
When Technology Became Language: The Origins of the Linguistic Conception of
Computer Programming, 1950–1960

Author(s): DAVID NOFRE, MARK PRIESTLEY and GERARD ALBERTS

Source: Technology and Culture , January 2014, Vol. 55, No. 1 (January 2014), pp. 40-75

Published by: The Johns Hopkins University Press and the Society for the History of
Technology

Stable URL: https://www.jstor.org/stable/24468397

REFERENCES
Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/24468397?seq=1&cid=pdf-
reference#references_tab_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

The Johns Hopkins University Press and Society for the History of Technology are
collaborating with JSTOR to digitize, preserve and extend access to Technology and Culture

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/24468397
https://www.jstor.org/stable/24468397?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/24468397?seq=1&cid=pdf-reference#references_tab_contents

 When Technology Became Language
 The Origins of the Linguistic Conception of Computer
 Programming, 1950-1960

 DAVID NOFRE, MARK PRIESTLEY, and
 GERARD ALBERTS

 Introduction

 The second half of the 1950s saw the emergence of a new vision of how
 computers were to be programmed. At the beginning of the decade, pro
 grammers had to express the instructions for solving a problem in obscure
 numerical codes that were different for each machine. By the decade's end,
 however, they could write programs that included familiar mathematical
 formulas, and, in some cases, even expect the same program to run on dif
 ferent machines, thanks to the development of systems like FORTRAN
 and IT. Furthermore, professional and industrial bodies were putting for
 ward ambitious proposals for very powerful "programming languages," as
 the codes were now widely called, and some of these, notably ALGOL and
 COBOL, were explicitly defined to be machine-independent notations. In

 David Nofre is associated with the Centre d'Estudis d'Histöria de la Ciència, Universität

 Autönoma de Barcelona; Mark Priestley is an independent researcher based in London;
 and Gerard Alberts is an associate professor of the history of mathematics and comput
 ing at the Korteweg-de Vries Institute for Mathematics, University of Amsterdam.
 Nofre and Alberts's contribution was developed as an element of the Software for
 Europe project, as part of the European Science Foundation Eurocores Program "In
 venting Europe," and co-funded by the Netherlands Organization for Scientific Re
 search (NWO 231-53-004). Research for this article was assisted by the award to Nofre
 of a 2010 Lemelson Center Travel to Collections Award from the Smithsonian Institu

 tion and a 2009 Arthur L. Norberg Travel Award from the Charles Babbage Institute.
 The authors thank Eden Medina for helpful comments on an early draft of this article;
 Matthias Dörries, Helena Durnovâ, Hans Dieter Heilige, Janet Martin-Nielsen, and
 Edgar Daylight for insightful comments on its early ideas; and the three anonymous ref
 erees and Suzanne Moon for providing constructive comments and suggestions. They
 also thank Peggy Aldrich Kidwell for access to materials in the Computer Documenta
 tion Collection at the National Museum of American History, Smithsonian Institution,
 Washington, D.C.

 ©2014 by the Society for the History of Technology. All rights reserved.
 0040-165X/14/5501-0002/40-75

 40

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 parallel with this transformation, researchers began to conceive of pro
 grams and programming languages as being largely autonomous from the
 machines; they were no longer seen as mere tools, but became available
 objects of knowledge in their own right, a fact of great significance for the

 emergence in the 1960s of the software industry and the discipline of com
 puter science.

 In this article, we ask how it came to seem natural to think of program
 ming highly complex electronic devices as a linguistic activity, and we give
 an account of the processes that led up to this conceptual transformation.1
 At the core of the argument lies a shift in the metaphorical use of the term

 language in connection with computers that took place in the mid-1950s in
 the United States. With roots in the fascination with robots that pervaded
 American culture before and during World War II, the language metaphor
 entered modern computing vocabulary at the end of the war as part of a
 cybernetic discourse that described modern computers as if they were semi
 autonomous, almost human-like agents.2 Early volumes on computing
 machinery, such as E. C. Berkeley's Giant Brains, or Machines That Think
 (1949) and B. V. Bowden's Faster Than Thought (1953), expressed the same
 fascination.3 The new automatic calculators seemed to embody a form of
 intelligence and language was considered to be an intrinsic attribute of these
 agents, on a par with their material components. Specialists like Arthur
 Burks and George Stibitz would describe programming as a form of com
 munication, involving translation from human language into "the language
 the machine can understand."4 During the second half of the 1950s, how
 ever, the language metaphor lost its anthropomorphic connotation and ac
 quired a more abstract meaning, closely related to the formal languages of
 logic and linguistics, in addition to greater epistemic impact.5 We argue that

 1. It is beyond the scope of this article to discuss the suitability of the use of the lan
 guage metaphor in computer programming, and the relation among programming lan
 guages, formal languages, and natural languages.

 2. Chihyung Jeon, "Flying Weather Men and Robot Observers"; Bernadette Longo,
 "Metaphors, Robots, and the Transfer of Computers to Civilian Life." For a contrast
 with the more stoical, even fearful, British accounts in the press, see Angus McLaren,
 Reproduction by Design; and Mark D. Bowles, "US Technological Enthusiasm and
 British Technological Skepticism in the Age of the Analogue Brain."

 3. Edmund C. Berkeley, Giant Brains, or Machines That Think; B. V. Bowden, ed.,
 Faster Than Thought.

 4. The expression is quoted from the preface of Arthur W. Burks, Herman H.
 Goldstine, and John von Neumann's Preliminary Discussion of the Logical Design of an
 Electronic Computer Instrument. A few months earlier, the same expression was used in
 an anonymous article featured in Science News-Letter describing Vannevar Bush's
 wartime work at MIT on differential analyzers; see "Mathematical Machine." This
 understanding of the language metaphor came to be embedded in the expression
 machine language, which was in use as early as January 1947; see George R. Stibitz, "A
 Manual of Operation for the Automatic Sequence Controlled Calculator," 59.

 5. In this article, we focus on the process of the acquisition of explanatory or epis
 temic power by the language metaphor, rather than on its capacity to shape thought or

 41

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 this transformation was related to the appearance of the commercial com
 puter in the mid-1950s, and in particular, to the increasing heterogeneity of
 computer installations at the time. The early users of the term programming
 language were principally computer-user groups and computer-installation
 managers attempting to bring about the cross-machine compatibility of
 programs; common or universal notations would facilitate the exchange of
 programs among and within organizations, and would also provide a suit
 able vehicle for teaching programming in universities. Managers and edu
 cators thus no longer found it helpful to think of programming notations as
 attributes of individual machines, and began to draw on the disciplines of
 symbolic logic and linguistics to develop models of intelligibility that would
 enable abstraction away from the machine and toward the development of
 free-standing notations. This process reached its climax with the develop
 ment, between 1958-60, of ALGOL for scientific computation and COBOL
 for data-processing. During the next decade, linguists appropriated con
 cepts developed to study programming languages and applied them to the
 analysis of natural languages, at the same time as molecular biologists found
 that programming metaphors opened up new avenues of research, such as
 the interpretation of DNA as "code" or "language."6

 Early attempts to write the history of programming languages centered
 around accounts of the development of individual languages, with a strong
 focus on technical details.7 Later historiography has taken a wider per
 spective, situating the emergence of programming languages in the 1950s
 within the general context of the evolution of computing, and viewing it as
 a response to the mounting complexity and rising costs of the program
 ming process.8 Meanwhile, historical studies on the origins of artificial

 discourse. For a discussion of this, see Matthias Dörries, ed., "Language as a Tool in the
 Sciences." With regard to formalization, a similar process took place in other disciplines,
 such as economics, philosophy of science, linguistics, and psychology, as part of the rise
 of formal logic as one of the main pillars of the U.S. cold war regime of knowledge. See
 Philip Mirowski and Esther-Mirjam Sent, "The Commercialization of Science and the
 Response of STS," table 1; and Dominique Pestre, Science, Argent et Politique, chap. 1.

 6. William John Hutchins, Machine Translation; Lily Kay, Who Wrote the Book of
 Life?

 1. ACM, Proceedings of the Third ACM SIGPLAN Conference on History of Pro
 gramming Languages-, Thomas J. Bergin and Richard G. Gibson Jr., History of Program
 ming Languages IT, Richard L. Wexelblat, History of Programming Languages I; Donald
 Knuth and Luis Trabb Pardo, "The Early Development of Programming Languages";
 Jean E. Sammet, Programming Languages; Saul Rosen, "Programming Systems and Lan
 guages."

 8. Nathan Ensmenger, The Computer Boys Take Over; Paul E. Ceruzzi, A History of
 Modern Computing; Martin Campbell-Kelly and William Aspray, Computer. Further
 more, recent trends include the approach to the history of programming languages from
 the user-centric perspective: Gard Paulsen, "Software in Telecommunications and the
 Programming Language Chili, 1974-1999"; or in the context of research funding poli
 cies: Jan Rune Holmevik, Inside Innovation.

 42

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 intelligence, cognitive psychology, and formal structural linguistics—
 research areas strongly sponsored by the U.S. military—opened yet other
 perspectives.9 These recent studies suggest a connection among these
 fields, the process of formalization of the language metaphor in program
 ming, and the transformation of the computer into an information
 machine.

 All of these approaches, however, take the linguistic nature of com
 puter programming for granted. Indeed, it is surprising how rarely lan
 guage appears in the list of relevant programming metaphors, despite peri
 odic attempts to envisage program code as a form of literary expression.10
 It is as if we have become so accustomed to think of programming lan
 guages as languages that we forget that this analogy has its own history. In
 this article, we aim to open the black box of this metaphor to show how the

 very notion of a programming language emerged in connection with
 attempts to disembody programming knowledge as a response to the sud
 den increase in the variety of computers.

 Many different interests came together in this complex transformation.
 Organizations began to look for ways of moving programs among ma
 chines of different types in order to protect and capitalize on their prior
 investment in programming. This process gained institutional support as
 representatives of computing facilities from the aircraft industry and the
 military began to form user groups to search for ways of coping with the
 costs of operating different machines and upgrading to new models. At the
 same time, staff members in academic computing centers worked to estab
 lish a space within which the free exchange of information and collabora
 tion associated with military funding could be sustained as the develop
 ment of computers became the preserve of large commercial companies.

 All these trends led to an increased understanding of programming as a
 machine-independent activity, and, as a result, the language metaphor
 acquired an increasingly abstract nuance. This transformation cleared the
 way for the emergence, in the early 1960s, of computer science as a field and
 of software as a distinct entity. Programming languages became new epis
 temic objects that were no longer connected to a particular machine or

 9. Ronald Kline, "Cybernetics, Automata Studies, and the Dartmouth Conference
 on Artificial Intelligence"; Randy Allen Harris, "Chomsky's other Revolution"; Janet
 Martin-Nielsen, "Private Knowledge, Public Tensions"; Marcus Tomalin, Linguistics
 and the Formal Sciences; Hunter Crowther-Heyck, "George A. Miller, Language, and the
 Computer Metaphor of Mind"; Paul N. Edwards, The Closed World.

 10. Note the absence of the language metaphor in Timothy R. Colburn and Gary M.
 Shute, "Metaphor in Computer Science"; Alan F. Blackwell, "The Reifkation of
 Metaphor as a Design Tool"; and Gerald J. Johnson, "Of Metaphor and the Difficulty of
 Computer Discourse." Even when language becomes the focus of the analysis, it is
 mostly in terms of human-machine communication; see Jörg Pflüger, "Language in
 Computing." On code as literary expression, see, for example, Donald E. Knuth, Literate
 Programming.

 43

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 computer laboratory, thus enabling the nascent field of computer science to
 objectify its topics of study—namely, algorithms—and to develop a full dis
 ciplinary apparatus, including a conceptual toolkit, standard terminology,
 and an ever-increasing range of textbooks and other expository material.11

 This article traces the genealogy of the language metaphor in program
 ming, one of the most essential metaphors around which computer science
 has been built. In doing so, it reflects the growing awareness among histo
 rians of technology of the crucial role of language in shaping and mediat
 ing our understanding of technologies.12 The emergence of programming
 languages entailed not only a transformation in the understanding of the
 activity of programming, but also in the way we think of the electronic dig
 ital computer. By abstracting away from the machine, programming lan
 guages and, more generally, software came to mediate our understanding
 of what a computer is, leading eventually to the conceptualization of the
 computer as an infinitely protean machine.13

 The article also reflects the increasing interest in software history
 among scholars from a variety of disciplines, ranging from historians
 exploring the emergence of software as a distinct object and industry to
 media studies scholars trying to understand the meaning of the technology
 behind the visual culture of the new digital media. All are seeking to tease
 out the diversity of beliefs, artifacts, tools, and practices concealed behind
 the label software.14 Similarly, the article shows how in the late 1950s, spe
 cialists in computer programming began to conceive of their activity as a
 proper and independent field of inquiry. In taking this step, they left be
 hind the understanding of programming as a form of communication with
 the machine, involving the translation of a problem into a highly localized,
 machine-specific code.

