health 74, 302–310 (2015).

	69.	Hero, J. O., Zaslavsky, A. M. & Blendon, R. J. The United States leads other 
nations in differences by income in perceptions of health and health care. 
Health Aff. (Millwood) 36, 1032–1040 (2017).

	70.	Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations 
among race, socioeconomic status, and health: Patterns and prospects. Health 
Psychol. 35, 407–411 (2016).

	71.	Gilly, A. et al. Very low depth whole genome sequencing in complex trait 
association studies. Bioinformatics https://doi.org/10.1093/bioinformatics/
bty1032 (2018).

	72.	Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation 
increases power for genome-wide association studies. Nat. Genet. 44,  
631–635 (2012).

	73.	Martin, A. R., Teferra, S., Möller, M., Hoal, E. G. & Daly, M. J. The critical 
needs and challenges for genetic architecture studies in Africa. Curr. Opin. 
Genet. Dev. 53, 113–120 (2018).

	74.	Coles, E. & Mensah, G. A. Geography of genetics and genomics research 
funding in Africa. Glob. Heart 12, 173–176 (2017).

	75.	Mulder, N. J. et al. Development of bioinformatics infrastructure for 
genomics research. Glob. Heart 12, 91–98 (2017).

	76.	MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome- 
wide association studies (GWAS Catalog). Nucleic Acids Res. 45,  
D896–D901 (2017).

Acknowledgements
We thank A. Khera for helpful discussions. We also thank M. Kubo, Y. Murakami,  
M. Akiyama and K. Ishigaki for their support in the BBJ Project analysis. We are grateful 
to S. Gazal for help in calculating LD scores. This work was supported by funding from 
the National Institutes of Health (K99MH117229 to A.R.M.). UKBB analyses were 
conducted via application 31063. The BBJ Project was supported by the Tailor-Made 
Medical Treatment Program of the Ministry of Education, Culture, Sports, Science,  
and Technology (MEXT) and the Japan Agency for Medical Research and  
Development (AMED). M.K. was supported by a Nakajima Foundation Fellowship  
and the Masason Foundation.

Nature Genetics | VOL 51 | APRIL 2019 | 584–591 | www.nature.com/naturegenetics590

https://www.biorxiv.org/content/10.1101/445874v2
https://www.biorxiv.org/content/10.1101/445874v2
https://www.biorxiv.org/content/10.1101/355057v3
https://www.biorxiv.org/content/10.1101/355057v3
https://www.biorxiv.org/content/10.1101/354951v4
https://www.biorxiv.org/content/10.1101/485441v1
https://www.biorxiv.org/content/10.1101/485441v1
http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas
http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas
https://doi.org/10.1093/bioinformatics/bty1032
https://doi.org/10.1093/bioinformatics/bty1032
http://www.nature.com/naturegenetics


PerspectiveNaTuRE GEnETicS

Author contributions
A.R.M. and M.J.D. conceived and designed the experiments. A.R.M. and M.K. 
performed statistical analysis. A.R.M. and M.K. analyzed the data. A.R.M., M.K., Y.K., 
Y.O., B.M.N. and M.J.D. contributed reagents/materials/analysis tools. A.R.M., M.K., 
B.M.N. and M.J.D. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-019-0379-x.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence should be addressed to A.R.M.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

Nature Genetics | VOL 51 | APRIL 2019 | 584–591 | www.nature.com/naturegenetics 591

https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1038/s41588-019-0379-x
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Alicia R. Martin

Last updated by author(s): Jan 21, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection N/A

Data analysis All code used to perform analyses are accessible at the following site: https://github.com/armartin/prs_disparities. Hail software (https://
hail.is/) was used to perform GWAS analyses (v0.1) and compute polygenic risk scores (v0.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

UK Biobank analyses were conducted via application 31063. BBJ GWAS summary statistics are publicly available at our website (http://jenger.riken.jp/en/) and the 
National Bioscience Database Center (NBDC) Human Database (Research ID: hum0014). Genotype data from the BBJ subjects was deposited at the NBDC Human 
Database (Research ID: hum0014).



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our sample sizes were determined by the availability of UK Biobank and BioBank Japan data. GWAS for each of 17 phenotypes were selected 
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Population characteristics UK Biobank recruited ~500,000 people aged between 40-69 years in 2006-2010 from across the country to take part in this 
project. BioBank Japan recruited ~200,000 patients of any of 47 target diseases between fiscal years of 2003 and 2007 from 66 
cooperating hospitals across Japan. In our analysis, we separately included the individuals of European (for UKBB) or Japanese 
(for BBJ) descent that were not genetic outliers and passed the quality control tests as described previously. For each of the 17 
studied quantitative traits, GWAS was separately conducted using the subjects whose phenotype of the trait was available.
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influence or control on recruitment.
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