 11. Disembodiment is a crucial step in the constitution of a body of knowledge into
 proper science; see Steven Shapin, "The Mind Is Its Own Place." Note again the paral
 lelism with the transformation of "chemistry" into a scientific discipline during the
 nineteenth century, and the important role played by language in such a transformation;
 see Bernadette Bensaude-Vincent, "Languages in Chemistry." Ensmenger has convinc
 ingly argued for the importance of the concept of an algorithm in the creation of the
 field of computer science, and its evolution toward a Kuhnian "normal science"; see
 Ensmenger, The Computer Boys Take Over.

 12. Carroll W. Pursell, "Technologies as Cultural Practice and Production," 716-17.
 A similar point is made in Peter Galison, "The Ontology of the Enemy," 265.

 13. We thank one of the anonymous reviewers for this observation.
 14. Wendy Hui Kyong Chun, Programmed Visions; Ensmenger, The Computer Boys

 Take Over; Michael S. Mahoney, "What Makes the History of Software Hard"; Matthew
 Fuller, Software Studies; Martin Campbell-Kelly, From Airline Reservations to Sonic the
 Hedgehog; Ulf Hashagen, Reinhard Keil-Slawik, and Arthur L. Norberg, History of Com
 puting; Thomas Haigh, "Software in the 1960s as Concept, Service, and Product."

 44

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 "The Language the Machine Can Understand"

 Automatic calculators have long been viewed in anthropomorphic
 terms by both their creators and the general public. In the nineteenth cen
 tury, Charles Babbage apologized for using anthropomorphic language to
 describe his Analytical Engine, finding that its convenience and natural
 ness outweighed the possibly misleading connotations.15 A century later,
 after the disclosure in the mid-1940s of wartime computing projects in the
 United States, the popular press, as well as the scientists and engineers
 involved in the building of computers, regularly described the new calcu
 lating devices as "robots" or "giant brains."16

 The reemergence of this analogy has roots in the fascination with
 robots characteristic of U.S. society during the Great Depression. In this
 period, robots were a notable feature in the world's fairs of Chicago (1933
 34) and New York (1939-40), being portrayed as the incarnation of the
 power of modern science and engineering.17 Expressions like "mechanical
 brain," "mathematical brain," or even "robot" were already in use during
 the period to describe, for example, Vannevar Bush's differential analyzers
 at MIT and Hollerith punched-card equipment.18 The development of
 cybernetics, which viewed natural and artificial control mechanisms as
 closely related species in the same genus, gave further strength to the anal
 ogy.19 As early as the 1930s, Alan Turing was arguing that computing
 machines could be built to model features of the human brain, and in 1945,

 John von Neumann presented the design of an electronic computer using
 components that were explicitly modeled on biological neurons.20

 Although contested, these anthropomorphic images were widespread
 and represented more than a convenient analogy;21 they were based on a

 15. Charles Babbage, "On the Mathematical Powers of the Calculating Engine,"
 31.

 16. Longo, "Metaphors, Robots, and the Transfer of Computers to Civilian Life";
 C. Dianne Martin, "The Myth of the Awesome Thinking Machine."

 17. Aristotle Tympas, "From Digital to Analogue and Back"; David E. Nye, Electri
 fying America, 342, 390; Robert W. Rydell, "The Fan Dance of Science."

 18. During the years 1930-45, one can find a significant number of articles in
 Science News-Letter wherein the term robot is used to describe all kind of automatic

 devices, including computing artifacts.
 19. David A. Mindell, Between Human and Machine. Classic statements of the

 cybernetic point of view are Arturo Rosenblueth, Norbert Wiener, and Julian Bigelow,
 "Behavior, Purpose and Teleology"; and Norbert Wiener, Cybernetics or Control and
 Communication in the Animal and the Machine.

 20. Both Turing and von Neumann were closely involved in the early development
 of cybernetics; see William Aspray, "From Mathematical Constructivity to Computer
 Science," 147-48, 225.

 21. Attempts were routinely made by computer-builders and applied mathemati
 cians to downplay the significance of such analogies, and to reestablish the passive, tool
 like nature of automatic computers. The tension between these two positions reverber

 45

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 detailed functional equivalence that showed how the new machines could
 replace the female human "computers" who had carried out the mechani
 cal aspects of large-scale computational tasks up to the 1940s.22 In 1952,
 Grace Hopper explicitly declared that the current aim was "to replace, as
 far as possible, the human brain by an electronic digital computer," and
 presented a general schema of the processes involved in carrying out a
 mathematical operation, showing how it could be instantiated equally well
 by a human or by a machine, such as Remington Rand's UNIVAC.23

 As a result, early developers and users endowed the computer with
 forms of agency and autonomy, to a much greater extent than with other
 kinds of calculators. This had consequences for the ways that the uses of
 such machines, and in particular the tasks of coding and programming,
 were discussed. In 1947, for example, George Stibitz, a mathematician and
 developer of relay computers at Bell Labs, described computing machines
 as having the ability to "understand mathematical language" and to "inter
 pret ... symbolically represented operations in terms of the machine oper
 ations of which [they are] capable." He went on to describe the self-check
 ing abilities of the computer as being like the kinesthetic sense possessed
 by living organisms. In particular, writers trying to convey a sense of the
 capabilities of the new machines often referred to computers "understand
 ing" certain notations or having a "vocabulary."24 This reflected a concep
 tion that the mode of use of these new machines was, in important ways, a
 matter of communication rather than simple deployment, a theme that
 itself suggested connections with other aspects of the cybernetic project,
 such as Claude Shannon's ideas about information.25

 However, with increasing experience, these pioneers soon recognized
 that communication between humans and computers might not be com
 pletely straightforward. The communication problem came to be framed in
 linguistic terms, and the notion of translation was naturally invoked as a
 strategy for bridging the gap. Stibitz described an ideal computing ma
 chine as one capable of understanding any mathematical symbolism and

 ated up through the 1950s. For example, in 1952, Grace M. Hopper could talk in anthro
 pomorphic terms about "educating a computer," but two years later was attempting to
 remove "the last remaining words of the 'magic brain' class" from a glossary of comput
 ing terminology. Two years after that, however, in 1956, programming specialist Saul
 Gorn still found it natural to use the phrase electronic brain in a popular account of com
 puters. See Hopper, "The Education of a Computer"; Hopper et al., Glossaries of Terms,
 22; and Gorn and Wallace Manheimer, The Electronic Brain and What It Can Do.

 22. For example, Turing viewed human and mechanical computational agency as
 being largely interchangeable; see his "On Computable Numbers."

 23. Hopper, "The Education of a Computer," 243. For a similarly detailed analogy,
 see Samuel R. Williams, "Bell Telephone Laboratories' Relay Computing System," par
 ticularly the pair of diagrams on p. 58.

 24. George R. Stibitz, "The Organization of Large-Scale Computing Machinery," 93,
 96, and following pages.

 25. Claude E. Shannon, "A Mathematical Theory of Communication" (both articles).

 46

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 possessing an unlimited vocabulary, which would coincide with that of the
 mathematician. Aware of the cost and complexity of such a project, how
 ever, he was ready to recognize that for a limited range of applications, "the
 entire burden of translating from mathematics to machine language may be
 placed on the operator."26 There was a long tradition of considering math
 ematics in linguistic terms—for example, as the language of nature, as the
 "grammar of science," or, during the twentieth century, as a formal sym
 bolic system. With the anthropomorphic view of automatic calculators at
 hand, specialists in computer programming quickly extended this linguis
 tic analogy to the expression of mathematical problems on the machines,
 and to viewing the passage from mathematics to code as one of translation.

 By the early 1950s, translation had become a central metaphor used to
 make sense of the activity of programming (fig. 1). In 1954, for example,
 the glossary of programming terminology produced by the Association for
 Computing Machinery (ACM) defined a compiling routine as one that
 "translates a program expressed in pseudo-code into machine code."27
 Similarly, specialists in computer programming started using the phrase
 formula translation to denote attempts to generate machine code automat
 ically from standard mathematical notation.28 Occasional mentions were
 made of the possibility of translating between different machine languages,
 or of developing an order code that would be usable on more than one
 machine.29 This tendency was perhaps reinforced by contemporary inter
 est in the machine translation of natural languages, an important field of
 application of early digital computers that was generously funded by the
 Department of Defense.30 In 1954, Margaret Harper, a programmer at

 26. Stibitz, "The Organization of Large-Scale Computing Machinery," 94 (empha
 sis added).

 27. ACM, Committee on Nomenclature, First Glossary of Programming Termin
 ology, 17. Translate was further defined as "to change information (e.g. problem state
 ments in pseudo-code, data, or coding) from one language to another without signifi
 cantly affecting the meaning" (24). We thank Helena Durnovâ for showing us this
 source.

 28. Notably in the IBM Corporation's report Specifications for the IBM Mathemati
 cal FORmula TRANslating System FORTRAN.

 29. An informal discussion on "a 'universal' code which could be correctly inter
 preted not only by programmers but also by various different computers" took place at
 a conference in December 1951, but concrete steps toward such a code only took place
 some years later, as described in subsequent sections. See Joint AIEE-IRE Computer
 Conference, Review of Electronic Digital Computers, 113-14.

 30. See Hutchins, Machine Translation; and Martin-Nielsen, "Private Knowledge,
 Public Tensions." The development of multilingual machine translation systems was
 also a main concern for UNESCO at that time, as part of its efforts to preserve the free
 circulation of scientific knowledge. Machine translation efforts failed in the 1960s, but
 from this failure came a profound realization about computer understanding of natural
 languages, informing later research in search engines like Google. We thank one of the
 reviewers for this insightful remark. On UNESCO's efforts, see, for example, "Working
 Group to Discuss the Possible Assistance of UNESCO in the Field of Mechanical Trans

 47

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 lMG6h<j-E

 X &
 iAVf U)
 VMtTb

 m

 I

 i ft >t

 u \

 TRANSLATION -pu/\sir
 H»£

 JANUARY

 2014

 VOL. 55

 FIG. 1 The first of a series of four robot-like illustrations used by Grace Hopper
 to explain the A2 compiler for use on the UNIVAC computer during a summer
 course at the MIT in 1954. (Source: C. W. Adams, ed., Digital Computers:
 Advanced Coding Techniques—Notes from a Special Summer Program
 [Cambridge, MA: MIT Press: 1954]. Image reproduced by permission of MIT,
 and courtesy of the Computer History Museum.)

 Remington Rand, asked: "If Russian can be translated into English ... why
 not one computer code into another?"31 And a year later, in an internal
 RAND Corporation document, Allen Newell suggested that through the
 study of machine translation "[w]e might be a lot closer to 'real' automatic
 programming of computers."32

 However, the majority of machines in operation served local commu

 lation," 16 October 1961, available at http://unesdoc.unesco.org/images/0015/001538/
 153820eb.pdf (accessed 1 November 2012).

 31. Margaret H. Harper, "Subroutines."
 32. Allen Newell, "Notes," 26 September 1955, and "RAND, Chess Learning

 Machine Notes," January-September 1955, in Allen Newell Collection, Carnegie Mellon
 University, Pittsburgh, available at http://doi.library.cmu.edu/10.1184/pmc/newell/box
 00002/fld00108/bdl0001 /doc0003 (accessed 15 November 2013).

 48

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 nities of scientists and engineers who wanted quick answers to specific cal
 culations, and among these groups of users, there was little practical
 demand for programs that could run on different machines. Indeed, up
 until the mid-1950s, coding practices and notations remained highly local
 ized, depending on tools and techniques developed for individual ma
 chines. This was the case even for machines with overall design similarities,
 such as those based on the computer developed by von Neumann's team at
 the Institute for Advanced Study in Princeton. As machines came into
 operation and coding became a daily concern, local knowledge and cus
 toms, ranging from manual routines to special input and output devices,
 tended to prevail.

 Nevertheless, at several computer installations, these loose groups of
 users made attempts to share knowledge that transcended local practices.
 Military funding supported, either directly or indirectly, the majority of
 computing projects at the time and promoted a relatively open circulation
 of knowledge, imposing few security restrictions and sponsoring public
 symposia and the publication of proceedings and newsletters. In addition,
 a few influential publications describing more general approaches to the
 programming process circulated widely. In a series of reports published in
 1947 and 1948, Herman Goldstine and von Neumann presented a detailed
 methodology for the design of programs, aiming to give the activity of cod
 ing the systematic foundations that would apply across all machine types,
 and Maurice Wilkes and his collaborators at the University of Cambridge
 Mathematical Laboratory later published a book that mixed accounts of
 concrete, local programming practices with the more abstract ideas dis
 cussed by von Neumann's group.33

 In the early 1950s, the emerging field of automatic coding became a
 locus of shared knowledge about coding and programming techniques.
 The term automatic coding (later also referred to as autocoding or auto
 matic programming) was variously defined, but was usually taken to refer
 to the use of the computer itself to take over routine, mechanizable aspects
 of the programming process, such as the conversion between binary and
 decimal representations of numbers, the assembly of subroutines taken
 from a library into complete programs, or the translation of various forms
 of pseudo-code into machine code.34 Teams of programmers from many
 computer facilities developed programs to perform these tasks, such as

 33. Herman H. Goldstine and John von Neumann, Planning and Coding of Prob
 lems for an Electronic Computing Instrument-, Maurice V. Wilkes, David J. Wheeler, and
 Stanley Gill, The Preparation of Programs for an Electronic Digital Computer, where in
 the preface the authors comment that "[t]he methods are described in terms of the code
 of orders used in the EDSAC, but for the main part they may readily be translated into
 other order codes."

 34. See, for example, the surveys presented by J. H. Brown and John W. Carr III,
 "Automatic Programming and Its Development on the MIDAC"; and C. W. Adams,
 "Developments in Programming Research."

 49

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 compilers and interpreters, which led to much redundancy and duplica
 tion of effort and made clear to the heads of these facilities the need to

 share information and knowledge.35
 Automatic coding techniques were, however, highly machine-specific.

 This was the case even for the most sophisticated of these, the so-called for
 mula translation systems. Based on the observation that some algebraic
 expressions encode computational procedures, formula translation sys
 tems used the computer itself to translate algebraic formulas into equiva
 lent machine code. At MIT, J. Halcombe Laning and Neal Zierler devel
 oped the first of these systems for the Whirlwind computer.36 Their system

 came to the attention of John Backus, a programmer at IBM who was
 undertaking the development of an automatic coding system for the forth
 coming IBM 704. This new project, known as FORTRAN (for FORmula
 TRANslation), shared with Laning and Zierler's system the fundamental
 goal of allowing mathematical notation, in particular algebraic formulas, to
 be included directly in the programs used by computers.37

 Formula translation systems thus held out the promise of allowing the
 universal language of mathematics to be used directly on computers, but
 that promise was initially only realized for specific machines, whether
 MIT's Whirlwind or the IBM 704. Before long, however, new events, such
 as the appearance of multi-machine installations and the advent of the
 commercial computer, brought about changes in the orientation of pro
 gramming toward single machines.

 New Threats, New Opportunities: The "Commercial Capture
 of the Computer"

 At the beginning of the 1950s, there were a dozen computers in the
 United States and a handful in the United Kingdom, all of them one-of-a
 kind research machines. By 1955, however, there were roughly 200 opera
 tional machines worldwide, still mostly in the United States, representing
 over a hundred different types of machines.38 One factor in this spectacu

 35. This was the case even with the different sites taking delivery of the same com
 puter—for example, the IBM 701, the first production computer; see Cuthbert C. Hurd,
 ed., "Special Issue on the IBM 701."

 36. In fact, the first concrete realization of this idea came in 1949, with John Mauch

 ly's "short code" for the UNIVAC. Mauchly's proposal required the user to transliterate
 mathematical symbols into numeric codes, however. See Remington Rand Inc., "Pref
 ace"; and J. Halcombe Laning and Neal Zierler, A Program for Translation of Mathemat
 ical Equations for Whirlwind I.

 37. IBM Corporation, Specifications for the IBM Mathematical FORmula TRANs
 lating System FORTRAN.

 38. The estimates of the total number of computers and their variety are from
 William Aspray, "International Diffusion of Computer Technology, 1945-1955," 351
 52. In Western Europe, by 1955, there were twenty-seven computers installed, fifteen of

 50

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 lar growth was the appearance of the first production-line machines, such
 as the UNIVAC and the IBM 701. By the end of 1954, Remington Rand
 had delivered sixteen UNIVACs, and eighteen 701s had been manufac
 tured and delivered, predominantly to U.S. military and defense contrac
 tors, with the balance going to government agencies, insurance companies,
 and universities.39 Together, these first commercial machines represented
 a growth in just a single year of over 20 percent of the total number of
 operational computers in the country.

 This increasing diversity of computers meant that computer users had
 to adapt to a situation where the use of multiple types of computer was the
 norm. Some installations soon acquired a range of different machines,
 whereas others found it desirable to purchase new and more powerful
 machines as the technology evolved. This situation soon revealed limita
 tions in existing programming techniques, which, as discussed above, were
 largely machine-specific, meaning that programs coded for machines of
 one type could not be used on those of another.

 This remarkable expansion came at a time of increased work pressure,
 since many customer installations were involved in defense production
 work.40 The lack of machine compatibility could therefore have serious eco
 nomic consequences; for example, it would significantly raise the costs asso
 ciated with the purchase of a new machine if all existing programs had to be
 rewritten for it. A further problem was that the variety of codes used on these

 machines meant that programming personnel had to be trained to work on
 a range of different machines; but during a period of manpower shortages in
 the computing field, this was a luxury few facilities could afford.41

 Recognizing the urgency of the situation, IBM made extensive efforts
 during the development of the 701 computer to involve prospective cus
 tomers in the development of programming expertise and infrastructure.42

 them in the UK. See W. K. Bruijn and Stichting Studiecentrum voor Administratieve
 Automatisering, Computers in Europe 1966, table 1; and Martin H. Weik, A Survey of
 Domestic Electronic Digital Computing Systems.

 39. Ceruzzi, A History of Modern Computing, chap. 2.
 40. From the early 1950s, the increasing replacement of manned aircraft for mis

 siles, as part of a new U.S. military strategy, brought the computing facilities of firms like
 Douglas and Lockheed under remarkable pressure, since missile design and manufac
 turing demanded much greater computing accuracy. See Allen J. Scott, "The Aerospace
 Electronics Industrial Complex of Southern California"; and G. R. Simonson, "Missiles
 and Creative Destruction in the American Aircraft Industry, 1956-1961." For an eye
 witness account, see Fred J. Gruenberger, "A Short History of Digital Computing in
 Southern California."

 41. Besides, manpower shortages made it difficult to find and retain the best pro
 gramming personnel and to keep salaries under control; see Ensmenger, The Computer
 Boys Take Over, chap. 3.

 42. In part, this move reflected IBM's fear that programming costs would rise to the
 point whereby companies would have difficulties in justifying the total cost of comput
 ing. For an insider's view, see R. Blair Smith, "The IBM 701."

 51

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 The strategy was to encourage cooperation among different customers,
 and between customers and IBM. During 1952-54, IBM, with the RAND
 Corporation acting as clearinghouse, promoted several projects of collab
 oration in programming techniques among computing installations in the
 Los Angeles region.43 Even these efforts did not suffice to prevent signifi
 cant duplication of effort, such as the production of different assembly and
 formula translation programs at various IBM 701 installations.44

 The problems were discussed by a number of specialists in computer
 programming in May 1954, during a symposium on automatic coding
 techniques organized by the Office of Naval Research.45 In particular,
 mathematicians Saul Gorn of the U.S. Army's Ballistics Research Labora
 tory at the Aberdeen Proving Ground in Maryland and John Weber Carr
 and his colleague J. H. Brown of the Willow Run Research Center at the
 University of Michigan presented their research and experiments on the
 possibility of a "universal code" or "universal computer language."46
 Working independently of each other, Gorn and Carr were confronted
 with similar problems, having to produce large quantities of day-to-day
 computational work to strict deadlines, while at the same time looking
 after the training of programming personnel. Certainly, these problems
 were not unique to Gorn's and Carr's respective computing facilities—
 quite the opposite. As Nathan Ensmenger has shown, manpower shortages
 of programming personnel were among the most critical problems in the
 computing field during the mid-1950s.47 What made Gorn's and Carr's sit

 43. Atushi Akera, Calculating a Natural World, 251-59.
 44. See the papers on the different IBM 701 installations collected in Hurd, ed.,

 "Special Issue on the IBM 701."
 45. U.S. Navy Mathematical Computing Advisory Panel, ed., Symposium on Auto

 matic Programming for Digital Computers, 13-14 May 1954.
 46. Saul Gorn, "Planning Universal Semi-Automatic Coding"; Brown and Carr,

 "Automatic Programming and Its Development on the MIDAC." The possibility of a
 universal code had been raised before—at an informal discussion at the Joint AIEE-IEE
 Computer Conference in 1951 (Joint AIEE-IEE Computer Conference, Review of Elec
 tronic Digital Computers, 113-14), where Charles W. Adams of MIT "suggested the pos
 sibility of a 'universal' code which could be correctly interpreted not only by program
 mers but also by various different computers by means of interpretative subroutines.
 Such a scheme could permit the same program to be used on different computers, albeit
 at a loss of efficiency, and might aid in the adoption of a truly universal code for future
 computers." Little immediate progress toward this goal was made, however, but the
 1954 meeting marks a significant quickening of interest in the topic.

 47. Indeed, manpower shortages were a problem affecting many technical and sci
 entific fields in the United States at that time, especially those related to the defense
 effort, such as physics, engineering, and linguistics. For the physics situation, see David
 Kaiser, "Cold War Requisitions, Scientific Manpower, and the Production of American
 Physicists after World War II." For contemporary accounts, see Ruth W. Wolfe, "The
 Technical Manpower Shortage"; Harry H. Ransom, "Scientific Manpower and National
 Security"; U.S. Congress, Joint Committee on Atomic Energy, Engineering and Scientific
 Manpower in the United States, Western Europe and Soviet Russia-, Donald A. Quarles,

 52

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 uation more urgent is that, although working in different institutional cir
 cumstances, they were confronted by the problems caused by a variety of
 machines and codes on an almost daily basis.

 At the Aberdeen Proving Ground, where Gorn was the mathematics
 advisor to the Computing Lab, the ENI AC, ED VAC, and ORDVAC com
 puters had been in simultaneous use since 1951.48 This situation prompted
 him to consider the development of a code simple enough that anybody
 could learn to use it in a short time, and that could be used to produce pro
 grams to run on any machine. Such a code, Gorn believed, would put an
 end to universities' reluctance to train graduates in programming tech
 niques, as universities often used the existing multiplicity of codes as an
 excuse not to engage in the training of programming personnel. Gorn's
 code would allow programmers to describe, in a machine-independent
 way, the construction of programs out of an agreed set of basic subrou
 tines, and it formed part of a more general and systematic approach to pro
 gramming that made extensive use of flowcharts. The system was never
 fully implemented, however, although Gorn was able to produce simple
 subroutines that were automatically translated by the EDVAC and ORD
 VAC computers into their own code.

 Carr was thinking along similar lines. He was in charge of the MIDAC
 computer at the Willow Run Research Center, the University of Michi
 gan's off-site military-research facility. Carr's team had to produce high
 precision computational work for the U.S. Air Force's BOMARC guided
 missile program, in addition to work for the university's departments and
 other governmental agencies, as well as for industry.49 Achieving high ac
 curacy was a complex, error-prone, time-consuming programming task,
 so Carr's prime concern was the development of a mistake-free coding
 process based on easy-to-correct and easy-to-use input languages and the
 elimination of as much human intervention as possible.50 Furthermore, the
 MIDAC, initially designed exclusively for military use, had been open to
 Michigan's faculty and students since 1953, becoming a "laboratory tool"
 to fill the gap caused by a lack of general training on programming.51 In

 "Need of Scientific Manpower"; American Mathematical Society and National Research
 Council, Proceedings of a Conference on Training in Applied Mathematics; Robert G.
 Gibbs, "Manpower Supply Down, Military and Industrial Demand High"; and T. H.
 Rogers, "Supply and Demand of Technical Personnel in American Industry."

 48. Gorn, "Planning Universal Semi-Automatic Coding" and "Standardized Pro
 gramming Methods and Universal Coding."

 49. On John W. Carr III and the computing facility at Willow Run Research Center,
 see Akera, Calculating a Natural World, 295-98, and "The Life and Work of Bernard A.
 Galler (1928-2006)," 4.

 50. Brown and Carr, "Automatic Programming and Its Development on the MID
 AC."

 51. John W. Carr III and Norman R. Scott, eds., Notes on Digital Computers and
 Data Processors, xii.

 53

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 this context, Carr soon realized the advantage of a standard input code.
 And although, like Gorn, he did not go much further than the develop
 ment of common automatic coding techniques, he understood very well
 the benefits of black-boxing the machine: "The progress... leads, of neces
 sity, towards some sort of standardization of the basic input language of all
 computers as it looks to the users, before it is fed through the 'black box'
 which contains the integrated system which matches the internal language
 to the external human language."52

 It was not just about improving human-machine communication;
 there was also a political side to Carr's views on universality. An ardent de
 fender of the role of universities in computing, he feared that the increas
 ing hegemony of industry in the computer field would endanger the al
 ready weak position of the universities.53 If carried out, such "commercial
 capture of the computer," as he put it, would leave universities with little
 control over the new technology.54 Instead, Carr speculated, the existence
 of a "common, universal, external language arrived at by mutual agree
 ment and persuasion" would free the user from the manufacturer's ma
 chine specifications.55

 Carr was not alone in raising his voice against the role of industry in the
 computer field. In February 1954, mathematician Derrick Lehmer of the
 University of California, Berkeley, who in 1946 had been an early user of
 ENIAC, expressed similar concerns during his welcoming address to the
 participants of the second Western Computer Conference in Los Angeles.56
 A member of the computer "old guard," as he introduced himself, Lehmer
 warned newcomers to the field of the danger that "corporate security"
 would pose to the free flow of information. Aware of the shift of patronage
 that was taking place, he feared that industry, about to replace the U.S. gov
 ernment as the driving force in the computer field, would put an end to the

 "enlightened policy" on the circulation of information implemented by the
 U.S. government during the previous decade.57 As Lehmer reminded his
 audience, government funds had not only supported the creation of com
 puters, they had also sponsored symposia and the publication of proceed

 52. Brown and Carr, "Automatic Programming and Its Development on the MID
 AC," 89.

 53. John W. Carr III, "Conference Summary," 147.
 54. Brown and Carr, "Automatic Programming and Its Development on the MID

 AC," 89-90.
 55. Ibid.

 56. Derrick H. Lehmer, "Welcoming Address." On Lehmer's early programming
 work, see Maarten Bullynck and Liesbeth de Mol, "Setting-up Early Computer Pro
 grams."

 57. Lehmer, "Welcoming Address," 8. Indeed, in his speech, Lehmer publicly com
 plained that some signs of this risk had loomed during the preparations of the confer
 ence when the program committee decided not to publish transcripts of the discussions
 following the requests of representatives of private firms.

 54

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 ings, and encouraged the dissemination of results, as in the case of the
 Western Computer Conference itself.

 As will be shown in the next two sections, the idea of a universal lan

 guage was to be a decisive step in the emergence of programming lan
 guages as distinct objects of knowledge, and eventually of a science of pro
 gramming. Carr's and Lehmer's warnings may be viewed as boundary
 work at two levels: first, defending the place of universities within the new

 commercially oriented computing field; and second, looking for an object
 of study around which to build a scientific discipline. Indeed, in the sum
 mer of 1958, Carr explicitly connected the problem of operating multi
 machine installations to the opportunity to turn the research area of auto
 matic programming into a scientific discipline:

 If humans are to keep up with the voracious input capacity of the
 digital computers, then languages built for the humans, and not the
 machines, must be developed and put into operation. This involves
 the creation of translators, techniques for using them, and, finally,
 a theory of such formal translators. Multi-machine installations,
 with each machine having a separate language of its own, require
 a unified language for most efficient use. The development of "auto
 matic problem solution" requires formalism, interchangeability of
 procedures, and computability of languages if it is to become a true
 discipline in the scientific sense.58

 Carr's vision, extending into the regions of metalinguistics, derived from
 his conviction that computer languages were indeed "languages," with
 their own "simple equivalents of verbs and nouns, tenses and moods."59

 Despite Lehmer's and Carr's fears, however, the commercial computer
 was soon to provide computing facilities with the opportunity to increase
 collaboration on programming. This was largely due to the emergence of
 user groups—organizations formed by customer firms with the same type
 of machine that sought to establish working standards to exchange code
 and co-develop some basic programs, such as assembly and utility subrou
 tines that could be used by all installations.60 These groups facilitated the
 transformation of programming into an activity disconnected from the
 machine, and it was in this context that the idea of common, or universal,

 languages really caught fire.

 58. John W. Carr III, Computing Programming and Artificial Intelligence, 2.
 59. John W. Carr III, "Methods in High-Speed Computation," 23.
 60. Herbert S. Bright, "Computer User Groups."

 55

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 Varieties of "Universality"

 The first formal user group to be established was SHARE, formed in
 September 1955 by facilities using the IBM 701 and expecting to receive
 the new IBM 704.61 Three months later, USE (Univac Scientific Exchange)
 was established by prospective users of the Remington Rand 1103A com
 puter, including representatives of the computing facilities of Boeing,
 Holloman Air Force Base, Lockheed Missile Systems Division, Ramo
 Wooldridge, and Remington Rand UNIVAC Division. During the follow
 ing years, inspired by the example of SHARE and USE, many other user
 groups flourished, with about twenty groups established by I960.62

 One of the aims of user groups was to enable the exchange of programs
 between installations, and to do this, some degree of the standardization of
 programming tools was clearly required. In the case of USE, this require
 ment was expressed in terms of language: in December 1955, the first
 meeting of USE agreed on the adoption of a "common programming lan
 guage for exchanged programs" as one of the top priorities of the newly
 established cooperative organization.63 Conceived as a sort of supra-lan
 guage to facilitate the exchange of library programs, USE's common lan
 guage was to include all the languages of specific installations, but without
 forcing any member to use the common language internally.64 USE's grand
 project did not go any further than the development of a standard compil
 ing routine and some other basic programming tools. Nevertheless, it is
 worth noting that this early use of the term programming language ap
 peared in conjunction with the adjective common, as if the newly coined
 phrase sought to convey a sense of detachment from the specific machine.

 In the following years, two projects from the user groups and the U.S.
 military would attempt to broaden the scope of the USE initiative and to
 achieve a degree of machine independence by developing "universal,"
 "common," or "single" languages that would be usable across computers of
 different types. The first and less-well-known project was part of the Fiel
 data Project of the U.S. Army Signal Corps (1956-62), an ultimately un
 successful though highly ambitious programming effort to develop a "uni
 versal computer code," in a similar fashion to SHARE's UNCOL project
 described below, and aimed to facilitate the portability of computer pro
 grams.65 The second project was the creation of a data-processing lan
 guage, soon named COBOL (for Common Business-Oriented Language),

 61. Atsushi Akera, "Voluntarism and the Fruits of Collaboration."

 62. Bright, "Computer User Groups," tables l-2a, b.
 63. Remington Rand Inc., "Formation of USE," 264.
 64. Ibid., 265.

 65. William F. Luebbert and Percy W. Collom Jr., "Signal Corps Research and
 Development on Automatic Programming of Digital Computers." Fieldata Project
 materials can be found in the U.S. Government Computing Collection, Charles Babbage
 Institute, University of Minnesota, Minneapolis (hereafter CBI-UM).

 56

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 sponsored and supported by the Department of Defense to reduce the
 costs associated with the maintenance of a growing variety of computer
 systems.66

 Specialists in computer programming had taken the first steps toward
 machine independence in the area of formula translation languages.
 Starting in late 1955, a "mathematical language compiler" had been con
 ceived for the Datatron 205 computer at Purdue University.67 Alan Perlis,
 a member of the group, then moved to Carnegie Mellon, where he further
 implemented the language—by then known as IT—for the IBM 650.68
 Similarly, by 1958, IBM was planning to make FORTRAN available on ma
 chines other than the IBM 704.69 Inspired by Perlis's IT, IBM developed
 the FOR TRANSIT system to enable a limited version of FORTRAN to be
 translated into IT, thus making it available on the 650.70 This greatly in
 creased the reach of FORTRAN, hitherto available only on IBM's expen
 sive high-end scientific machines.

 These experiments highlighted the promise of the idea of a machine
 independent language, but also its limitations: the two versions of IT dif
 fered in certain ways, and it proved difficult to implement a full version of

 FORTRAN for the 650 because of the machine's limited capabilities. How
 ever, it began to seem plausible that a form of universality could be
 achieved by means of translation among languages. As Robert Bemer of
 IBM put it later in the year, "[a]lthough the ultimate in language does not
 exist yet, we can console ourselves meanwhile with compatible (as against
 common) language. There is much current evidence that existing algebraic
 languages are all mappable into one another by pre-processors."71

 Institutional interest in the possibility of common languages came ini
 tially from the user groups. By this point, user groups had clearly under
 stood that their cooperative efforts were limited to each group's scope; at
 the same time, however, many member facilities were already operating
 several types of computers. The problem of information exchange had thus
 become an in-house issue. So user groups were open to exploring the pos
 sibility of a national organization that would transcend the existing user

 66. J. A. N. Lee, ed., "Special issue, COBOL: 25th Anniversary"; and Jean E. Sammet,
 "The Early History of COBOL."

 67. The IT language was first described in J. Chipps et al., "A Mathematical Lan-guage
 Compiler"; and Alan J. Perlis and J. W. Smith, "A Mathematical Language Compiler."

 68. Alan J. Perlis, "Two Thousand Words and Two Thousand Ideas." In 1957, IT

 was released as a library program for the IBM 650, at which point it became known as
 Internal Translator (IT).

 69. FORTRAN was implemented for the IBM 650 and 709 computers in 1958; see J.
 A. N. Lee, "Pioneer Day, 1982," 10-11. By mid-1958, IT was available on the Burroughs
 205 (Datatron) computer. For IT, see Sylvia Orgel, Purdue Compiler General Description.

 70. IBM Corporation, Reference Manual FOR TRANSIT Automatic Coding System.
 See also David Hemmes, "FORTRANSIT Recollections."

 71. Robert W. Bemer, "The Status of Automatic Programming for Scientific Prob
 lems," 115.

 57

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 groups and include all users of computers, whoever their manufacturer.
 More important, they were also ready to discuss whether plans should be
 made for a "truly universal programming language."72

 Following an initial call from Frank Engel (Westinghouse/SHARE)
 and Walter Bauer (Ramo-Wooldridge/ACM), the Los Angeles Meeting on
 Information Exchange assembled representatives of the user groups
 SHARE, USE, and DUO (Datatron User's Organization), under informal
 mediation of the ACM, at Ramo-Wooldridge in Los Angeles during 9-10
 May 1957 to examine the "ways and means of facilitating the exchange of
 all types of computing information."73 This meeting brought together the
 heads of eight computing installations from major defense contractors,
 universities, and the federal government, who also attended as representa
 tives of the user groups and the ACM.74

 During the first day, it soon became clear that the idea of a super-orga
 nization would have little endorsement. Although the ACM appeared to be
 the foremost candidate for such a role, given its independence from indus
 try and its programming-oriented character, the lack of funds and drive of
 the organization were considered major shortcomings by the user groups.
 The groups' representatives at Los Angeles were, however, more positive
 about the idea of a "single universal computer language."75 This idea was
 based on evidence, such as the work on FORTRAN and IT described

 above, that programming techniques were about to transcend the charac
 teristics of particular machines to produce "programs which are machine
 independent."76 Still, the participants conceded, such objectives would
 probably evolve from several initial "universal" languages. The meeting
 ended with the formulation of a general recommendation to the ACM to
 "appoint a committee to study and recommend action toward a universal

 72. Letter, Walter F. Bauer to Paul Armer, 12 April 1957, 2, series 3, box 7, folder
 "SHARE Correspondence 1957," Paul Armer Collection, in Archives Center, National
 Museum of American History, Smithsonian Institution, Washington, D.C. (hereafter
 AC-NMAH).

 73. "Recapitulation of the May, 1957, Los Angeles Meetings on Information Ex
 change," 1, Universal Language Committee, UNCOL, 8 April 1958, appendix A, box 1,
 folder 13, SHARE, Inc. Records, in CBI-UM.

 74. See ibid.; the attendees were: Paul Armer (RAND/SHARE), Walter F. Bauer
 (Ramo-Wooldridge/ACM), John W. Carr III (University of Michigan/president of the
 ACM), Frank Engel (Westinghouse/SHARE chairman), Donald W. Gantner (Ramo
 Wooldridge/USE), Edward M. McCormick (U.S. Naval Ordnance Labs/DUO chair
 man), Robert P. Rich (Johns Hopkins University/USE chairman), and Richard B. Tal
 madge (Lockheed Aircraft/USE ex-chairman). Unable to attend were Alan J. Perlis
 (Carnegie Institute of Technology), Jack Strong (North American Aviation), Randall
 Porter (Boeing), and Walter Ramshaw (United Aircraft).

 75. See ibid., 3.

 76. Paul Armer et al., "Los Angeles, May 10,1957," Universal Language Committee,
 UNCOL, SHARE, Inc. Records, in CBI-UM. Perlis's IT was explicitly mentioned in the
 letter of invitation of Bauer to Armer, Paul Armer Collection, in AC-NMAH. Perlis

 himself, unable to attend the meeting, endorsed the final resolution.

 58

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 programming language," plus three other actions to facilitate the rapid ex
 change of practical information on programming.77

 The Los Angeles meeting was to have further significant consequences
 for the future development of computer programming. One of its first
 results was the establishment by the ACM of the monthly journal Commu
 nications of the ACM. At the meeting, Carr, who attended as the president
 of ACM, had suggested the possibility of a "problem solver's journal"
 edited by the ACM as a tool for the rapid dissemination of information,
 with a special stress on programming techniques.78 Under the editorial
 leadership of Perlis, the first issue appeared in January 1958, subsequently
 becoming a worldwide reference source for the publication of research on
 programming.79 The second result was that the meeting would eventually
 lead to the establishment, in January 1958, of an ACM Ad Hoc Committee
 on Languages. As described below, this committee, in collaboration with a
 group of heads of computing centers in Europe, was to draw up the first
 definition of the programming language ALGOL—an ambitious attempt
 to create a universal language for scientific computation.80

 The Los Angeles meeting also turned out to be a catalyst for an alter
 native approach to the question of universality about to gather momentum
 within SHARE. In the spring of 1957, the so-called Project for the Ad
 vancement of Coding Techniques (PACT) came to an end. A forerunner
 of SHARE, PACT had started in November 1954 as a joint venture of sev
 eral defense contractors on the West Coast to cooperate with IBM in the
 development of a more elaborated coding system for the 701 and 704 com
 puters than IBM's FORTRAN.81 However, the project suffered many
 delays and never received much use; the second version, conceived for the
 704, remained unfinished. As an alternative course of action, the final re

 port of the PACT II Working Committee, released in the spring of 1957,
 recommended the "design of a universal, intermediate language, inde
 pendent of specific hardware but similar in character to machine lan
 guages." The UNCOL project was born.82

 In the winter of 1957, SHARE established an Ad Hoc Committee on

 77. Armer et al., "Los Angeles, May 10, 1957," SHARE, Inc. Records, in CBI-UM.
 78. See "Recapitulation of the May, 1957, Los Angeles Meetings on Information Ex

 change," 2, SHARE, Inc. Records, in CBI-UM.
 79. In the fall of 1957, mathematician Franz L. Alt of the National Bureau of Stan

 dards, together with Carr, Bauer, and Perlis, among others, would give the main impetus
 to the establishment of the Communications of the ACM; see Walter F. Bauer, Mario L.
 Juncosa, and Alan J. Perlis, "ACM Publication Policies and Plans," 121-22.

 80. For more details on these events, see David Nofre, "Unraveling Algol," 62-64.
 81. Initially (November-December 1954), the project included the following West

 Coast computing installations: Douglas Aircraft (El Segundo and Santa Monica), IBM,
 North American Aviation, Ramo-Wooldridge, and RAND Corporation; see "PACT
 Notes," 1 December 1954, box 22, folder 7, John Clifford Shaw Papers, in AC-NMAH.

 82. T. B. Steel Jr., chairman, UNCOL Committee, to SHARE, "Committee Report,"
 17 March 1961, 2, box 1, folder 32, Francis V. Wagner Papers, in CBI-UM.

 59

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 Universal Languages to further develop the original recommendations of
 PACT If s final report. The ACM's new journal published this committee's
 report in the summer of 1958.83 The committee distinguished between
 "problem-oriented languages" (POLs), such as FORTRAN and IT and
 equivalent languages for tasks like data processing, and machine languages
 (MLs).84 Its conclusions were based on a particular view about universal
 ity—namely, that "(i]t is impossible to agree on one universal POL."85 Be
 cause of the ever-increasing range of tasks that computers were being used
 to solve, SHARE's Ad Hoc Committee on Universal Languages felt that a
 universal problem-oriented language would either be inadequate for some
 areas or else unwieldy and unusable. But in the absence of a universal lan
 guage, a compiler would have to be written for every required combination
 of problem-oriented language and machine.

 To avoid this, the committee introduced an intermediate linguistic level
 between the problem-oriented languages and the machines, consisting of a
 single Universal Computer Oriented Language (UNCOL). It was planned
 that UNCOL would be a machine-like language that abstracted from the
 idiosyncrasies of specific machines; the idea was to produce an UNCOL-to
 machine-language translator for each given machine, along with generators
 to translate each required problem-oriented language into UNCOL. The
 SHARE committee argued that this would be more economically feasible
 than writing a compiler for each problem-oriented language86 (fig. 2).

 In rejecting the idea of a universal problem-oriented language and
 locating the idea of universality closer to the machine, the UNCOL project
 separated the exchange of computer code, expected to be carried out at the
 intermediate level, from the exchange of programming ideas and tech
 niques as embodied in human-readable, problem-oriented languages. Yet,
 it turned out to be much harder than expected to create a computer-ori
 ented language that was independent of the wide range of contemporary
 machine architectures. By 1961, after three years of intense work, SHARE'S
 UNCOL committee, a descendant of the original committee, had only
 been able to put together a first version of a proposal; one year later, the
 project ceased to exist.87

 83. J. Strong et al., "The Problem of Programming Communication with Changing
 Machines."

 84. In the UNCOL project, the term problem-oriented language referred to a "lan
 guage most natural to [an individual's] way of thinking about the problem" (ibid., 12).
 In the early 1960s, this term was sometimes regarded as interchangeable with procedure
 oriented language, but the latter phrase gradually acquired the distinct meaning of a lan
 guage "in which the user specifies a set of executable operations which are to be per
 formed in sequence"; see Jean E. Sammet, Programming Languages, 19.

 85. Strong et al., "The Problem of Programming Communication with Changing
 Machines," 13.

 86. For the economic argument, see T. B. Steel, "UNCOL."
 87. The idea of a universal intermediate language has been revived on different occa

 60

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS i When Technology Became Language

 FIG. 2 A schematic showing the UNCOL three-level hierarchy of language, 28
 February 1958. (Source: Appendix B of the report "Recapitulation of the May,
 1957, Los Angeles Meeting on Information Exchange," Francis V. Wagner
 papers (CBI 6), box 1, folder 28. Image reproduced courtesy of the Charles
 Babbage Institute, University of Minnesota, Minneapolis.)

 In today's technical understanding, it may seem that problem-oriented
 languages—in effect, high-level programming languages—were, in fact,
 the solution to the portability problem; however, the overall situation at
 this time was rather confusing. The understanding of programming as a
 process of human-machine communication was starting to falter, and the
 notion of language was proving to be fruitful in the development of a
 machine-independent approach to computer programming. But the move
 to a machine-independent notion of language was not immediate: pro
 gramming languages were still thought of as parts of programming systems
 tied to specific machines. Not surprisingly, some felt that the "definition of
 language was like the proverbial bucket of worms."88 It was in connection

 with the ALGOL project that the contours of a broader notion of language
 emerged.

 sions, most recently by the programming language Java and its virtual machine. We
 thank one of the anonymous reviewers for this observation.

 88. "Panel Discussion on Universal Language," 8, Proceedings of the 10th Meeting of
 SHARE, 26-28 February 1958, Washington, D.C., box 3, folder 16, appendix E, SHARE,
 Inc. Records, in CBI-UM.

 61

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 Universality Goes Worldwide

 The establishment of the ACM Ad Hoc Committee on Languages was
 a result of the Los Angeles meeting between user groups and the ACM in
 the spring of 1957. But during the following months, the discussions be
 tween the user groups did not bring about any concrete results. Mean
 while, representatives of a West German-Swiss alliance of academic com
 puting installations, working on a common formula-translation project
 under the sponsorship of the German Society for Applied Mathematics
 and Mechanics (GAMM), contacted Carr, the president of the ACM, to
 propose a joint conference to establish a "common formula language."89
 The European initiative came at the right time for Carr and the ACM, both
 then struggling in their negotiations with the user groups. But it came at a
 price, for it added an international dimension to the already wide range of
 meanings of universality that were in play.

 The ACM Committee on Languages first met during 24-25 January
 1958 at the Carnegie Institute of Technology under the chairmanship of
 Perlis to discuss how to proceed further in relation to the West German
 Swiss proposal.90 Two weeks later, John Backus prepared a memorandum
 based on what the committee had so far agreed on, which set forth the pur
 poses and basic properties of the "proposed programming language":

 A. To provide a uniform internationally accepted language in which
 to publish procedures for the solution of a variety of "scientific"
 problems, a language which is at once precise, concise and easily
 understood by those familiar with the few simple rules needed for
 its interpretation.

 B. To provide a programming language which, on the one hand, is
 sufficiently powerful and concise to compare favorably with the best
 such languages known today and which, on the other hand, appears
 feasible and likely to be adopted as the input language for a large
 class of computers both in the United States and in Europe.91

 89. On the details of these contacts, see Nofre, "Unraveling Algol," 63. The quote is
 from the English translation of the official letter of invitation: Heinz Rutishauser et al.
 to John W. Carr III, president of ACM, 19 October 1957, enclosed in the memorandum
 from Carr to the officers and council of the ACM, 13 December 1957, which is part of
 Universal Language Committee, UNCOL, SHARE, Inc. Records, in CBI-UM.

 90. "News and Notices," 14. The membership of the committee was: J. W. Backus
 (IBM), P. H. Desilets (Remington Rand), D. C. Evans (Bendix Aviation), R. Goodman
 (Westinghouse), H. Huskey (UC, Santa Cruz), C. Katz (Remington Rand), J. McCarthy
 (MIT), A. Orden (Burroughs), A. J. Perlis (Carnegie Institute of Technology), R. Rich
 (Johns Hopkins University), S. Rosen (Burroughs), W. Turanski (Remington Rand), and
 J. Wegstein (National Bureau of Standards). See "Proposal for a Programming Language"
 (n.d. [ca.May 1958]), Unprocessed Computer Documentation Collection, in AC-NMAH.

 91. Memorandum, J. Backus to the ACM Ad Hoc Committee on Languages, 12
 February 1958, box 264, Charles Katz Papers, in AC-NMAH.

 62

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 This distinction between language and programming language makes it clear
 that the ACM committee considered that computer programs were not
 merely devices to get a machine to do a particular computation, but that they
 encapsulated potentially valuable knowledge that, as well as being shared on
 a concrete level, was worthy of a more traditional form of scientific publica
 tion. But existing languages did not meet the purpose. For instance, formula

 translation systems allowed some mathematical notation, in particular alge
 braic expressions, to be used in programs; yet, their control statements,
 which defined the overall structure of the computation, were highly diverse

 and machine-specific. If for no other reason, a new language was necessary
 to provide a universally accepted notation for control. Therefore, the aim
 was not simply to define a new programming language, but to provide new
 standards in mathematical notation capable of describing the structure of
 extended computations, as well as their individual steps.92

 A few months later, a meeting between representatives of the ACM
 committee and the West German-Swiss group took place in Zurich be
 tween 27 May and 2 June. Four members from each side attended the
 meeting; the American delegation included both Backus and Perlis, prin
 cipal designers, respectively, of the FORTRAN and IT languages. What
 emerged from this meeting was a new kind of language, dubbed an "algo
 rithmic language." Rather than being a vehicle for coding computers, the
 new International Algebraic Language (IAL), defined and published in the
 form of a scientific article, was thought of primarily as a kind of scientific

 notation, an extension of mathematical language.93 Echoing Backus's ear
 lier memorandum, the report stated that "[t]he purpose of the algorithmic
 language is to describe computational processes";94 it was further stipu
 lated that the language should be "as close as possible to standard mathe
 matical notation," and that "it should be possible to use it for the descrip
 tion of computing processes in publication."95

 The final objective stated that IAL should be "mechanically translatable
 into machine programs."96 However, the proposal was not written with the
 properties of any one machine in mind, and certain areas of functionality,
 such as the definition of methods for input and output, were omitted. This
 was partly because these would be hard to specify in a universally applica

 92. As Robert Bemer expressed it in October 1957, "[t]he area of loop control and
 recursive operations is still not well handled in existing mathematical notation, but
 computers are forcing the development"; see Bemer, "The Status of Automatic Pro
 gramming for Scientific Problems," 115.

 93. Alan J. Perlis and Klaus Samelson, "Preliminary Report." The report was also
 published in the first issue of the journal of numerical analysis, Numerische Mathematik,
 established with the collaboration of some of the members of the Western German

 Swiss group, such as Friederich L. Bauer and Heinz Rutishauser.
 94. Ibid., 10.
 95. Ibid., 9.
 96. Ibid.

 63

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 ble way; a more significant reason was that such details did not form part
 of the "scientific" aims of the language—the definition of computational
 processes. Besides, the existing state of computing hardware made the
 translation of a universal language somewhat problematic, as computers
 used widely varying input devices, often with very limited character sets.97
 The committee therefore defined three distinct linguistic levels: the central
 level was the so-called reference language, based on a stipulated character
 set adopted for the purposes of defining the language.98 This could be
 interpreted in a number of hardware representations to take into account
 the peculiarities of individual machines, and could also be presented in one
 or more publication languages. These would enable the use of a greater
 range of mathematical notations, and also permit national and other vari
 ations, such as the symbol used for the decimal point. Although these dis
 tinctions seem trivial now, they marked a growing awareness that a lan
 guage could be thought of as not just a set of physical inscriptions, but
 instead as an abstract structure whose properties could be formally defined
 and studied.

 IAL aimed at multiple levels of universality. Aspiring to be an interna
 tional and universal human language, analogous to that of mathematics, it
 combined this goal with the apparently conflicting ambition to be usable
 on a wide range of computing equipment by reifying the metaphor of
 "computer code as language" into the definition of an abstract structure
 that could be concretely manifested in as many different ways as necessary.

 Shortly after the publication of the report, a number of groups began to
 write translators for IAL, soon renamed ALGOL (for ALGOrithmic Lan

 guage). Ironically enough, different implementers made independent and
 incompatible choices based on local perceptions and needs. As IAL/AL
 GOL, unlike earlier proposals like FORTRAN, was explicitly called, and
 treated as, a language, its variants naturally came to be referred to as "dia
 lects." At the same time, the report provided an immediate focus for debate
 on the very idea of a programming language. Readers of the Communica
 tions of the ACM and the newly formed ALGOL Bulletin commented on and
 criticized the detailed proposals, and more general discussions took place at
 the International Conference on Information Processing, held in Paris un
 der the auspices of UNESCO, in June 1959. As a result of these discussions,
 a second committee met in Paris in January 1960 to reconsider the language,

 consequently defining a new language, called ALGOL 60.99

 97. The Datatron, for which IT was initially planned, could only accept input in the
 form of decimal digits, and the language was defined using what was, in effect, a refer
 ence language; see Chipps et al., "A Mathematical Language Compiler." In the IAL
 report, however, the abstract notation rather than the hardware character set was, for
 the first time, treated as fundamental.

 98. Perlis and Samelson, "Preliminary Report."
 99. Peter Naur et al., "Report on the Algorithmic Language ALGOL 60." For the use

 of the term dialect, see, for example, Harry D. Huskey, "NELIAC—a Dialect of ALGOL."

 64

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 One of the most significant advances of this new proposal was that
 ALGOL 60 was defined completely formally, using a notation presented by
 Backus in 1959 involving a syntax and semantics in a manner reminiscent
 of Rudolf Carnap's model of a formal language.100 This made clear that
 ALGOL 60 itself was a formal mathematical, linguistic object, not just a
 messy adjunct to the technical business of getting a computer to run. As the

 introduction of the metaphors of syntax and semantics reveals, Backus's
 proposal emerged from a growing engagement among the fields of com
 puting, formal logic, and linguistics. In this regard, the ALGOL 60 report
 proved to be a major catalyst in the application of results and techniques
 from these fields to the area of computer programming, establishing among

 other things the study of algorithms and programming languages them
 selves as a central part of the emerging discipline of computer science.101

 Conclusion

 Matthias Dörries has convincingly argued that scientists consistently
 push metaphors to the limit, exploring their potential both as a means of
 thinking and as explanatory tools.102 This was also the case for the language
 metaphor in computer programming. This article has outlined some key
 aspects of the genealogy of the term programming language. We began by
 noting that the use of automatic digital computers was, from the begin
 ning, understood as a communicative relationship between two autono
 mous entities rather than as a passive relationship of deployment. We
 showed how this relationship manifested itself in specifically linguistic
 terms with, at its heart, the notion of translation between human and ma

 chine languages.
 This simple model began to break down as the number and variety of

 computers grew, leading to calls for the creation of common languages that
 could mediate the growing "confusion of tongues" and enable the eco
 nomic migration of computer code from machine to machine, both within
 and among organizations. At the same time, a small community of com
 puter specialists in academic computer centers worked to establish a space
 within which the free exchange of information and collaboration charac

 100. J. W. Backus, "The Syntax and Semantics of the Proposed International Alge
 braic Language of the Zurich ACM-GAMM Conference." For a detailed discussion of
 the influence of logic in ALGOL, see Mark Priestley, A Science of Operations, chap. 8.

 101. The importance of the algorithm as a central concept for an emerging computer
 science is well-described by Ensmenger, The Computer Boys Take Over, chap. 5; the im
 portance of ALGOL 60 to the institutional foundation of the discipline is in Priestley, A
 Science of Operations, chap. 9. One immediate consequence was an upsurge of interest in
 formal language theory and its application to compilation. As the UNCOL project had
 noted, compilation was a significant reverse salient in programming language technol
 ogy, and the ALGOL 60 report inspired a great effort to remove this obstacle.

 102. Dörries, ed., "Language as a Tool in the Sciences," 4.

 65

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 teristic of a period of military funding could continue as computer devel
 opment increasingly became the preserve of large commercial companies,
 notably IBM. As a result, two prominent senses of the notion of universal
 ity emerged: first, the idea of machine independence so that research and
 development in programming would not be constrained by the demands
 of particular manufacturers; and second, a sense connecting directly with
 the universality of the notations of science—and in particular, mathemati
 cal notation.103

 The notion of a programming language, which is connected to the idea
 of universality, became central to this exercise of boundary work that
 sought to disengage the activity of programming from local conventions,
 and to transform it into a transcendent and universal body of knowledge.
 From this endeavor, programming languages and algorithms emerged as
 epistemic objects stripped of any marks that would associate them with spe
 cific hardware. In the 1960s, as Brent Jesiek has noted, programming lan
 guages and algorithms would gain ever more relevance in the design of aca
 demic curricula as part of computer scientists' efforts to insulate their
 nascent discipline from rapid technological development.104 To what point
 this strategy succeeded is a question that deserves further discussion. The
 rise of software engineering in the early 1970s and the existence of a grow
 ing body of programmers without any professional training are just two
 reminders of the limitations of this agenda. Nonetheless, the linguistic con
 ception of computer programming was here to stay, providing a specific
 vocabulary, new categories of problems and even scientific paradigms for
 the emerging field of computer science, and, most of all, acting as an "island
 of semantic stability" in a rapidly changing technological environment.105

 More work needs to be done in detailing how programming languages
 were consolidated by basing them on the existing notion of a formal lan
 guage developed by logicians in the 1930s and appropriated by linguists dur
 ing the postwar years. In particular, machine-translation projects deserve
 further attention as spaces of interaction for the communities of linguists,
 logicians, and programming specialists. In any case, by the early 1960s, the
 connection between programming languages and formal languages came to
 be fully recognized. And programming languages and the programs written
 in them were about to acquire a new status as objects of knowledge in their
 own right: from being a question of communicating with a machine, pro
 gramming had become a linguistic activity—the writing of programs.

 103. In connection with the first point, Bemer, then at IBM, commented in 1957
 that computer manufacturers should provide not only the machine, but also, "with the
 full co-operation of responsible users," the means of using it—namely, the program
 ming languages; see Bemer, "The Status of Automatic Programming for Scientific
 Problems," 117.

 104. Brent K. Jesiek, "Between Discipline and Profession," 177.
 105. On the notion of an "island of semantic stability," see Pierre Laszlo, "Conven

 tionalities in Formula Writing," 52.

 66

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 Bibliography

 Archival Sources

 Allen Newell Collection, Carnegie Mellon University, Pittsburgh
 Archives Center, National Museum of American History, Smithsonian

 Institution, Washington, D.C.
 Charles Katz Papers
 John Clifford Shaw Papers
 Paul Armer Collection

 Unprocessed Computer Documentation Collection
 Charles Babbage Institute, University of Minnesota, Minneapolis

 Association for Computing Machinery (ACM) Exhibit
 Francis V. Wagner Papers
 SHARE, Inc. Records

 Published Sources

 Adams, C. W„ ed. Digital Computers: Advanced Coding Techniques—Notes
 from a Special Summer Program. Cambridge, MA: MIT Press, 1954.

 . "Developments in Programming Research." In Proceedings of the
 Eastern Joint Computer Conference: Papers and Discussions Presented at
 the Joint ACM-AIEE-IRE Computer Conference Boston, Mass., Novem
 ber 7-9, 1955, edited by Joint ACM-AIEE-IRE Computer Conference,
 75-78. New York: IRE, 1956.

 Akera, Atsushi. "Voluntarism and the Fruits of Collaboration: The IBM

 User Group, Share." Technology and Culture 42, no. 4 (2001): 710-36.
 . Calculating a Natural World: Scientists, Engineers, and Computers

 during the Rise of U.S. Cold War Research. Cambridge, MA: MIT Press,
 2007.

 _. "The Life and Work of Bernard A. Galler (1928-2006)." IEEE An
 nals of the History of Computing 30, no. 1 (2008): 4-14.

 American Mathematical Society and National Research Council. Proceed
 ings of a Conference on Training in Applied Mathematics, Columbia
 University, New York City, 22-24 October 1953. New York: National
 Academies, 1953.

 Aspray, William. "From Mathematical Constructivity to Computer Sci
 ence: Alan Turing, John von Neumann, and the Origins of Computer
 Science in Modern Logic" (Ph.D. diss., University of Wisconsin-Madi
 son, 1980).

 . "International Diffusion of Computer Technology, 1945-1955."
 IEEE Annals of the History of Computing 8, no. 4 (1986): 351-60.

 Association for Computing Machinery (ACM). Proceedings of the Third
 ACM SIGPLAN Conference on History of Programming Languages.
 New York: ACM, 2007.

 , Committee on Nomenclature. First Glossary of Programming Ter
 minology: Report to the Association for Computing Machinery, June

 67

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 1954, box 1, folder 30, Association for Computing Machinery (ACM)
 Exhibit, in Charles Babbage Institute, University of Minnesota, Minne
 apolis.

 Babbage, Charles. "On the Mathematical Powers of the Calculating En
 gine." In The Works of Charles Babbage, vol. 3, edited by Martin Camp
 bell-Kelly, 15-61. London: Pickering, 1989.

 Backus, J. W. "The Syntax and Semantics of the Proposed International
 Algebraic Language of the Zurich ACM-GAMM Conference." In Infor
 mation Processing: Proceedings of the International Conference on Infor
 mation Processing, Unesco, Paris, 15-20 June 1959, edited by UNESCO,
 125-31. Paris: UNESCO, 1960.

 Bauer, Friedrich L., and Klaus Samelson. "The Problem of a Common Lan

 guage, Especially for Scientific Numeral Work." In Information Proc
 essing: Proceedings of the International Conference on Information Proc
 essing, Unesco, Paris, 15-20 June 1959, edited by UNESCO, 120-24.
 Paris: UNESCO, 1960.

 Bauer, Walter F., Mario L. Juncosa, and Alan J. Perlis. "ACM Publication

 Policies and Plans." Journal of the ACM 6, no. 2 (1959): 121-22.
 Bemer, Robert W. "The Status of Automatic Programming for Scientific

 Problems." In Proceedings of the Fourth Annual Computer Applications
 Symposium, October 24-25, 1957, edited by Francis C. Bock, 107-17.
 Chicago: Armour Research Foundation, 1958.

 Bensaude-Vincent, Bernadette. "Languages in Chemistry." In The Cam
 bridge History of Science: The Modern Physical and Mathematical Sci
 ences, edited by Mary Jo Nye, 174-90. Cambridge: Cambridge Univer
 sity Press, 2003.

 Bergin, Thomas J., and Richard G. Gibson Jr. History of Programming Lan
 guages II. New York: ACM Press, 1996.

 Berkeley, Edmund C. Giant Brains, or Machines That Think. New York:
 John Wiley and Sons, 1949.

 Blackwell, Alan F. "The Reification of Metaphor as a Design Tool." ACM
 Transactions on Computer-Human Interaction 13, no. 4 (2006): 490
 530.

 Bowden, B. V., ed. Faster Than Thought: A Symposium on Digital Com
 puting Machines. New York: Pitman, 1953.

 Bowles, Mark D. "U.S. Technological Enthusiasm and British Technologi
 cal Skepticism in the Age of the Analog Brain." IEEE Annals of the
 History of Computing 18, no. 4 (1996): 5-15.

 Bright, Herbert S. "Computer User Groups." Unpublished document,
 1960. (Reprinted in IEEE Annals of the History of Computing 12, no. 1
 [1990]: 56-61.)

 Brown, J. H., and John W. Carr III. "Automatic Programming and Its
 Development on the MID AC." In Symposium on Automatic Program
 ming for Digital Computers, 13-14 May 1954, edited by U.S. Navy

 68

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 Mathematical Computing Advisory Panel, 84-97. Washington, DC:
 U.S. Department of Commerce/Office of Technical Services, 1954.

 Bruijn, W. K„ and Stichting Studiecentrum voor Administratieve Automa
 tisering. Computers in Europe 1966: A Progress Report on the Develop
 ment of the European Computer Market. Amsterdam: Automatic Infor
 mation Processing Research Centre, 1966.

 Bullynck, Maarten, and Liesbeth de Mol. "Setting-up Early Computer
 Programs: D. H. Lehmer's ENIAC Computation." Archive for Mathe
 matical Logic 49, no. 2 (2010): 123-46.

 Burks, Arthur W., Herman H. Goldstine, and John von Neumann. Pre

 liminary Discussion of the Logical Design of an Electronic Computer
 Instrument. Princeton, NJ: Institute for Advanced Study, 28 June 1946.

 Campbell-Kelly, Martin. From Airline Reservations to Sonic the Hedgehog:
 A History of the Software Industry. Cambridge, MA: MIT Press, 2004.

 , and William Aspray. Computer: A History of the Information Ma
 chine. New York: Basic Books, 1996.

 Carr, John Weber, III. "Methods in High-Speed Computation." In Notes
 on Digital Computers and Data Processors: Prepared for Special Summer
 Conference at the University of Michigan, edited by John Weber Carr III
 and Norman R. Scott, III.5.2.1-38. Ann Arbor: University of Michigan
 Press, 1955.

 . "Conference Summary." In Proceedings of the Eastern Joint Com
 puter Conference, 10-12 December 1956, edited by Joint Computer
 Conference, 147-50. New York: AIEE, 1957.

 . Computing Programming and Artificial Intelligence: An Intensive
 Course for Practicing Scientists and Engineers—Lectures Given at the
 University of Michigan, Summer 1958. Ann Arbor: University of Michi
 gan Press, 1958.

 _, and Norman R. Scott, eds. Notes on Digital Computers and Data
 Processors: Prepared for Special Summer Conference at the University of
 Michigan. Ann Arbor: University of Michigan Press, 1955.

 Ceruzzi, Paul E. A History of Modern Computing. Cambridge, MA: MIT
 Press, 1998.

 Chipps, J., M. Koschmann, S. Orgel, A. Perlis, and J. Smith. "A Mathemati
 cal Language Compiler." In Association for Computing Machinery
 Eleventh Annual Meeting, UCLA, 27-29 August 1956, edited by ACM,
 114-17. New York: ACM Press, 1956.

 Chun, Wendy Hui Kyong. Programmed Visions: Software and Memory.
 Cambridge, MA: MIT Press, 2011.

 Colburn, Timothy R., and Gary M. Shute. "Metaphor in Computer Sci
 ence." Journal of Applied Logic 6, no. 4 (2008): 526-33.

 Crowther-Heyck, Hunter. "George A. Miller, Language, and the Computer
 Metaphor of Mind." History of Psychology 2, no. 1 (1999): 37-64.

 Dörries, Matthias, ed. "Language as a Tool in the Sciences." In Experi

 69

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 meriting with Tongues: Studies in Science and Language, 1-20. Palo
 Alto, CA: Stanford University Press, 2002.

 Edwards, Paul N. The Closed World: Computers and the Politics of Dis
 course in Cold War America. Cambridge, MA: MIT Press, 1996.

 Ensmenger, Nathan. The Computer Boys Take Over: Computers, Program
 mers, and the Politics of Technical Expertise. Cambridge, MA: MIT
 Press, 2010.

 Fuller, Matthew. Software Studies: A Lexicon. Cambridge, MA: MIT Press,
 2008.

 Galison, Peter. "The Ontology of the Enemy: Norbert Wiener and the
 Cybernetics Vision." Critical Inquiry 21, no. 1 (1994): 228-66.

 Gibbs, Robert G. "Manpower Supply Down, Military and Industrial
 Demand High." Industrial and Engineering Chemistry 46, no. 6 (1954):
 1139-44.

 Goldstine, Herman H., and John von Neumann. Planning and Coding of
 Problems for an Electronic Computing Instrument: Report on the Mathe
 matical and Logical Aspects of an Electronic Computing Instrument.
 Princeton, NJ: Institute for Advanced Study, 1947.

 Gorn, Saul. "Planning Universal Semi-Automatic Coding." In Symposium
 on Automatic Programming for Digital Computers, 13-14 May 1954,
 edited by U.S. Navy Mathematical Computing Advisory Panel, 74-83.
 Washington, DC: U.S. Department of Commerce/Office of Technical
 Services, 1954.

 . "Standardized Programming Methods and Universal Coding."
 Journal of the ACM 4, no. 3 (1957): 254-73.

 , and Wallace Manheimer. The Electronic Brain and What It Can

 Do. Chicago: Science Research Associates, 1956.
 Gruenberger, Fred J. "A Short History of Digital Computing in Southern

 California." Computing News 7, no. 145 (1959). (Reprinted in IEEE
 Annals of the History of Computing 2, no. 3 [1980]: 246-50.)

 Haigh, Thomas. "Software in the 1960s as Concept, Service, and Product."
 IEEE Annals of the History of Computing 24, no. 1 (2002): 5-13.

 Harper, Margaret H. "Subroutines: Prefabricated Blocks for Building."
 Computers and Automation 3, no. 3 (1954): 14-15.

 Harris, Randy Allen. "Chomsky's other Revolution." In Chomskyan (R)ev
 olutions, edited by Douglas A. Kibbee, 238-64. Amsterdam: John Ben
 jamins Publishing Company, 2010.

 Hashagen, Ulf, Reinhard Keil-Slawik, and Arthur L. Norberg. History of
 Computing: Software Issues. New York: Springer, 2002.

 Hemmes, David. "FORTRANSIT Recollections." IEEE Annals of the His
 tory of Computing 8, no. 1 (1986): 70-73.

 Holmevik, Jan Rune. Inside Innovation: The Simula Research Laboratory
 and the History of the Simula Programming Language. Oslo: Simula Re
 search Laboratory, 2004.

 70

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 Hopper, Grace M. "The Education of a Computer." In Proceedings of the
 1952 ACM National Meeting (Pittsburgh), edited by ACM and C. V. L.
 Smith, 243-49. New York: ACM Press, 1952.

 , et al. "Glossaries of Terms—More Discussion." Computers and
 Automation 3, no. 3 (1954): 21-24.

 Hurd, Cuthbert C., ed. "Special Issue on the IBM 701." IEEE Annals of the
 History of Computing 5, no. 2 (1983).

 Huskey, Harry D. "NELIAC—a Dialect of ALGOL." Communications of
 the ACM 3, no. 8 (1960): 463-68.

 Hutchins, William John. Machine Translation: Past, Present, Future. Chi
 chester, UK: Ellis Horwood, 1986.

 IBM Corporation. Specifications for the IBM Mathematical FORmula
 TRANslating System FORTRAN. New York: IBM, 1954.

 . Reference Manual FOR TRANSIT Automatic Coding System for the
 IBM 650 Data Processing System. New York: IBM, 1957.

 Jeon, Chihyung. "Flying Weather Men and Robot Observers: Instruments,
 Inscriptions, and Identities in US Upper-air Observation, 1920-1940."
 History and Technology 26, no. 2 (2010): 119-45.

 Jesiek, Brent K. "Between Discipline and Profession: A History of Persis
 tent Instability in the Field of Computer Engineering, circa 1951-2006"
 (Ph.D. diss., Virginia Polytechnic Institute and State University, 2006).

 Johnson, Gerald J. "Of Metaphor and the Difficulty of Computer Dis
 course." Communications of the ACM 37, no. 12 (1994): 97-102.

 Joint AIEE-IRE Computer Conference. Review of Electronic Digital Com
 puters: Joint AIEE-IRE Computer Conference—Papers and Discussions
 Presented at the Joint AIEE-IRE Computer Conference, Philadelphia,
 Pa., December 10-12, 1951. New York: AIEE, 1952.

 Kaiser, David. "Cold War Requisitions, Scientific Manpower, and the Pro
 duction of American Physicists after World War II." Historical Studies
 in the Physical and Biological Sciences 33, no. 1 (2002): 131-59.

 Kay, Lily. Who Wrote the Book of Life? A History of the Genetic Code. Palo
 Alto, CA: Stanford University Press, 2000.

 Kline, Ronald. "Cybernetics, Automata Studies, and the Dartmouth Con
 ference on Artificial Intelligence." IEEE Annals of the History of Com
 puting 33, no. 4 (2011): 5-16.

 Knuth, Donald E. Literate Programming. Palo Alto, CA: Center for the
 Study of Language and Information, 1992.

 , and Luis Trabb Pardo. "The Early Development of Programming
 Languages." In A History of Computing in the Twentieth Century: A
 Collection of Essays, edited by Nicholas Metropolis, Jack Howlett, and
 Gian-Carlo Rota, 197-273. New York: Academic Press, 1980.

 Laning, J. Halcombe, and Neal Zierler. A Program for Translation of Math
 ematical Equations for Whirlwind I. Cambridge, MA: Instrumentation
 Laboratory/MIT, 1954.

 71

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 Laszlo, Pierre. "Conventionalities in Formula Writing." In Tools and Modes
 of Representation in the Laboratory Sciences, edited by Ursula Klein, 47
 60. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001.

 Lee, J. A. N. "Pioneer Day, 1982." IEEE Annals of the History of Computing
 6, no. 1 (1984): 7-14.

 , ed. "Special Issue, COBOL: 25th Anniversary." IEEE Annals of the
 History of Computing 7, no. 4 (1985).

 Lehmer, Derrick H. "Welcoming Address." In Proceedings of the Western
 Computer Conference, Los Angeles, California, February 11-12,1954, 7
 8. New York: American Institute of Electrical Engineers, 1954.

 Longo, Bernadette. "Metaphors, Robots, and the Transfer of Computers to
 Civilian Life." Comparative Technology Transfer and Society 5, no. 3
 (2007): 253-73.

 Luebbert, William F., and Percy W. Collom Jr. "Signal Corps Research and
 Development on Automatic Programming of Digital Computers."
 Communications of the ACM 2, no. 2 (1959): 22-27.

 Mahoney, Michael S. "What Makes the History of Software Hard?" IEEE
 Annals of the History of Computing 30, no. 3 (2008): 8-18.

 Martin, C. Dianne. "The Myth of the Awesome Thinking Machine." Com
 munications of the ACM 36, no. 4 (1993): 120-33.

 Martin-Nielsen, Janet. "Private Knowledge, Public Tensions: Theory Com
 mitment in Postwar American Linguistics" (Ph.D. diss., University of
 Toronto, 2009).

 "Mathematical Machine." Science News-Letter 48, no. 19 (1945): 291.
 McLaren, Angus. Reproduction by Design: Sex, Robots, Trees, and Test

 Tube Babies in Interwar Britain. Chicago: University of Chicago Press,
 2012.

 Mindell, David A. Between Human and Machine: Feedback, Control, and

 Computing before Cybernetics. Baltimore: Johns Hopkins University
 Press, 2002.

 Mirowski, Philip, and Esther-Mirjam Sent. "The Commercialization of
 Science and the Response of STS." In The Handbook of Science and
 Technology Studies, 3rd ed., edited by Edward J. Hackett, Olga Amster
 damska, Michael E. Lynch, and Judy Wajcman, 635-89. Cambridge,
 MA: MIT Press, 2008.

 Naur, Peter, J. W. Backus, F. L. Bauer, et al. "Report on the Algorithmic
 Language ALGOL 60." Communications of the ACM 3, no. 5 (1960):
 299-314.

 "News and Notices." Communications of the ACM 1, no. 2 (1958): 6-16.
 Nofre, David. "Unraveling Algol: US, Europe, and the Creation of a Pro

 gramming Language." IEEE Annals of the History of Computing 32, no.
 2 (2010): 58-68.

 Nye, David E. Electrifying America: Social Meanings of a New Technology,
 1880-1940. Cambridge, MA: MIT Press, 1992.

 72

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 Orgel, Sylvia. Purdue Compiler General Description. West Lafayette, IN:
 Purdue Research Foundation, 1958.

 Paulsen, Gard. "Software in Telecommunications and the Programming
 Language Chili, 1974-1999" (Ph.D. diss., BI Norwegian Business
 School, 2011).

 Perlis, Alan J. "Two Thousand Words and Two Thousand Ideas—the 650

 at Carnegie." IEEE Annals of the History of Computing 8, no. 1 (1986):
 42-46.

 , and J. W. Smith. "A Mathematical Language Compiler." In Auto
 matic Coding: Proceedings of the Symposium Held January 24-25, 1957,
 at the Franklin Institute in Philadelphia, edited by Franklin Institute,
 87-102. Lancaster, PA: Franklin Institute, 1957.

 , and Klaus Samelson. "Preliminary Report: International Algebraic
 Language." Communications of the ACM 1, no. 12 (1958): 8-22.

 Pestre, Dominique. Science, Argent et Politique: Un Essai d'Interprétation.
 Paris: Quae, 2008.

 Pflüger, Jörg. "Language in Computing." In Experimenting with Tongues:
 Studies in Science and Language, edited by Matthias Dörries, 125-62.
 Palo Alto, CA: Stanford University Press, 2002.

 Priestley, Mark. A Science of Operations: Machines, Logic and the Invention
 of Programming. London: Springer-Verlag London Limited, 2011.

 Pursell, Carroll W. "Technologies as Cultural Practice and Production."
 Technology and Culture 51, no. 3 (2010): 715-22.

 Quarles, Donald A. "Need of Scientific Manpower." Science News-Letter
 67, no. 10 (1955): 154-57.

 Ransom, Harry H. "Scientific Manpower and National Security." Journal of
 the American Society for Naval Engineers 68, no. 4 (1956): 673-76.

 Remington Rand Inc. "Preface." In UNIVAC Short Code. Philadelphia:
 Eckert-Mauchly Division/Remington Rand Inc., 24 October 1952.

 . "Formation of USE—a Cooperative Organization of 1103 A Users,
 16 February 1956." 1103 Central Exchange Newsletter Number 8, Febru
 ary 1956, 264-65, available at http://bitsavers.trailing-edge.com/pdf/
 univac/1103/PX71900-8_CentrExchNewsl%238_Feb56.pdf (accessed
 15 December 2013).

 Rogers, T. H. "Supply and Demand of Technical Personnel in American
 Industry." School Science and Mathematics 53, no. 2 (1953): 87-96.

 Rosen, Saul, ed. "Programming Systems and Languages: A Historical
 Survey." In AFIPS '64 (Spring): Proceedings of the April 21-23, 1964,
 Spring Joint Computer Conference, 1-15. New York: ACM, 1964.

 Rosenblueth, Arturo, Norbert Wiener, and Julian Bigelow. "Behavior,
 Purpose and Teleology." Philosophy of Science 10, no. 1 (1943): 18
 24.

 Rydell, Robert W. "The Fan Dance of Science: American World's Fairs in
 the Great Depression." Isis 76, no. 4 (1985): 525-42.

 73

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 TECHNOLOGY AND CULTURE

 JANUARY

 2014

 VOL. 55

 Sammet, Jean E. Programming Languages: History and Fundamentals.
 Englewood Cliffs, NJ: Prentice-Hall, 1969.

 . "The Early History of COBOL." In History of Programming Lan
 guages, edited by Richard L. Wexelblat, 199-243. New York: Academic
 Press, 1981.

 Scott, Allen J. "The Aerospace-Electronics Industrial Complex of Southern
 California: The Formative Years, 1940-1960." Research Policy 20, no. 5
 (1991): 439-56.

 Shannon, Claude E. "A Mathematical Theory of Communication." Bell
 System Technical Journal 27, no. 3 (1948): 379-423.

 . "A Mathematical Theory of Communication." Bell System Techni
 cal Journal 27, no. 4 (1948): 623-56.

 Shapin, Steven. "'The Mind Is Its Own Place': Science and Solitude in Sev
 enteenth-Century England." Science in Context 4, no. 1 (1991): 191—
 218.

 Simonson, G. R. "Missiles and Creative Destruction in the American Air

 craft Industry, 1956-1961." Business History Review 38, no. 3 (1964):
 302-14.

 Smith, R. Blair. "The IBM 701—Marketing and Customer Relations." IEEE
 Annals of the History of Computing ("Special Issue on the IBM 701") 5,
 no. 2 (1983): 170-72.

 Steel, T. B. "UNCOL: The Myth and the Fact." Annual Review in Automat
 ic Programming 2 (1961): 325-44.

 Stibitz, George R. "A Manual of Operation for the Automatic Sequence
 Controlled Calculator." American Mathematical Monthly 54, no. 1
 (1947): 57-59.

 . "The Organization of Large-Scale Computing Machinery." In
 Proceedings of a Symposium on Large-Scale Digital Calculating Machin
 ery, 91-100. Cambridge, MA: Harvard University Press, 1948.

 Strong, J., J. Wegstein, A. Tritter, J. Olsztyn, O. Mock, and T. Steel. "The
 Problem of Programming Communication with Changing Machines:
 A Proposed Solution." Communications of the ACM 1, no. 8 (1958):
 12-18.

 Tomalin, Marcus. Linguistics and the Formal Sciences: The Origins of Gen
 erative Grammar. New York: Cambridge University Press, 2006.

 Turing, Alan M. "On Computable Numbers, with an Application to the
 Entscheidungsproblem." Proceedings of the London Mathematical Soci
 ety, second series, 42 (1936-37): 230-65.

 Tympas, Aristotle. "From Digital to Analogue and Back: The Ideology of
 Intelligent Machines in the History of the Electrical Analyzer, 1870s
 1960s." IEEE Annals of the History of Computing 18, no. 4 (1996): 42
 48.

 U.S. Congress, Joint Committee on Atomic Energy. Engineering and

 74

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

 NOFRE, PRIESTLEY, and ALBERTS I When Technology Became Language

 Scientific Manpower in the United States, Western Europe and Soviet
 Russia. Washington, DC: U.S. Government Printing Office, 1956.

 U.S. Navy Mathematical Computing Advisory Panel, ed. Symposium on
 Automatic Programming for Digital Computers, 13-14 May 1954.
 Washington, DC: U.S. Department of Commerce/Office of Technical
 Services, 1954.

 Weik, Martin H. A Survey of Domestic Electronic Digital Computing Sys
 tems. Ballistics Research Laboratories Report no. 971. Aberdeen, MD:
 Aberdeen Proving Ground, December 1955.

 Wexelblat, Richard L. History of Programming Languages I. New York:
 Academic Press, 1981.

 Wiener, Norbert. Cybernetics or Control and Communication in the Ani
 mal and the Machine. New York: John Wiley and Sons, 1948.

 Wilkes, Maurice V., David J. Wheeler, and Stanley Gill. The Preparation of
 Programs for an Electronic Digital Computer, with Special Reference to
 the EDSAC and the Use of a Library of Subroutines. Cambridge, MA:
 Addison-Wesley Press, 1951.

 Williams, Samuel R. "Bell Telephone Laboratories' Relay Computing Sys
 tem." In Proceedings of a Symposium on Large-Scale Digital Calculating
 Machinery, 41-68. Cambridge, MA: Harvard University Press, 1948.

 Wolfe, Ruth W. "The Technical Manpower Shortage." School Science and
 Mathematics 57, no. 1 (1957): 63-70.

This content downloaded from
��������������68.8.44.142 on Fri, 19 Mar 2021 21:48:05 UTC��������������

All use subject to https://about.jstor.org/terms

	Contents
	p. 40
	p. 41
	p. 42
	p. 43
	p. 44
	p. 45
	p. 46
	p. 47
	p. 48
	p. 49
	p. 50
	p. 51
	p. 52
	p. 53
	p. 54
	p. 55
	p. 56
	p. 57
	p. 58
	p. 59
	p. 60
	p. 61
	p. 62
	p. 63
	p. 64
	p. 65
	p. 66
	p. 67
	p. 68
	p. 69
	p. 70
	p. 71
	p. 72
	p. 73
	p. 74
	p. 75

	Issue Table of Contents
	TECHNOLOGY AND CULTURE, Vol. 55, No. 1 (January 2014) pp. 1-286
	Front Matter
	Abstracts
	Tomorrow's House: Solar Housing in 1940s America [pp. 1-39]
	When Technology Became Language: The Origins of the Linguistic Conception of Computer Programming, 1950–1960 [pp. 40-75]
	Witnessing Power: John Elder and the Making of the Marine Compound Engine, 1850–1858 [pp. 76-106]
	Toxic Legacy: The Environmental Impact of the Manufactured Gas Industry in the United States [pp. 107-147]
	Spellbinding and Crooning: Sound Amplification, Radio, and Political Rhetoric in International Comparative Perspective, 1900–1945 [pp. 148-185]
	ORGANIZATIONAL NOTES
	Awards [pp. 186-197]
	The Portland Meeting, 10–13 October 2013 [pp. 198-210]

	CONFERENCE REPORTS
	Fortieth Symposium of the International Committee for the History of Technology: ICOHTEC at the ICHSTM, Manchester, UK, 21–28 July 2013 [pp. 211-219]
	"Accidents and Emergencies: Welfare and Safety in Europe and North America, c.1750–2000": 9–11 September 2013, Oxford, UK [pp. 220-222]

	MEMORIAL
	Mark R. Finlay, 15 September 1960–6 October 2013 [pp. 223-226]

	EXHIBIT REVIEW
	The Great American Hall of Wonders, Smithsonian American Art Museum, Washington, D.C., 15 July 2011–8 January 2012 [pp. 227-236]

	ESSAY REVIEWS
	Panoramic Visions: Denise Blake Oleksijczuk, "The First Panoramas" Erkki Huhtamo, "Illusions in Motion" [pp. 237-240]
	Producers, Users, and the Actors Between: Chikako Takeshita, "The Global Biopolitics of the IUD" Heather Munro Prescott, "The Morning After" [pp. 241-244]
	Cybernetic Futures: Stanislaw Lem, "Summa Technologiae" [pp. 245-248]

	BOOK REVIEWS
	Review: untitled [pp. 249-251]
	Review: untitled [pp. 251-253]
	Review: untitled [pp. 253-254]
	Review: untitled [pp. 254-256]
	Review: untitled [pp. 256-258]
	Review: untitled [pp. 258-259]
	Review: untitled [pp. 259-261]
	Review: untitled [pp. 261-263]
	Review: untitled [pp. 263-265]
	Review: untitled [pp. 265-267]
	Review: untitled [pp. 267-268]
	Review: untitled [pp. 269-270]
	Review: untitled [pp. 270-273]
	Review: untitled [pp. 273-274]
	Review: untitled [pp. 275-276]
	Review: untitled [pp. 276-278]
	Review: untitled [pp. 278-280]
	Review: untitled [pp. 280-281]

	COMMUNICATIONS
	TO THE EDITOR [pp. 282-285]
	RESPONSE TO ALIC [pp. 285-285]

	Back Matter

